xref: /openbmc/linux/kernel/bpf/hashtab.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include "percpu_freelist.h"
14 #include "bpf_lru_list.h"
15 #include "map_in_map.h"
16 
17 #define HTAB_CREATE_FLAG_MASK						\
18 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
19 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20 
21 #define BATCH_OPS(_name)			\
22 	.map_lookup_batch =			\
23 	_name##_map_lookup_batch,		\
24 	.map_lookup_and_delete_batch =		\
25 	_name##_map_lookup_and_delete_batch,	\
26 	.map_update_batch =			\
27 	generic_map_update_batch,		\
28 	.map_delete_batch =			\
29 	generic_map_delete_batch
30 
31 /*
32  * The bucket lock has two protection scopes:
33  *
34  * 1) Serializing concurrent operations from BPF programs on different
35  *    CPUs
36  *
37  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38  *
39  * BPF programs can execute in any context including perf, kprobes and
40  * tracing. As there are almost no limits where perf, kprobes and tracing
41  * can be invoked from the lock operations need to be protected against
42  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
43  * the lock held section when functions which acquire this lock are invoked
44  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
45  * variable bpf_prog_active, which prevents BPF programs attached to perf
46  * events, kprobes and tracing to be invoked before the prior invocation
47  * from one of these contexts completed. sys_bpf() uses the same mechanism
48  * by pinning the task to the current CPU and incrementing the recursion
49  * protection across the map operation.
50  *
51  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
52  * operations like memory allocations (even with GFP_ATOMIC) from atomic
53  * contexts. This is required because even with GFP_ATOMIC the memory
54  * allocator calls into code paths which acquire locks with long held lock
55  * sections. To ensure the deterministic behaviour these locks are regular
56  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
57  * true atomic contexts on an RT kernel are the low level hardware
58  * handling, scheduling, low level interrupt handling, NMIs etc. None of
59  * these contexts should ever do memory allocations.
60  *
61  * As regular device interrupt handlers and soft interrupts are forced into
62  * thread context, the existing code which does
63  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
64  * just works.
65  *
66  * In theory the BPF locks could be converted to regular spinlocks as well,
67  * but the bucket locks and percpu_freelist locks can be taken from
68  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
69  * atomic contexts even on RT. These mechanisms require preallocated maps,
70  * so there is no need to invoke memory allocations within the lock held
71  * sections.
72  *
73  * BPF maps which need dynamic allocation are only used from (forced)
74  * thread context on RT and can therefore use regular spinlocks which in
75  * turn allows to invoke memory allocations from the lock held section.
76  *
77  * On a non RT kernel this distinction is neither possible nor required.
78  * spinlock maps to raw_spinlock and the extra code is optimized out by the
79  * compiler.
80  */
81 struct bucket {
82 	struct hlist_nulls_head head;
83 	union {
84 		raw_spinlock_t raw_lock;
85 		spinlock_t     lock;
86 	};
87 };
88 
89 #define HASHTAB_MAP_LOCK_COUNT 8
90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
91 
92 struct bpf_htab {
93 	struct bpf_map map;
94 	struct bucket *buckets;
95 	void *elems;
96 	union {
97 		struct pcpu_freelist freelist;
98 		struct bpf_lru lru;
99 	};
100 	struct htab_elem *__percpu *extra_elems;
101 	atomic_t count;	/* number of elements in this hashtable */
102 	u32 n_buckets;	/* number of hash buckets */
103 	u32 elem_size;	/* size of each element in bytes */
104 	u32 hashrnd;
105 	struct lock_class_key lockdep_key;
106 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
107 };
108 
109 /* each htab element is struct htab_elem + key + value */
110 struct htab_elem {
111 	union {
112 		struct hlist_nulls_node hash_node;
113 		struct {
114 			void *padding;
115 			union {
116 				struct bpf_htab *htab;
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		struct rcu_head rcu;
124 		struct bpf_lru_node lru_node;
125 	};
126 	u32 hash;
127 	char key[] __aligned(8);
128 };
129 
130 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
131 {
132 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
133 }
134 
135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
136 {
137 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
138 }
139 
140 static void htab_init_buckets(struct bpf_htab *htab)
141 {
142 	unsigned i;
143 
144 	for (i = 0; i < htab->n_buckets; i++) {
145 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
146 		if (htab_use_raw_lock(htab)) {
147 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
148 			lockdep_set_class(&htab->buckets[i].raw_lock,
149 					  &htab->lockdep_key);
150 		} else {
151 			spin_lock_init(&htab->buckets[i].lock);
152 			lockdep_set_class(&htab->buckets[i].lock,
153 					  &htab->lockdep_key);
154 		}
155 		cond_resched();
156 	}
157 }
158 
159 static inline int htab_lock_bucket(const struct bpf_htab *htab,
160 				   struct bucket *b, u32 hash,
161 				   unsigned long *pflags)
162 {
163 	unsigned long flags;
164 
165 	hash = hash & HASHTAB_MAP_LOCK_MASK;
166 
167 	migrate_disable();
168 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
169 		__this_cpu_dec(*(htab->map_locked[hash]));
170 		migrate_enable();
171 		return -EBUSY;
172 	}
173 
174 	if (htab_use_raw_lock(htab))
175 		raw_spin_lock_irqsave(&b->raw_lock, flags);
176 	else
177 		spin_lock_irqsave(&b->lock, flags);
178 	*pflags = flags;
179 
180 	return 0;
181 }
182 
183 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
184 				      struct bucket *b, u32 hash,
185 				      unsigned long flags)
186 {
187 	hash = hash & HASHTAB_MAP_LOCK_MASK;
188 	if (htab_use_raw_lock(htab))
189 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
190 	else
191 		spin_unlock_irqrestore(&b->lock, flags);
192 	__this_cpu_dec(*(htab->map_locked[hash]));
193 	migrate_enable();
194 }
195 
196 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
197 
198 static bool htab_is_lru(const struct bpf_htab *htab)
199 {
200 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
201 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
202 }
203 
204 static bool htab_is_percpu(const struct bpf_htab *htab)
205 {
206 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
207 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
208 }
209 
210 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
211 				     void __percpu *pptr)
212 {
213 	*(void __percpu **)(l->key + key_size) = pptr;
214 }
215 
216 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
217 {
218 	return *(void __percpu **)(l->key + key_size);
219 }
220 
221 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
222 {
223 	return *(void **)(l->key + roundup(map->key_size, 8));
224 }
225 
226 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
227 {
228 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
229 }
230 
231 static void htab_free_elems(struct bpf_htab *htab)
232 {
233 	int i;
234 
235 	if (!htab_is_percpu(htab))
236 		goto free_elems;
237 
238 	for (i = 0; i < htab->map.max_entries; i++) {
239 		void __percpu *pptr;
240 
241 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
242 					 htab->map.key_size);
243 		free_percpu(pptr);
244 		cond_resched();
245 	}
246 free_elems:
247 	bpf_map_area_free(htab->elems);
248 }
249 
250 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
251  * (bucket_lock). If both locks need to be acquired together, the lock
252  * order is always lru_lock -> bucket_lock and this only happens in
253  * bpf_lru_list.c logic. For example, certain code path of
254  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
255  * will acquire lru_lock first followed by acquiring bucket_lock.
256  *
257  * In hashtab.c, to avoid deadlock, lock acquisition of
258  * bucket_lock followed by lru_lock is not allowed. In such cases,
259  * bucket_lock needs to be released first before acquiring lru_lock.
