xref: /openbmc/linux/kernel/bpf/hashtab.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17 #include <linux/bpf_mem_alloc.h>
18 
19 #define HTAB_CREATE_FLAG_MASK						\
20 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
21 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
22 
23 #define BATCH_OPS(_name)			\
24 	.map_lookup_batch =			\
25 	_name##_map_lookup_batch,		\
26 	.map_lookup_and_delete_batch =		\
27 	_name##_map_lookup_and_delete_batch,	\
28 	.map_update_batch =			\
29 	generic_map_update_batch,		\
30 	.map_delete_batch =			\
31 	generic_map_delete_batch
32 
33 /*
34  * The bucket lock has two protection scopes:
35  *
36  * 1) Serializing concurrent operations from BPF programs on different
37  *    CPUs
38  *
39  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
40  *
41  * BPF programs can execute in any context including perf, kprobes and
42  * tracing. As there are almost no limits where perf, kprobes and tracing
43  * can be invoked from the lock operations need to be protected against
44  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
45  * the lock held section when functions which acquire this lock are invoked
46  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
47  * variable bpf_prog_active, which prevents BPF programs attached to perf
48  * events, kprobes and tracing to be invoked before the prior invocation
49  * from one of these contexts completed. sys_bpf() uses the same mechanism
50  * by pinning the task to the current CPU and incrementing the recursion
51  * protection across the map operation.
52  *
53  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
54  * operations like memory allocations (even with GFP_ATOMIC) from atomic
55  * contexts. This is required because even with GFP_ATOMIC the memory
56  * allocator calls into code paths which acquire locks with long held lock
57  * sections. To ensure the deterministic behaviour these locks are regular
58  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
59  * true atomic contexts on an RT kernel are the low level hardware
60  * handling, scheduling, low level interrupt handling, NMIs etc. None of
61  * these contexts should ever do memory allocations.
62  *
63  * As regular device interrupt handlers and soft interrupts are forced into
64  * thread context, the existing code which does
65  *   spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
66  * just works.
67  *
68  * In theory the BPF locks could be converted to regular spinlocks as well,
69  * but the bucket locks and percpu_freelist locks can be taken from
70  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
71  * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
72  * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
73  * because there is no memory allocation within the lock held sections. However
74  * after hash map was fully converted to use bpf_mem_alloc, there will be
75  * non-synchronous memory allocation for non-preallocated hash map, so it is
76  * safe to always use raw spinlock for bucket lock.
77  */
78 struct bucket {
79 	struct hlist_nulls_head head;
80 	raw_spinlock_t raw_lock;
81 };
82 
83 #define HASHTAB_MAP_LOCK_COUNT 8
84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
85 
86 struct bpf_htab {
87 	struct bpf_map map;
88 	struct bpf_mem_alloc ma;
89 	struct bpf_mem_alloc pcpu_ma;
90 	struct bucket *buckets;
91 	void *elems;
92 	union {
93 		struct pcpu_freelist freelist;
94 		struct bpf_lru lru;
95 	};
96 	struct htab_elem *__percpu *extra_elems;
97 	/* number of elements in non-preallocated hashtable are kept
98 	 * in either pcount or count
99 	 */
100 	struct percpu_counter pcount;
101 	atomic_t count;
102 	bool use_percpu_counter;
103 	u32 n_buckets;	/* number of hash buckets */
104 	u32 elem_size;	/* size of each element in bytes */
105 	u32 hashrnd;
106 	struct lock_class_key lockdep_key;
107 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
108 };
109 
110 /* each htab element is struct htab_elem + key + value */
111 struct htab_elem {
112 	union {
113 		struct hlist_nulls_node hash_node;
114 		struct {
115 			void *padding;
116 			union {
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		/* pointer to per-cpu pointer */
124 		void *ptr_to_pptr;
125 		struct bpf_lru_node lru_node;
126 	};
127 	u32 hash;
128 	char key[] __aligned(8);
129 };
130 
131 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
132 {
133 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
134 }
135 
136 static void htab_init_buckets(struct bpf_htab *htab)
137 {
138 	unsigned int i;
139 
140 	for (i = 0; i < htab->n_buckets; i++) {