260  */
261 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
262 					  u32 hash)
263 {
264 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
265 	struct htab_elem *l;
266 
267 	if (node) {
268 		l = container_of(node, struct htab_elem, lru_node);
269 		memcpy(l->key, key, htab->map.key_size);
270 		return l;
271 	}
272 
273 	return NULL;
274 }
275 
276 static int prealloc_init(struct bpf_htab *htab)
277 {
278 	u32 num_entries = htab->map.max_entries;
279 	int err = -ENOMEM, i;
280 
281 	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
282 		num_entries += num_possible_cpus();
283 
284 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
285 					 htab->map.numa_node);
286 	if (!htab->elems)
287 		return -ENOMEM;
288 
289 	if (!htab_is_percpu(htab))
290 		goto skip_percpu_elems;
291 
292 	for (i = 0; i < num_entries; i++) {
293 		u32 size = round_up(htab->map.value_size, 8);
294 		void __percpu *pptr;
295 
296 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
297 					    GFP_USER | __GFP_NOWARN);
298 		if (!pptr)
299 			goto free_elems;
300 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
301 				  pptr);
302 		cond_resched();
303 	}
304 
305 skip_percpu_elems:
306 	if (htab_is_lru(htab))
307 		err = bpf_lru_init(&htab->lru,
308 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
309 				   offsetof(struct htab_elem, hash) -
310 				   offsetof(struct htab_elem, lru_node),
311 				   htab_lru_map_delete_node,
312 				   htab);
313 	else
314 		err = pcpu_freelist_init(&htab->freelist);
315 
316 	if (err)
317 		goto free_elems;
318 
319 	if (htab_is_lru(htab))
320 		bpf_lru_populate(&htab->lru, htab->elems,
321 				 offsetof(struct htab_elem, lru_node),
322 				 htab->elem_size, num_entries);
323 	else
324 		pcpu_freelist_populate(&htab->freelist,
325 				       htab->elems + offsetof(struct htab_elem, fnode),
326 				       htab->elem_size, num_entries);
327 
328 	return 0;
329 
330 free_elems:
331 	htab_free_elems(htab);
332 	return err;
333 }
334 
335 static void prealloc_destroy(struct bpf_htab *htab)
336 {
337 	htab_free_elems(htab);
338 
339 	if (htab_is_lru(htab))
340 		bpf_lru_destroy(&htab->lru);
341 	else
342 		pcpu_freelist_destroy(&htab->freelist);
343 }
344 
345 static int alloc_extra_elems(struct bpf_htab *htab)
346 {
347 	struct htab_elem *__percpu *pptr, *l_new;
348 	struct pcpu_freelist_node *l;
349 	int cpu;
350 
351 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
352 				    GFP_USER | __GFP_NOWARN);
353 	if (!pptr)
354 		return -ENOMEM;
355 
356 	for_each_possible_cpu(cpu) {
357 		l = pcpu_freelist_pop(&htab->freelist);
358 		/* pop will succeed, since prealloc_init()
359 		 * preallocated extra num_possible_cpus elements
360 		 */
361 		l_new = container_of(l, struct htab_elem, fnode);
362 		*per_cpu_ptr(pptr, cpu) = l_new;
363 	}
364 	htab->extra_elems = pptr;
365 	return 0;
366 }
367 
368 /* Called from syscall */
369 static int htab_map_alloc_check(union bpf_attr *attr)
370 {
371 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
372 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
373 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
374 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
375 	/* percpu_lru means each cpu has its own LRU list.
376 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
377 	 * the map's value itself is percpu.  percpu_lru has
378 	 * nothing to do with the map's value.
379 	 */
380 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
381 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
382 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
383 	int numa_node = bpf_map_attr_numa_node(attr);
384 
385 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
386 		     offsetof(struct htab_elem, hash_node.pprev));
387 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
388 		     offsetof(struct htab_elem, hash_node.pprev));
389 
390 	if (lru && !bpf_capable())
391 		/* LRU implementation is much complicated than other
392 		 * maps.  Hence, limit to CAP_BPF.
393 		 */
394 		return -EPERM;
395 
396 	if (zero_seed && !capable(CAP_SYS_ADMIN))
397 		/* Guard against local DoS, and discourage production use. */
398 		return -EPERM;
399 
400 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
401 	    !bpf_map_flags_access_ok(attr->map_flags))
402 		return -EINVAL;
403 
404 	if (!lru && percpu_lru)
405 		return -EINVAL;
406 
407 	if (lru && !prealloc)
408 		return -ENOTSUPP;
409 
410 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
411 		return -EINVAL;
412 
413 	/* check sanity of attributes.
414 	 * value_size == 0 may be allowed in the future to use map as a set
415 	 */
416 	if (attr->max_entries == 0 || attr->key_size == 0 ||
417 	    attr->value_size == 0)
418 		return -EINVAL;
419 
420 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
421 	   sizeof(struct htab_elem))
422 		/* if key_size + value_size is bigger, the user space won't be
423 		 * able to access the elements via bpf syscall. This check
424 		 * also makes sure that the elem_size doesn't overflow and it's
425 		 * kmalloc-able later in htab_map_update_elem()
426 		 */
427 		return -E2BIG;
428 
429 	return 0;
430 }
431 
432 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
433 {
434 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
435 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
436 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
437 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
438 	/* percpu_lru means each cpu has its own LRU list.
439 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
440 	 * the map's value itself is percpu.  percpu_lru has
441 	 * nothing to do with the map's value.
442 	 */
443 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
444 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
445 	struct bpf_htab *htab;
446 	int err, i;
447 
448 	htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
449 	if (!htab)
450 		return ERR_PTR(-ENOMEM);
451 
452 	lockdep_register_key(&htab->lockdep_key);
453 
454 	bpf_map_init_from_attr(&htab->map, attr);
455 
456 	if (percpu_lru) {
457 		/* ensure each CPU's lru list has >=1 elements.
458 		 * since we are at it, make each lru list has the same
459 		 * number of elements.
460 		 */
461 		htab->map.max_entries = roundup(attr->max_entries,
462 						num_possible_cpus());
463 		if (htab->map.max_entries < attr->max_entries)
464 			htab->map.max_entries = rounddown(attr->max_entries,
465 							  num_possible_cpus());
466 	}
467 
468 	/* hash table size must be power of 2 */
469 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
470 
471 	htab->elem_size = sizeof(struct htab_elem) +
472 			  round_up(htab->map.key_size, 8);
473 	if (percpu)
474 		htab->elem_size += sizeof(void *);
475 	else
476 		htab->elem_size += round_up(htab->map.value_size, 8);
477 
478 	err = -E2BIG;
479 	/* prevent zero size kmalloc and check for u32 overflow */
480 	if (htab->n_buckets == 0 ||
481 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
482 		goto free_htab;
483 
484 	err = -ENOMEM;
485 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
486 					   sizeof(struct bucket),
487 					   htab->map.numa_node);
488 	if (!htab->buckets)
489 		goto free_htab;
490 
491 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
492 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
493 							   sizeof(int),
494 							   sizeof(int),
495 							   GFP_USER);
496 		if (!htab->map_locked[i])
497 			goto free_map_locked;
498 	}
499 
500 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
501 		htab->hashrnd = 0;
502 	else
503 		htab->hashrnd = get_random_int();
504 
505 	htab_init_buckets(htab);
506 
507 	if (prealloc) {
508 		err = prealloc_init(htab);
509 		if (err)
510 			goto free_map_locked;
511 
512 		if (!percpu && !lru) {
513 			/* lru itself can remove the least used element, so
514 			 * there is no need for an extra elem during map_update.
515 			 */
516 			err = alloc_extra_elems(htab);
517 			if (err)
518 				goto free_prealloc;
519 		}
520 	}
521 
522 	return &htab->map;
523 
524 free_prealloc:
525 	prealloc_destroy(htab);
526 free_map_locked:
527 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
528 		free_percpu(htab->map_locked[i]);
529 	bpf_map_area_free(htab->buckets);
530 free_htab:
531 	lockdep_unregister_key(&htab->lockdep_key);
532 	kfree(htab);
533 	return ERR_PTR(err);
534 }
535 
536 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
537 {
538 	return jhash(key, key_len, hashrnd);
539 }
540 
541 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
542 {
543 	return &htab->buckets[hash & (htab->n_buckets - 1)];
544 }
545 
546 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
547 {
548 	return &__select_bucket(htab, hash)->head;
549 }
550 
551 /* this lookup function can only be called with bucket lock taken */
552 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
553 					 void *key, u32 key_size)
554 {
555 	struct hlist_nulls_node *n;
556 	struct htab_elem *l;
557 
558 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
559 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
560 			return l;
561 
562 	return NULL;
563 }
564 
565 /* can be called without bucket lock. it will repeat the loop in
566  * the unlikely event when elements moved from one bucket into another
567  * while link list is being walked
568  */
569 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
570 					       u32 hash, void *key,
571 					       u32 key_size, u32 n_buckets)
572 {
573 	struct hlist_nulls_node *n;
574 	struct htab_elem *l;
575 
576 again:
577 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
578 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
579 			return l;
580 
581 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
582 		goto again;
583 
584 	return NULL;
585 }
586 
587 /* Called from syscall or from eBPF program directly, so
588  * arguments have to match bpf_map_lookup_elem() exactly.
589  * The return value is adjusted by BPF instructions
590  * in htab_map_gen_lookup().
591  */
592 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
593 {
594 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
595 	struct hlist_nulls_head *head;
596 	struct htab_elem *l;
597 	u32 hash, key_size;
598 
599 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
600 		     !rcu_read_lock_bh_held());
601 
602 	key_size = map->key_size;
603 
604 	hash = htab_map_hash(key, key_size, htab->hashrnd);
605 
606 	head = select_bucket(htab, hash);
607 
608 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
609 
610 	return l;
611 }
612 
613 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
614 {
615 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
616 
617 	if (l)
618 		return l->key + round_up(map->key_size, 8);
619 
620 	return NULL;
621 }
622 
623 /* inline bpf_map_lookup_elem() call.
624  * Instead of:
625  * bpf_prog
626  *   bpf_map_lookup_elem
627  *     map->ops->map_lookup_elem
628  *       htab_map_lookup_elem
629  *         __htab_map_lookup_elem
630  * do:
631  * bpf_prog
632  *   __htab_map_lookup_elem
633  */
634 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
635 {
636 	struct bpf_insn *insn = insn_buf;
637 	const int ret = BPF_REG_0;
638 
639 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
640 		     (void *(*)(struct bpf_map *map, void *key))NULL));
641 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
642 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
643 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
644 				offsetof(struct htab_elem, key) +
645 				round_up(map->key_size, 8));
646 	return insn - insn_buf;
647 }
648 
649 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
650 							void *key, const bool mark)
651 {
652 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
653 
654 	if (l) {
655 		if (mark)
656 			bpf_lru_node_set_ref(&l->lru_node);
657 		return l->key + round_up(map->key_size, 8);
658 	}
659 
660 	return NULL;
661 }
662 
663 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
664 {
665 	return __htab_lru_map_lookup_elem(map, key, true);
666 }
667 
668 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
669 {
670 	return __htab_lru_map_lookup_elem(map, key, false);
671 }
672 
673 static int htab_lru_map_gen_lookup(struct bpf_map *map,
674 				   struct bpf_insn *insn_buf)
675 {
676 	struct bpf_insn *insn = insn_buf;
677 	const int ret = BPF_REG_0;
678 	const int ref_reg = BPF_REG_1;
679 
680 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
681 		     (void *(*)(struct bpf_map *map, void *key))NULL));
682 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
683 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
684 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
685 			      offsetof(struct htab_elem, lru_node) +
686 			      offsetof(struct bpf_lru_node, ref));
687 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
688 	*insn++ = BPF_ST_MEM(BPF_B, ret,
689 			     offsetof(struct htab_elem, lru_node) +
690 			     offsetof(struct bpf_lru_node, ref),
691 			     1);
692 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
693 				offsetof(struct htab_elem, key) +
694 				round_up(map->key_size, 8));
695 	return insn - insn_buf;
696 }
697 
698 /* It is called from the bpf_lru_list when the LRU needs to delete
699  * older elements from the htab.
700  */
701 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
702 {
703 	struct bpf_htab *htab = (struct bpf_htab *)arg;
704 	struct htab_elem *l = NULL, *tgt_l;
705 	struct hlist_nulls_head *head;
706 	struct hlist_nulls_node *n;
707 	unsigned long flags;
708 	struct bucket *b;
709 	int ret;
710 
711 	tgt_l = container_of(node, struct htab_elem, lru_node);
712 	b = __select_bucket(htab, tgt_l->hash);
713 	head = &b->head;
714 
715 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
716 	if (ret)
717 		return false;
718 
719 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
720 		if (l == tgt_l) {
721 			hlist_nulls_del_rcu(&l->hash_node);
722 			break;
723 		}
724 
725 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
726 
727 	return l == tgt_l;
728 }
729 
730 /* Called from syscall */
731 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
732 {
733 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
734 	struct hlist_nulls_head *head;
735 	struct htab_elem *l, *next_l;
736 	u32 hash, key_size;
737 	int i = 0;
738 
739 	WARN_ON_ONCE(!rcu_read_lock_held());
740 
741 	key_size = map->key_size;
742 
743 	if (!key)
744 		goto find_first_elem;
745 
746 	hash = htab_map_hash(key, key_size, htab->hashrnd);
747 
748 	head = select_bucket(htab, hash);
749 
750 	/* lookup the key */
751 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
752 
753 	if (!l)
754 		goto find_first_elem;
755 
756 	/* key was found, get next key in the same bucket */
757 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
758 				  struct htab_elem, hash_node);
759 
760 	if (next_l) {
761 		/* if next elem in this hash list is non-zero, just return it */
762 		memcpy(next_key, next_l->key, key_size);
763 		return 0;
764 	}
765 
766 	/* no more elements in this hash list, go to the next bucket */
767 	i = hash & (htab->n_buckets - 1);
768 	i++;
769 
770 find_first_elem:
771 	/* iterate over buckets */
772 	for (; i < htab->n_buckets; i++) {
773 		head = select_bucket(htab, i);
774 
775 		/* pick first element in the bucket */
776 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
777 					  struct htab_elem, hash_node);
778 		if (next_l) {
779 			/* if it's not empty, just return it */
780 			memcpy(next_key, next_l->key, key_size);
781 			return 0;
782 		}
783 	}
784 
785 	/* iterated over all buckets and all elements */
786 	return -ENOENT;
787 }
788 
789 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
790 {
791 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
792 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
793 	kfree(l);
794 }
795 
796 static void htab_elem_free_rcu(struct rcu_head *head)
797 {
798 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
799 	struct bpf_htab *htab = l->htab;
800 
801 	htab_elem_free(htab, l);
802 }
803 
804 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
805 {
806 	struct bpf_map *map = &htab->map;
807 	void *ptr;
808 
809 	if (map->ops->map_fd_put_ptr) {
810 		ptr = fd_htab_map_get_ptr(map, l);
811 		map->ops->map_fd_put_ptr(ptr);
812 	}
813 }
814 
815 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
816 {
817 	htab_put_fd_value(htab, l);
818 
819 	if (htab_is_prealloc(htab)) {
820 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
821 	} else {
822 		atomic_dec(&htab->count);
823 		l->htab = htab;
824 		call_rcu(&l->rcu, htab_elem_free_rcu);
825 	}
826 }
827 
828 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
829 			    void *value, bool onallcpus)
830 {
831 	if (!onallcpus) {
832 		/* copy true value_size bytes */
833 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
834 	} else {
835 		u32 size = round_up(htab->map.value_size, 8);
836 		int off = 0, cpu;
837 
838 		for_each_possible_cpu(cpu) {
839 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
840 					value + off, size);
841 			off += size;
842 		}
843 	}
844 }
845 
846 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
847 			    void *value, bool onallcpus)
848 {
849 	/* When using prealloc and not setting the initial value on all cpus,
850 	 * zero-fill element values for other cpus (just as what happens when
851 	 * not using prealloc). Otherwise, bpf program has no way to ensure
852 	 * known initial values for cpus other than current one
853 	 * (onallcpus=false always when coming from bpf prog).
854 	 */
855 	if (htab_is_prealloc(htab) && !onallcpus) {
856 		u32 size = round_up(htab->map.value_size, 8);
857 		int current_cpu = raw_smp_processor_id();
858 		int cpu;
859 
860 		for_each_possible_cpu(cpu) {
861 			if (cpu == current_cpu)
862 				bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
863 						size);
864 			else
865 				memset(per_cpu_ptr(pptr, cpu), 0, size);
866 		}
867 	} else {
868 		pcpu_copy_value(htab, pptr, value, onallcpus);
869 	}
870 }
871 
872 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
873 {
874 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
875 	       BITS_PER_LONG == 64;
876 }
877 
878 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
879 					 void *value, u32 key_size, u32 hash,
880 					 bool percpu, bool onallcpus,
881 					 struct htab_elem *old_elem)
882 {
883 	u32 size = htab->map.value_size;
884 	bool prealloc = htab_is_prealloc(htab);
885 	struct htab_elem *l_new, **pl_new;
886 	void __percpu *pptr;
887 
888 	if (prealloc) {
889 		if (old_elem) {
890 			/* if we're updating the existing element,
891 			 * use per-cpu extra elems to avoid freelist_pop/push
892 			 */
893 			pl_new = this_cpu_ptr(htab->extra_elems);
894 			l_new = *pl_new;
895 			htab_put_fd_value(htab, old_elem);
896 			*pl_new = old_elem;
897 		} else {
898 			struct pcpu_freelist_node *l;
899 
900 			l = __pcpu_freelist_pop(&htab->freelist);
901 			if (!l)
902 				return ERR_PTR(-E2BIG);
903 			l_new = container_of(l, struct htab_elem, fnode);
904 		}
905 	} else {
906 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
907 			if (!old_elem) {
908 				/* when map is full and update() is replacing
909 				 * old element, it's ok to allocate, since
910 				 * old element will be freed immediately.