141 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
142 		raw_spin_lock_init(&htab->buckets[i].raw_lock);
143 		lockdep_set_class(&htab->buckets[i].raw_lock,
144 					  &htab->lockdep_key);
145 		cond_resched();
146 	}
147 }
148 
149 static inline int htab_lock_bucket(const struct bpf_htab *htab,
150 				   struct bucket *b, u32 hash,
151 				   unsigned long *pflags)
152 {
153 	unsigned long flags;
154 
155 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
156 
157 	preempt_disable();
158 	local_irq_save(flags);
159 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
160 		__this_cpu_dec(*(htab->map_locked[hash]));
161 		local_irq_restore(flags);
162 		preempt_enable();
163 		return -EBUSY;
164 	}
165 
166 	raw_spin_lock(&b->raw_lock);
167 	*pflags = flags;
168 
169 	return 0;
170 }
171 
172 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
173 				      struct bucket *b, u32 hash,
174 				      unsigned long flags)
175 {
176 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
177 	raw_spin_unlock(&b->raw_lock);
178 	__this_cpu_dec(*(htab->map_locked[hash]));
179 	local_irq_restore(flags);
180 	preempt_enable();
181 }
182 
183 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
184 
185 static bool htab_is_lru(const struct bpf_htab *htab)
186 {
187 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
188 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
189 }
190 
191 static bool htab_is_percpu(const struct bpf_htab *htab)
192 {
193 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
194 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
195 }
196 
197 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
198 				     void __percpu *pptr)
199 {
200 	*(void __percpu **)(l->key + key_size) = pptr;
201 }
202 
203 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
204 {
205 	return *(void __percpu **)(l->key + key_size);
206 }
207 
208 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
209 {
210 	return *(void **)(l->key + roundup(map->key_size, 8));
211 }
212 
213 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
214 {
215 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
216 }
217 
218 static bool htab_has_extra_elems(struct bpf_htab *htab)
219 {
220 	return !htab_is_percpu(htab) && !htab_is_lru(htab);
221 }
222 
223 static void htab_free_prealloced_timers(struct bpf_htab *htab)
224 {
225 	u32 num_entries = htab->map.max_entries;
226 	int i;
227 
228 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
229 		return;
230 	if (htab_has_extra_elems(htab))
231 		num_entries += num_possible_cpus();
232 
233 	for (i = 0; i < num_entries; i++) {
234 		struct htab_elem *elem;
235 
236 		elem = get_htab_elem(htab, i);
237 		bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
238 		cond_resched();
239 	}
240 }
241 
242 static void htab_free_prealloced_fields(struct bpf_htab *htab)
243 {
244 	u32 num_entries = htab->map.max_entries;
245 	int i;
246 
247 	if (IS_ERR_OR_NULL(htab->map.record))
248 		return;
249 	if (htab_has_extra_elems(htab))
250 		num_entries += num_possible_cpus();
251 	for (i = 0; i < num_entries; i++) {
252 		struct htab_elem *elem;
253 
254 		elem = get_htab_elem(htab, i);
255 		if (htab_is_percpu(htab)) {
256 			void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
257 			int cpu;
258 
259 			for_each_possible_cpu(cpu) {
260 				bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
261 				cond_resched();
262 			}
263 		} else {
264 			bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
265 			cond_resched();
266 		}
267 		cond_resched();
268 	}
269 }
270 
271 static void htab_free_elems(struct bpf_htab *htab)
272 {
273 	int i;
274 
275 	if (!htab_is_percpu(htab))
276 		goto free_elems;
277 
278 	for (i = 0; i < htab->map.max_entries; i++) {
279 		void __percpu *pptr;
280 
281 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
282 					 htab->map.key_size);
283 		free_percpu(pptr);
284 		cond_resched();
285 	}
286 free_elems:
287 	bpf_map_area_free(htab->elems);
288 }
289 
290 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
291  * (bucket_lock). If both locks need to be acquired together, the lock
292  * order is always lru_lock -> bucket_lock and this only happens in
293  * bpf_lru_list.c logic. For example, certain code path of
294  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
295  * will acquire lru_lock first followed by acquiring bucket_lock.
296  *
297  * In hashtab.c, to avoid deadlock, lock acquisition of
298  * bucket_lock followed by lru_lock is not allowed. In such cases,
299  * bucket_lock needs to be released first before acquiring lru_lock.