911 				 * Otherwise return an error
912 				 */
913 				l_new = ERR_PTR(-E2BIG);
914 				goto dec_count;
915 			}
916 		l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
917 					     GFP_ATOMIC | __GFP_NOWARN,
918 					     htab->map.numa_node);
919 		if (!l_new) {
920 			l_new = ERR_PTR(-ENOMEM);
921 			goto dec_count;
922 		}
923 		check_and_init_map_lock(&htab->map,
924 					l_new->key + round_up(key_size, 8));
925 	}
926 
927 	memcpy(l_new->key, key, key_size);
928 	if (percpu) {
929 		size = round_up(size, 8);
930 		if (prealloc) {
931 			pptr = htab_elem_get_ptr(l_new, key_size);
932 		} else {
933 			/* alloc_percpu zero-fills */
934 			pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
935 						    GFP_ATOMIC | __GFP_NOWARN);
936 			if (!pptr) {
937 				kfree(l_new);
938 				l_new = ERR_PTR(-ENOMEM);
939 				goto dec_count;
940 			}
941 		}
942 
943 		pcpu_init_value(htab, pptr, value, onallcpus);
944 
945 		if (!prealloc)
946 			htab_elem_set_ptr(l_new, key_size, pptr);
947 	} else if (fd_htab_map_needs_adjust(htab)) {
948 		size = round_up(size, 8);
949 		memcpy(l_new->key + round_up(key_size, 8), value, size);
950 	} else {
951 		copy_map_value(&htab->map,
952 			       l_new->key + round_up(key_size, 8),
953 			       value);
954 	}
955 
956 	l_new->hash = hash;
957 	return l_new;
958 dec_count:
959 	atomic_dec(&htab->count);
960 	return l_new;
961 }
962 
963 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
964 		       u64 map_flags)
965 {
966 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
967 		/* elem already exists */
968 		return -EEXIST;
969 
970 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
971 		/* elem doesn't exist, cannot update it */
972 		return -ENOENT;
973 
974 	return 0;
975 }
976 
977 /* Called from syscall or from eBPF program */
978 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
979 				u64 map_flags)
980 {
981 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
982 	struct htab_elem *l_new = NULL, *l_old;
983 	struct hlist_nulls_head *head;
984 	unsigned long flags;
985 	struct bucket *b;
986 	u32 key_size, hash;
987 	int ret;
988 
989 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
990 		/* unknown flags */
991 		return -EINVAL;
992 
993 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
994 		     !rcu_read_lock_bh_held());
995 
996 	key_size = map->key_size;
997 
998 	hash = htab_map_hash(key, key_size, htab->hashrnd);
999 
1000 	b = __select_bucket(htab, hash);
1001 	head = &b->head;
1002 
1003 	if (unlikely(map_flags & BPF_F_LOCK)) {
1004 		if (unlikely(!map_value_has_spin_lock(map)))
1005 			return -EINVAL;
1006 		/* find an element without taking the bucket lock */
1007 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1008 					      htab->n_buckets);
1009 		ret = check_flags(htab, l_old, map_flags);
1010 		if (ret)
1011 			return ret;
1012 		if (l_old) {
1013 			/* grab the element lock and update value in place */
1014 			copy_map_value_locked(map,
1015 					      l_old->key + round_up(key_size, 8),
1016 					      value, false);
1017 			return 0;
1018 		}
1019 		/* fall through, grab the bucket lock and lookup again.
1020 		 * 99.9% chance that the element won't be found,
1021 		 * but second lookup under lock has to be done.
1022 		 */
1023 	}
1024 
1025 	ret = htab_lock_bucket(htab, b, hash, &flags);
1026 	if (ret)
1027 		return ret;
1028 
1029 	l_old = lookup_elem_raw(head, hash, key, key_size);
1030 
1031 	ret = check_flags(htab, l_old, map_flags);
1032 	if (ret)
1033 		goto err;
1034 
1035 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1036 		/* first lookup without the bucket lock didn't find the element,
1037 		 * but second lookup with the bucket lock found it.
1038 		 * This case is highly unlikely, but has to be dealt with:
1039 		 * grab the element lock in addition to the bucket lock
1040 		 * and update element in place
1041 		 */
1042 		copy_map_value_locked(map,
1043 				      l_old->key + round_up(key_size, 8),
1044 				      value, false);
1045 		ret = 0;
1046 		goto err;
1047 	}
1048 
1049 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1050 				l_old);
1051 	if (IS_ERR(l_new)) {
1052 		/* all pre-allocated elements are in use or memory exhausted */
1053 		ret = PTR_ERR(l_new);
1054 		goto err;
1055 	}
1056 
1057 	/* add new element to the head of the list, so that
1058 	 * concurrent search will find it before old elem
1059 	 */
1060 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1061 	if (l_old) {
1062 		hlist_nulls_del_rcu(&l_old->hash_node);
1063 		if (!htab_is_prealloc(htab))
1064 			free_htab_elem(htab, l_old);
1065 	}
1066 	ret = 0;
1067 err:
1068 	htab_unlock_bucket(htab, b, hash, flags);
1069 	return ret;
1070 }
1071 
1072 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1073 				    u64 map_flags)
1074 {
1075 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1076 	struct htab_elem *l_new, *l_old = NULL;
1077 	struct hlist_nulls_head *head;
1078 	unsigned long flags;
1079 	struct bucket *b;
1080 	u32 key_size, hash;
1081 	int ret;
1082 
1083 	if (unlikely(map_flags > BPF_EXIST))
1084 		/* unknown flags */
1085 		return -EINVAL;
1086 
1087 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1088 		     !rcu_read_lock_bh_held());
1089 
1090 	key_size = map->key_size;
1091 
1092 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1093 
1094 	b = __select_bucket(htab, hash);
1095 	head = &b->head;
1096 
1097 	/* For LRU, we need to alloc before taking bucket's
1098 	 * spinlock because getting free nodes from LRU may need
1099 	 * to remove older elements from htab and this removal
1100 	 * operation will need a bucket lock.
1101 	 */
1102 	l_new = prealloc_lru_pop(htab, key, hash);
1103 	if (!l_new)
1104 		return -ENOMEM;
1105 	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1106 
1107 	ret = htab_lock_bucket(htab, b, hash, &flags);
1108 	if (ret)
1109 		return ret;
1110 
1111 	l_old = lookup_elem_raw(head, hash, key, key_size);
1112 
1113 	ret = check_flags(htab, l_old, map_flags);
1114 	if (ret)
1115 		goto err;
1116 
1117 	/* add new element to the head of the list, so that
1118 	 * concurrent search will find it before old elem
1119 	 */
1120 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1121 	if (l_old) {
1122 		bpf_lru_node_set_ref(&l_new->lru_node);
1123 		hlist_nulls_del_rcu(&l_old->hash_node);
1124 	}
1125 	ret = 0;
1126 
1127 err:
1128 	htab_unlock_bucket(htab, b, hash, flags);
1129 
1130 	if (ret)
1131 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1132 	else if (l_old)
1133 		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1134 
1135 	return ret;
1136 }
1137 
1138 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1139 					 void *value, u64 map_flags,
1140 					 bool onallcpus)
1141 {
1142 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1143 	struct htab_elem *l_new = NULL, *l_old;
1144 	struct hlist_nulls_head *head;
1145 	unsigned long flags;
1146 	struct bucket *b;
1147 	u32 key_size, hash;
1148 	int ret;
1149 
1150 	if (unlikely(map_flags > BPF_EXIST))
1151 		/* unknown flags */
1152 		return -EINVAL;
1153 
1154 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1155 		     !rcu_read_lock_bh_held());
1156 
1157 	key_size = map->key_size;
1158 
1159 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1160 
1161 	b = __select_bucket(htab, hash);
1162 	head = &b->head;
1163 
1164 	ret = htab_lock_bucket(htab, b, hash, &flags);
1165 	if (ret)
1166 		return ret;
1167 
1168 	l_old = lookup_elem_raw(head, hash, key, key_size);
1169 
1170 	ret = check_flags(htab, l_old, map_flags);
1171 	if (ret)
1172 		goto err;
1173 
1174 	if (l_old) {
1175 		/* per-cpu hash map can update value in-place */
1176 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1177 				value, onallcpus);
1178 	} else {
1179 		l_new = alloc_htab_elem(htab, key, value, key_size,
1180 					hash, true, onallcpus, NULL);
1181 		if (IS_ERR(l_new)) {
1182 			ret = PTR_ERR(l_new);
1183 			goto err;
1184 		}
1185 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1186 	}
1187 	ret = 0;
1188 err:
1189 	htab_unlock_bucket(htab, b, hash, flags);
1190 	return ret;
1191 }
1192 
1193 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1194 					     void *value, u64 map_flags,
1195 					     bool onallcpus)
1196 {
1197 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1198 	struct htab_elem *l_new = NULL, *l_old;
1199 	struct hlist_nulls_head *head;
1200 	unsigned long flags;
1201 	struct bucket *b;
1202 	u32 key_size, hash;
1203 	int ret;
1204 
1205 	if (unlikely(map_flags > BPF_EXIST))
1206 		/* unknown flags */
1207 		return -EINVAL;
1208 
1209 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1210 		     !rcu_read_lock_bh_held());
1211 
1212 	key_size = map->key_size;
1213 
1214 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1215 
1216 	b = __select_bucket(htab, hash);
1217 	head = &b->head;
1218 
1219 	/* For LRU, we need to alloc before taking bucket's
1220 	 * spinlock because LRU's elem alloc may need
1221 	 * to remove older elem from htab and this removal
1222 	 * operation will need a bucket lock.
1223 	 */
1224 	if (map_flags != BPF_EXIST) {
1225 		l_new = prealloc_lru_pop(htab, key, hash);
1226 		if (!l_new)
1227 			return -ENOMEM;
1228 	}
1229 
1230 	ret = htab_lock_bucket(htab, b, hash, &flags);
1231 	if (ret)
1232 		return ret;
1233 
1234 	l_old = lookup_elem_raw(head, hash, key, key_size);
1235 
1236 	ret = check_flags(htab, l_old, map_flags);
1237 	if (ret)
1238 		goto err;
1239 
1240 	if (l_old) {
1241 		bpf_lru_node_set_ref(&l_old->lru_node);
1242 
1243 		/* per-cpu hash map can update value in-place */
1244 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1245 				value, onallcpus);
1246 	} else {
1247 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1248 				value, onallcpus);
1249 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1250 		l_new = NULL;
1251 	}
1252 	ret = 0;
1253 err:
1254 	htab_unlock_bucket(htab, b, hash, flags);
1255 	if (l_new)
1256 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1257 	return ret;
1258 }
1259 
1260 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1261 				       void *value, u64 map_flags)
1262 {
1263 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1264 }
1265 
1266 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1267 					   void *value, u64 map_flags)
1268 {
1269 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1270 						 false);
1271 }
1272 
1273 /* Called from syscall or from eBPF program */
1274 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1275 {
1276 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1277 	struct hlist_nulls_head *head;
1278 	struct bucket *b;
1279 	struct htab_elem *l;
1280 	unsigned long flags;
1281 	u32 hash, key_size;
1282 	int ret;
1283 
1284 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1285 		     !rcu_read_lock_bh_held());
1286 
1287 	key_size = map->key_size;
1288 
1289 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1290 	b = __select_bucket(htab, hash);
1291 	head = &b->head;
1292 
1293 	ret = htab_lock_bucket(htab, b, hash, &flags);
1294 	if (ret)
1295 		return ret;
1296 
1297 	l = lookup_elem_raw(head, hash, key, key_size);
1298 
1299 	if (l) {
1300 		hlist_nulls_del_rcu(&l->hash_node);
1301 		free_htab_elem(htab, l);
1302 	} else {
1303 		ret = -ENOENT;
1304 	}
1305 
1306 	htab_unlock_bucket(htab, b, hash, flags);
1307 	return ret;
1308 }
1309 
1310 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1311 {
1312 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1313 	struct hlist_nulls_head *head;
1314 	struct bucket *b;
1315 	struct htab_elem *l;
1316 	unsigned long flags;
1317 	u32 hash, key_size;
1318 	int ret;
1319 
1320 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1321 		     !rcu_read_lock_bh_held());
1322 
1323 	key_size = map->key_size;
1324 
1325 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1326 	b = __select_bucket(htab, hash);
1327 	head = &b->head;
1328 
1329 	ret = htab_lock_bucket(htab, b, hash, &flags);
1330 	if (ret)
1331 		return ret;
1332 
1333 	l = lookup_elem_raw(head, hash, key, key_size);
1334 
1335 	if (l)
1336 		hlist_nulls_del_rcu(&l->hash_node);
1337 	else
1338 		ret = -ENOENT;
1339 
1340 	htab_unlock_bucket(htab, b, hash, flags);
1341 	if (l)
1342 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1343 	return ret;
1344 }
1345 
1346 static void delete_all_elements(struct bpf_htab *htab)
1347 {
1348 	int i;
1349 
1350 	for (i = 0; i < htab->n_buckets; i++) {
1351 		struct hlist_nulls_head *head = select_bucket(htab, i);
1352 		struct hlist_nulls_node *n;
1353 		struct htab_elem *l;
1354 
1355 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1356 			hlist_nulls_del_rcu(&l->hash_node);
1357 			htab_elem_free(htab, l);
1358 		}
1359 	}
1360 }
1361 
1362 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1363 static void htab_map_free(struct bpf_map *map)
1364 {
1365 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1366 	int i;
1367 
1368 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1369 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1370 	 * There is no need to synchronize_rcu() here to protect map elements.
1371 	 */
1372 
1373 	/* some of free_htab_elem() callbacks for elements of this map may
1374 	 * not have executed. Wait for them.
1375 	 */
1376 	rcu_barrier();
1377 	if (!htab_is_prealloc(htab))
1378 		delete_all_elements(htab);
1379 	else
1380 		prealloc_destroy(htab);
1381 
1382 	free_percpu(htab->extra_elems);
1383 	bpf_map_area_free(htab->buckets);
1384 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1385 		free_percpu(htab->map_locked[i]);
1386 	lockdep_unregister_key(&htab->lockdep_key);
1387 	kfree(htab);
1388 }
1389 
1390 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1391 				   struct seq_file *m)
1392 {
1393 	void *value;
1394 
1395 	rcu_read_lock();
1396 
1397 	value = htab_map_lookup_elem(map, key);
1398 	if (!value) {
1399 		rcu_read_unlock();
1400 		return;
1401 	}
1402 
1403 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1404 	seq_puts(m, ": ");
1405 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1406 	seq_puts(m, "\n");
1407 
1408 	rcu_read_unlock();
1409 }
1410 
1411 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1412 					     void *value, bool is_lru_map,
1413 					     bool is_percpu, u64 flags)
1414 {
1415 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1416 	struct hlist_nulls_head *head;
1417 	unsigned long bflags;
1418 	struct htab_elem *l;
1419 	u32 hash, key_size;
1420 	struct bucket *b;
1421 	int ret;
1422 
1423 	key_size = map->key_size;
1424 
1425 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1426 	b = __select_bucket(htab, hash);
1427 	head = &b->head;
1428 
1429 	ret = htab_lock_bucket(htab, b, hash, &bflags);
1430 	if (ret)
1431 		return ret;
1432 
1433 	l = lookup_elem_raw(head, hash, key, key_size);
1434 	if (!l) {
1435 		ret = -ENOENT;
1436 	} else {
1437 		if (is_percpu) {
1438 			u32 roundup_value_size = round_up(map->value_size, 8);
1439 			void __percpu *pptr;
1440 			int off = 0, cpu;
1441 
1442 			pptr = htab_elem_get_ptr(l, key_size);
1443 			for_each_possible_cpu(cpu) {
1444 				bpf_long_memcpy(value + off,
1445 						per_cpu_ptr(pptr, cpu),
1446 						roundup_value_size);
1447 				off += roundup_value_size;
1448 			}
1449 		} else {
1450 			u32 roundup_key_size = round_up(map->key_size, 8);
1451 
1452 			if (flags & BPF_F_LOCK)
1453 				copy_map_value_locked(map, value, l->key +
1454 						      roundup_key_size,
1455 						      true);
1456 			else
1457 				copy_map_value(map, value, l->key +
1458 					       roundup_key_size);
1459 			check_and_init_map_lock(map, value);
1460 		}
1461 
1462 		hlist_nulls_del_rcu(&l->hash_node);
1463 		if (!is_lru_map)
1464 			free_htab_elem(htab, l);
1465 	}
1466 
1467 	htab_unlock_bucket(htab, b, hash, bflags);
1468 
1469 	if (is_lru_map && l)
1470 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1471 
1472 	return ret;
1473 }
1474 
1475 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1476 					   void *value, u64 flags)
1477 {
1478 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1479 						 flags);
1480 }
1481 
1482 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1483 						  void *key, void *value,
1484 						  u64 flags)
1485 {
1486 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1487 						 flags);
1488 }
1489 
1490 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1491 					       void *value, u64 flags)
1492 {
1493 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1494 						 flags);
1495 }
1496 
1497 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1498 						      void *key, void *value,
1499 						      u64 flags)
1500 {
1501 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1502 						 flags);
1503 }
1504 
1505 static int
1506 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1507 				   const union bpf_attr *attr,
1508 				   union bpf_attr __user *uattr,
1509 				   bool do_delete, bool is_lru_map,
1510 				   bool is_percpu)
1511 {
1512 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1513 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1514 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1515 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1516 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1517 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1518 	u32 batch, max_count, size, bucket_size;
1519 	struct htab_elem *node_to_free = NULL;
1520 	u64 elem_map_flags, map_flags;
1521 	struct hlist_nulls_head *head;
1522 	struct hlist_nulls_node *n;
1523 	unsigned long flags = 0;
1524 	bool locked = false;
1525 	struct htab_elem *l;
1526 	struct bucket *b;
1527 	int ret = 0;
1528 
1529 	elem_map_flags = attr->batch.elem_flags;
1530 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1531 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1532 		return -EINVAL;
1533 
1534 	map_flags = attr->batch.flags;
1535 	if (map_flags)
1536 		return -EINVAL;
1537 
1538 	max_count = attr->batch.count;
1539 	if (!max_count)
1540 		return 0;
1541 
1542 	if (put_user(0, &uattr->batch.count))
1543 		return -EFAULT;
1544 
1545 	batch = 0;
1546 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1547 		return -EFAULT;
1548 
1549 	if (batch >= htab->n_buckets)
1550 		return -ENOENT;
1551 
1552 	key_size = htab->map.key_size;
1553 	roundup_key_size = round_up(htab->map.key_size, 8);
1554 	value_size = htab->map.value_size;
1555 	size = round_up(value_size, 8);
1556 	if (is_percpu)
1557 		value_size = size * num_possible_cpus();
1558 	total = 0;
1559 	/* while experimenting with hash tables with sizes ranging from 10 to
1560 	 * 1000, it was observed that a bucket can have upto 5 entries.
1561 	 */
1562 	bucket_size = 5;
1563 
1564 alloc:
1565 	/* We cannot do copy_from_user or copy_to_user inside
1566 	 * the rcu_read_lock. Allocate enough space here.
1567 	 */
1568 	keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1569 	values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1570 	if (!keys || !values) {
1571 		ret = -ENOMEM;
1572 		goto after_loop;
1573 	}
1574 
1575 again:
1576 	bpf_disable_instrumentation();
1577 	rcu_read_lock();
1578 again_nocopy:
1579 	dst_key = keys;
1580 	dst_val = values;
1581 	b = &htab->buckets[batch];
1582 	head = &b->head;
1583 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1584 	if (locked) {
1585 		ret = htab_lock_bucket(htab, b, batch, &flags);
1586 		if (ret)
1587 			goto next_batch;
1588 	}
1589 
1590 	bucket_cnt = 0;
1591 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1592 		bucket_cnt++;
1593 
1594 	if (bucket_cnt && !locked) {
1595 		locked = true;
1596 		goto again_nocopy;
1597 	}
1598 
1599 	if (bucket_cnt > (max_count - total)) {
1600 		if (total == 0)
1601 			ret = -ENOSPC;
1602 		/* Note that since bucket_cnt > 0 here, it is implicit
1603 		 * that the locked was grabbed, so release it.
1604 		 */
1605 		htab_unlock_bucket(htab, b, batch, flags);
1606 		rcu_read_unlock();
1607 		bpf_enable_instrumentation();
1608 		goto after_loop;
1609 	}
1610 
1611 	if (bucket_cnt > bucket_size) {
1612 		bucket_size = bucket_cnt;
1613 		/* Note that since bucket_cnt > 0 here, it is implicit
1614 		 * that the locked was grabbed, so release it.
1615 		 */
1616 		htab_unlock_bucket(htab, b, batch, flags);
1617 		rcu_read_unlock();
1618 		bpf_enable_instrumentation();
1619 		kvfree(keys);
1620 		kvfree(values);
1621 		goto alloc;
1622 	}
1623 
1624 	/* Next block is only safe to run if you have grabbed the lock */
1625 	if (!locked)
1626 		goto next_batch;
1627 
1628 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1629 		memcpy(dst_key, l->key, key_size);
1630 
1631 		if (is_percpu) {
1632 			int off = 0, cpu;
1633 			void __percpu *pptr;
1634 
1635 			pptr = htab_elem_get_ptr(l, map->key_size);
1636 			for_each_possible_cpu(cpu) {
1637 				bpf_long_memcpy(dst_val + off,
1638 						per_cpu_ptr(pptr, cpu), size);
1639 				off += size;
1640 			}
1641 		} else {
1642 			value = l->key + roundup_key_size;
1643 			if (elem_map_flags & BPF_F_LOCK)
1644 				copy_map_value_locked(map, dst_val, value,
1645 						      true);
1646 			else
1647 				copy_map_value(map, dst_val, value);
1648 			check_and_init_map_lock(map, dst_val);
1649 		}
1650 		if (do_delete) {
1651 			hlist_nulls_del_rcu(&l->hash_node);
1652 
1653 			/* bpf_lru_push_free() will acquire lru_lock, which
1654 			 * may cause deadlock. See comments in function
1655 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1656 			 * after releasing the bucket lock.
1657 			 */
1658 			if (is_lru_map) {
1659 				l->batch_flink = node_to_free;
1660 				node_to_free = l;
1661 			} else {
1662 				free_htab_elem(htab, l);
1663 			}
1664 		}
1665 		dst_key += key_size;
1666 		dst_val += value_size;
1667 	}
1668 
1669 	htab_unlock_bucket(htab, b, batch, flags);
1670 	locked = false;
1671 
1672 	while (node_to_free) {
1673 		l = node_to_free;
1674 		node_to_free = node_to_free->batch_flink;
1675 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1676 	}
1677 
1678 next_batch:
1679 	/* If we are not copying data, we can go to next bucket and avoid
1680 	 * unlocking the rcu.
1681 	 */
1682 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1683 		batch++;
1684 		goto again_nocopy;
1685 	}
1686 
1687 	rcu_read_unlock();
1688 	bpf_enable_instrumentation();
1689 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1690 	    key_size * bucket_cnt) ||
1691 	    copy_to_user(uvalues + total * value_size, values,
1692 	    value_size * bucket_cnt))) {
1693 		ret = -EFAULT;
1694 		goto after_loop;
1695 	}
1696 
1697 	total += bucket_cnt;
1698 	batch++;
1699 	if (batch >= htab->n_buckets) {
1700 		ret = -ENOENT;
1701 		goto after_loop;
1702 	}
1703 	goto again;
1704 
1705 after_loop:
1706 	if (ret == -EFAULT)
1707 		goto out;
1708 
1709 	/* copy # of entries and next batch */
1710 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1711 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1712 	    put_user(total, &uattr->batch.count))
1713 		ret = -EFAULT;
1714 
1715 out:
1716 	kvfree(keys);
1717 	kvfree(values);
1718 	return ret;
1719 }
1720 
1721 static int
1722 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1723 			     union bpf_attr __user *uattr)
1724 {
1725 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1726 						  false, true);
1727 }
1728 
1729 static int
1730 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1731 					const union bpf_attr *attr,
1732 					union bpf_attr __user *uattr)
1733 {
1734 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1735 						  false, true);
1736 }
1737 
1738 static int
1739 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1740 		      union bpf_attr __user *uattr)
1741 {
1742 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1743 						  false, false);
1744 }
1745 
1746 static int
1747 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1748 				 const union bpf_attr *attr,
1749 				 union bpf_attr __user *uattr)
1750 {
1751 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1752 						  false, false);
1753 }
1754 
1755 static int
1756 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1757 				 const union bpf_attr *attr,
1758 				 union bpf_attr __user *uattr)
1759 {
1760 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1761 						  true, true);
1762 }
1763 
1764 static int
1765 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1766 					    const union bpf_attr *attr,
1767 					    union bpf_attr __user *uattr)
1768 {
1769 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1770 						  true, true);
1771 }
1772 
1773 static int
1774 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1775 			  union bpf_attr __user *uattr)
1776 {
1777 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1778 						  true, false);
1779 }
1780 
1781 static int
1782 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1783 				     const union bpf_attr *attr,
1784 				     union bpf_attr __user *uattr)
1785 {
1786 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1787 						  true, false);
1788 }
1789 
1790 struct bpf_iter_seq_hash_map_info {
1791 	struct bpf_map *map;
1792 	struct bpf_htab *htab;
1793 	void *percpu_value_buf; // non-zero means percpu hash
1794 	u32 bucket_id;
1795 	u32 skip_elems;
1796 };
1797 
1798 static struct htab_elem *
1799 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1800 			   struct htab_elem *prev_elem)
1801 {
1802 	const struct bpf_htab *htab = info->htab;
1803 	u32 skip_elems = info->skip_elems;
1804 	u32 bucket_id = info->bucket_id;
1805 	struct hlist_nulls_head *head;
1806 	struct hlist_nulls_node *n;
1807 	struct htab_elem *elem;
1808 	struct bucket *b;
1809 	u32 i, count;
1810 
1811 	if (bucket_id >= htab->n_buckets)
1812 		return NULL;
1813 
1814 	/* try to find next elem in the same bucket */
1815 	if (prev_elem) {
1816 		/* no update/deletion on this bucket, prev_elem should be still valid
1817 		 * and we won't skip elements.
1818 		 */
1819 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1820 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1821 		if (elem)
1822 			return elem;
1823 
1824 		/* not found, unlock and go to the next bucket */
1825 		b = &htab->buckets[bucket_id++];
1826 		rcu_read_unlock();
1827 		skip_elems = 0;
1828 	}
1829 
1830 	for (i = bucket_id; i < htab->n_buckets; i++) {
1831 		b = &htab->buckets[i];
1832 		rcu_read_lock();
1833 
1834 		count = 0;
1835 		head = &b->head;
1836 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1837 			if (count >= skip_elems) {
1838 				info->bucket_id = i;
1839 				info->skip_elems = count;
1840 				return elem;
1841 			}
1842 			count++;
1843 		}
1844 
1845 		rcu_read_unlock();
1846 		skip_elems = 0;
1847 	}
1848 
1849 	info->bucket_id = i;
1850 	info->skip_elems = 0;
1851 	return NULL;
1852 }
1853 
1854 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1855 {
1856 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1857 	struct htab_elem *elem;
1858 
1859 	elem = bpf_hash_map_seq_find_next(info, NULL);
1860 	if (!elem)
1861 		return NULL;
1862 
1863 	if (*pos == 0)
1864 		++*pos;
1865 	return elem;
1866 }
1867 
1868 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1869 {
1870 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1871 
1872 	++*pos;
1873 	++info->skip_elems;
1874 	return bpf_hash_map_seq_find_next(info, v);
1875 }
1876 
1877 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1878 {
1879 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1880 	u32 roundup_key_size, roundup_value_size;
1881 	struct bpf_iter__bpf_map_elem ctx = {};
1882 	struct bpf_map *map = info->map;
1883 	struct bpf_iter_meta meta;
1884 	int ret = 0, off = 0, cpu;
1885 	struct bpf_prog *prog;
1886 	void __percpu *pptr;
1887 
1888 	meta.seq = seq;
1889 	prog = bpf_iter_get_info(&meta, elem == NULL);
1890 	if (prog) {
1891 		ctx.meta = &meta;
1892 		ctx.map = info->map;
1893 		if (elem) {
1894 			roundup_key_size = round_up(map->key_size, 8);
1895 			ctx.key = elem->key;
1896 			if (!info->percpu_value_buf) {
1897 				ctx.value = elem->key + roundup_key_size;
1898 			} else {
1899 				roundup_value_size = round_up(map->value_size, 8);
1900 				pptr = htab_elem_get_ptr(elem, map->key_size);
1901 				for_each_possible_cpu(cpu) {
1902 					bpf_long_memcpy(info->percpu_value_buf + off,
1903 							per_cpu_ptr(pptr, cpu),
1904 							roundup_value_size);
1905 					off += roundup_value_size;
1906 				}
1907 				ctx.value = info->percpu_value_buf;
1908 			}
1909 		}
1910 		ret = bpf_iter_run_prog(prog, &ctx);
1911 	}
1912 
1913 	return ret;
1914 }
1915 
1916 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1917 {
1918 	return __bpf_hash_map_seq_show(seq, v);
1919 }
1920 
1921 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1922 {
1923 	if (!v)
1924 		(void)__bpf_hash_map_seq_show(seq, NULL);
1925 	else
1926 		rcu_read_unlock();
1927 }
1928 
1929 static int bpf_iter_init_hash_map(void *priv_data,
1930 				  struct bpf_iter_aux_info *aux)
1931 {
1932 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1933 	struct bpf_map *map = aux->map;
1934 	void *value_buf;
1935 	u32 buf_size;
1936 
1937 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1938 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1939 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1940 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1941 		if (!value_buf)
1942 			return -ENOMEM;
1943 
1944 		seq_info->percpu_value_buf = value_buf;
1945 	}
1946 
1947 	seq_info->map = map;
1948 	seq_info->htab = container_of(map, struct bpf_htab, map);
1949 	return 0;
1950 }
1951 
1952 static void bpf_iter_fini_hash_map(void *priv_data)
1953 {
1954 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1955 
1956 	kfree(seq_info->percpu_value_buf);
1957 }
1958 
1959 static const struct seq_operations bpf_hash_map_seq_ops = {
1960 	.start	= bpf_hash_map_seq_start,
1961 	.next	= bpf_hash_map_seq_next,
1962 	.stop	= bpf_hash_map_seq_stop,
1963 	.show	= bpf_hash_map_seq_show,
1964 };
1965 
1966 static const struct bpf_iter_seq_info iter_seq_info = {
1967 	.seq_ops		= &bpf_hash_map_seq_ops,
1968 	.init_seq_private	= bpf_iter_init_hash_map,
1969 	.fini_seq_private	= bpf_iter_fini_hash_map,
1970 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
1971 };
1972 
1973 static int bpf_for_each_hash_elem(struct bpf_map *map, void *callback_fn,
1974 				  void *callback_ctx, u64 flags)
1975 {
1976 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1977 	struct hlist_nulls_head *head;
1978 	struct hlist_nulls_node *n;
1979 	struct htab_elem *elem;
1980 	u32 roundup_key_size;
1981 	int i, num_elems = 0;
1982 	void __percpu *pptr;
1983 	struct bucket *b;
1984 	void *key, *val;
1985 	bool is_percpu;
1986 	u64 ret = 0;
1987 
1988 	if (flags != 0)
1989 		return -EINVAL;
1990 
1991 	is_percpu = htab_is_percpu(htab);
1992 
1993 	roundup_key_size = round_up(map->key_size, 8);
1994 	/* disable migration so percpu value prepared here will be the
1995 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
1996 	 */
1997 	if (is_percpu)
1998 		migrate_disable();
1999 	for (i = 0; i < htab->n_buckets; i++) {
2000 		b = &htab->buckets[i];
2001 		rcu_read_lock();
2002 		head = &b->head;
2003 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2004 			key = elem->key;
2005 			if (is_percpu) {
2006 				/* current cpu value for percpu map */
2007 				pptr = htab_elem_get_ptr(elem, map->key_size);
2008 				val = this_cpu_ptr(pptr);
2009 			} else {
2010 				val = elem->key + roundup_key_size;
2011 			}
2012 			num_elems++;
2013 			ret = BPF_CAST_CALL(callback_fn)((u64)(long)map,
2014 					(u64)(long)key, (u64)(long)val,
2015 					(u64)(long)callback_ctx, 0);
2016 			/* return value: 0 - continue, 1 - stop and return */
2017 			if (ret) {
2018 				rcu_read_unlock();
2019 				goto out;
2020 			}
2021 		}
2022 		rcu_read_unlock();
2023 	}
2024 out:
2025 	if (is_percpu)
2026 		migrate_enable();
2027 	return num_elems;
2028 }
2029 
2030 static int htab_map_btf_id;
2031 const struct bpf_map_ops htab_map_ops = {
2032 	.map_meta_equal = bpf_map_meta_equal,
2033 	.map_alloc_check = htab_map_alloc_check,
2034 	.map_alloc = htab_map_alloc,
2035 	.map_free = htab_map_free,
2036 	.map_get_next_key = htab_map_get_next_key,
2037 	.map_lookup_elem = htab_map_lookup_elem,
2038 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2039 	.map_update_elem = htab_map_update_elem,
2040 	.map_delete_elem = htab_map_delete_elem,
2041 	.map_gen_lookup = htab_map_gen_lookup,
2042 	.map_seq_show_elem = htab_map_seq_show_elem,
2043 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2044 	.map_for_each_callback = bpf_for_each_hash_elem,
2045 	BATCH_OPS(htab),
2046 	.map_btf_name = "bpf_htab",
2047 	.map_btf_id = &htab_map_btf_id,
2048 	.iter_seq_info = &iter_seq_info,
2049 };
2050 
2051 static int htab_lru_map_btf_id;
2052 const struct bpf_map_ops htab_lru_map_ops = {
2053 	.map_meta_equal = bpf_map_meta_equal,
2054 	.map_alloc_check = htab_map_alloc_check,
2055 	.map_alloc = htab_map_alloc,
2056 	.map_free = htab_map_free,
2057 	.map_get_next_key = htab_map_get_next_key,
2058 	.map_lookup_elem = htab_lru_map_lookup_elem,
2059 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2060 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2061 	.map_update_elem = htab_lru_map_update_elem,
2062 	.map_delete_elem = htab_lru_map_delete_elem,
2063 	.map_gen_lookup = htab_lru_map_gen_lookup,
2064 	.map_seq_show_elem = htab_map_seq_show_elem,
2065 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2066 	.map_for_each_callback = bpf_for_each_hash_elem,
2067 	BATCH_OPS(htab_lru),
2068 	.map_btf_name = "bpf_htab",
2069 	.map_btf_id = &htab_lru_map_btf_id,
2070 	.iter_seq_info = &iter_seq_info,
2071 };
2072 
2073 /* Called from eBPF program */
2074 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2075 {
2076 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2077 
2078 	if (l)
2079 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2080 	else
2081 		return NULL;
2082 }
2083 
2084 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2085 {
2086 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2087 
2088 	if (l) {
2089 		bpf_lru_node_set_ref(&l->lru_node);
2090 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2091 	}
2092 
2093 	return NULL;
2094 }
2095 
2096 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2097 {
2098 	struct htab_elem *l;
2099 	void __percpu *pptr;
2100 	int ret = -ENOENT;
2101 	int cpu, off = 0;
2102 	u32 size;
2103 
2104 	/* per_cpu areas are zero-filled and bpf programs can only
2105 	 * access 'value_size' of them, so copying rounded areas
2106 	 * will not leak any kernel data
2107 	 */
2108 	size = round_up(map->value_size, 8);
2109 	rcu_read_lock();
2110 	l = __htab_map_lookup_elem(map, key);
2111 	if (!l)
2112 		goto out;
2113 	/* We do not mark LRU map element here in order to not mess up
2114 	 * eviction heuristics when user space does a map walk.
2115 	 */
2116 	pptr = htab_elem_get_ptr(l, map->key_size);
2117 	for_each_possible_cpu(cpu) {
2118 		bpf_long_memcpy(value + off,
2119 				per_cpu_ptr(pptr, cpu), size);
2120 		off += size;
2121 	}
2122 	ret = 0;
2123 out:
2124 	rcu_read_unlock();
2125 	return ret;
2126 }
2127 
2128 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2129 			   u64 map_flags)
2130 {
2131 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2132 	int ret;
2133 
2134 	rcu_read_lock();
2135 	if (htab_is_lru(htab))
2136 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2137 							map_flags, true);
2138 	else
2139 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2140 						    true);
2141 	rcu_read_unlock();
2142 
2143 	return ret;
2144 }
2145 
2146 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2147 					  struct seq_file *m)
2148 {
2149 	struct htab_elem *l;
2150 	void __percpu *pptr;
2151 	int cpu;
2152 
2153 	rcu_read_lock();
2154 
2155 	l = __htab_map_lookup_elem(map, key);
2156 	if (!l) {
2157 		rcu_read_unlock();
2158 		return;
2159 	}
2160 
2161 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2162 	seq_puts(m, ": {\n");
2163 	pptr = htab_elem_get_ptr(l, map->key_size);
2164 	for_each_possible_cpu(cpu) {
2165 		seq_printf(m, "\tcpu%d: ", cpu);
2166 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2167 				  per_cpu_ptr(pptr, cpu), m);
2168 		seq_puts(m, "\n");
2169 	}
2170 	seq_puts(m, "}\n");
2171 
2172 	rcu_read_unlock();
2173 }
2174 
2175 static int htab_percpu_map_btf_id;
2176 const struct bpf_map_ops htab_percpu_map_ops = {
2177 	.map_meta_equal = bpf_map_meta_equal,
2178 	.map_alloc_check = htab_map_alloc_check,
2179 	.map_alloc = htab_map_alloc,
2180 	.map_free = htab_map_free,
2181 	.map_get_next_key = htab_map_get_next_key,
2182 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2183 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2184 	.map_update_elem = htab_percpu_map_update_elem,
2185 	.map_delete_elem = htab_map_delete_elem,
2186 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2187 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2188 	.map_for_each_callback = bpf_for_each_hash_elem,
2189 	BATCH_OPS(htab_percpu),
2190 	.map_btf_name = "bpf_htab",
2191 	.map_btf_id = &htab_percpu_map_btf_id,
2192 	.iter_seq_info = &iter_seq_info,
2193 };
2194 
2195 static int htab_lru_percpu_map_btf_id;
2196 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2197 	.map_meta_equal = bpf_map_meta_equal,
2198 	.map_alloc_check = htab_map_alloc_check,
2199 	.map_alloc = htab_map_alloc,
2200 	.map_free = htab_map_free,
2201 	.map_get_next_key = htab_map_get_next_key,
2202 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2203 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2204 	.map_update_elem = htab_lru_percpu_map_update_elem,
2205 	.map_delete_elem = htab_lru_map_delete_elem,
2206 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2207 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2208 	.map_for_each_callback = bpf_for_each_hash_elem,
2209 	BATCH_OPS(htab_lru_percpu),
2210 	.map_btf_name = "bpf_htab",
2211 	.map_btf_id = &htab_lru_percpu_map_btf_id,
2212 	.iter_seq_info = &iter_seq_info,
2213 };
2214 
2215 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2216 {
2217 	if (attr->value_size != sizeof(u32))
2218 		return -EINVAL;
2219 	return htab_map_alloc_check(attr);
2220 }
2221 
2222 static void fd_htab_map_free(struct bpf_map *map)
2223 {
2224 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2225 	struct hlist_nulls_node *n;
2226 	struct hlist_nulls_head *head;
2227 	struct htab_elem *l;
2228 	int i;
2229 
2230 	for (i = 0; i < htab->n_buckets; i++) {
2231 		head = select_bucket(htab, i);
2232 
2233 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2234 			void *ptr = fd_htab_map_get_ptr(map, l);
2235 
2236 			map->ops->map_fd_put_ptr(ptr);
2237 		}
2238 	}
2239 
2240 	htab_map_free(map);
2241 }
2242 
2243 /* only called from syscall */
2244 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2245 {
2246 	void **ptr;
2247 	int ret = 0;
2248 
2249 	if (!map->ops->map_fd_sys_lookup_elem)
2250 		return -ENOTSUPP;
2251 
2252 	rcu_read_lock();
2253 	ptr = htab_map_lookup_elem(map, key);
2254 	if (ptr)
2255 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2256 	else
2257 		ret = -ENOENT;
2258 	rcu_read_unlock();
2259 
2260 	return ret;
2261 }
2262 
2263 /* only called from syscall */
2264 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2265 				void *key, void *value, u64 map_flags)
2266 {
2267 	void *ptr;
2268 	int ret;
2269 	u32 ufd = *(u32 *)value;
2270 
2271 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2272 	if (IS_ERR(ptr))
2273 		return PTR_ERR(ptr);
2274 
2275 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2276 	if (ret)
2277 		map->ops->map_fd_put_ptr(ptr);
2278 
2279 	return ret;
2280 }
2281 
2282 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2283 {
2284 	struct bpf_map *map, *inner_map_meta;
2285 
2286 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2287 	if (IS_ERR(inner_map_meta))
2288 		return inner_map_meta;
2289 
2290 	map = htab_map_alloc(attr);
2291 	if (IS_ERR(map)) {
2292 		bpf_map_meta_free(inner_map_meta);
2293 		return map;
2294 	}
2295 
2296 	map->inner_map_meta = inner_map_meta;
2297 
2298 	return map;
2299 }
2300 
2301 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2302 {
2303 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2304 
2305 	if (!inner_map)
2306 		return NULL;
2307 
2308 	return READ_ONCE(*inner_map);
2309 }
2310 
2311 static int htab_of_map_gen_lookup(struct bpf_map *map,
2312 				  struct bpf_insn *insn_buf)
2313 {
2314 	struct bpf_insn *insn = insn_buf;
2315 	const int ret = BPF_REG_0;
2316 
2317 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2318 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2319 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2320 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2321 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2322 				offsetof(struct htab_elem, key) +
2323 				round_up(map->key_size, 8));
2324 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2325 
2326 	return insn - insn_buf;
2327 }
2328 
2329 static void htab_of_map_free(struct bpf_map *map)
2330 {
2331 	bpf_map_meta_free(map->inner_map_meta);
2332 	fd_htab_map_free(map);
2333 }
2334 
2335 static int htab_of_maps_map_btf_id;
2336 const struct bpf_map_ops htab_of_maps_map_ops = {
2337 	.map_alloc_check = fd_htab_map_alloc_check,
2338 	.map_alloc = htab_of_map_alloc,
2339 	.map_free = htab_of_map_free,
2340 	.map_get_next_key = htab_map_get_next_key,
2341 	.map_lookup_elem = htab_of_map_lookup_elem,
2342 	.map_delete_elem = htab_map_delete_elem,
2343 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2344 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2345 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2346 	.map_gen_lookup = htab_of_map_gen_lookup,
2347 	.map_check_btf = map_check_no_btf,
2348 	.map_btf_name = "bpf_htab",
2349 	.map_btf_id = &htab_of_maps_map_btf_id,
2350 };
2351