300  */
301 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
302 					  u32 hash)
303 {
304 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
305 	struct htab_elem *l;
306 
307 	if (node) {
308 		bpf_map_inc_elem_count(&htab->map);
309 		l = container_of(node, struct htab_elem, lru_node);
310 		memcpy(l->key, key, htab->map.key_size);
311 		return l;
312 	}
313 
314 	return NULL;
315 }
316 
317 static int prealloc_init(struct bpf_htab *htab)
318 {
319 	u32 num_entries = htab->map.max_entries;
320 	int err = -ENOMEM, i;
321 
322 	if (htab_has_extra_elems(htab))
323 		num_entries += num_possible_cpus();
324 
325 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
326 					 htab->map.numa_node);
327 	if (!htab->elems)
328 		return -ENOMEM;
329 
330 	if (!htab_is_percpu(htab))
331 		goto skip_percpu_elems;
332 
333 	for (i = 0; i < num_entries; i++) {
334 		u32 size = round_up(htab->map.value_size, 8);
335 		void __percpu *pptr;
336 
337 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
338 					    GFP_USER | __GFP_NOWARN);
339 		if (!pptr)
340 			goto free_elems;
341 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
342 				  pptr);
343 		cond_resched();
344 	}
345 
346 skip_percpu_elems:
347 	if (htab_is_lru(htab))
348 		err = bpf_lru_init(&htab->lru,
349 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
350 				   offsetof(struct htab_elem, hash) -
351 				   offsetof(struct htab_elem, lru_node),
352 				   htab_lru_map_delete_node,
353 				   htab);
354 	else
355 		err = pcpu_freelist_init(&htab->freelist);
356 
357 	if (err)
358 		goto free_elems;
359 
360 	if (htab_is_lru(htab))
361 		bpf_lru_populate(&htab->lru, htab->elems,
362 				 offsetof(struct htab_elem, lru_node),
363 				 htab->elem_size, num_entries);
364 	else
365 		pcpu_freelist_populate(&htab->freelist,
366 				       htab->elems + offsetof(struct htab_elem, fnode),
367 				       htab->elem_size, num_entries);
368 
369 	return 0;
370 
371 free_elems:
372 	htab_free_elems(htab);
373 	return err;
374 }
375 
376 static void prealloc_destroy(struct bpf_htab *htab)
377 {
378 	htab_free_elems(htab);
379 
380 	if (htab_is_lru(htab))
381 		bpf_lru_destroy(&htab->lru);
382 	else
383 		pcpu_freelist_destroy(&htab->freelist);
384 }
385 
386 static int alloc_extra_elems(struct bpf_htab *htab)
387 {
388 	struct htab_elem *__percpu *pptr, *l_new;
389 	struct pcpu_freelist_node *l;
390 	int cpu;
391 
392 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
393 				    GFP_USER | __GFP_NOWARN);
394 	if (!pptr)
395 		return -ENOMEM;
396 
397 	for_each_possible_cpu(cpu) {
398 		l = pcpu_freelist_pop(&htab->freelist);
399 		/* pop will succeed, since prealloc_init()
400 		 * preallocated extra num_possible_cpus elements
401 		 */
402 		l_new = container_of(l, struct htab_elem, fnode);
403 		*per_cpu_ptr(pptr, cpu) = l_new;
404 	}
405 	htab->extra_elems = pptr;
406 	return 0;
407 }
408 
409 /* Called from syscall */
410 static int htab_map_alloc_check(union bpf_attr *attr)
411 {
412 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
413 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
414 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
415 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
416 	/* percpu_lru means each cpu has its own LRU list.
417 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
418 	 * the map's value itself is percpu.  percpu_lru has
419 	 * nothing to do with the map's value.
420 	 */
421 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
422 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
423 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
424 	int numa_node = bpf_map_attr_numa_node(attr);
425 
426 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
427 		     offsetof(struct htab_elem, hash_node.pprev));
428 
429 	if (zero_seed && !capable(CAP_SYS_ADMIN))
430 		/* Guard against local DoS, and discourage production use. */
431 		return -EPERM;
432 
433 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
434 	    !bpf_map_flags_access_ok(attr->map_flags))
435 		return -EINVAL;
436 
437 	if (!lru && percpu_lru)
438 		return -EINVAL;
439 
440 	if (lru && !prealloc)
441 		return -ENOTSUPP;
442 
443 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
444 		return -EINVAL;
445 
446 	/* check sanity of attributes.
447 	 * value_size == 0 may be allowed in the future to use map as a set
448 	 */
449 	if (attr->max_entries == 0 || attr->key_size == 0 ||
450 	    attr->value_size == 0)
451 		return -EINVAL;
452 
453 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
454 	   sizeof(struct htab_elem))
455 		/* if key_size + value_size is bigger, the user space won't be
456 		 * able to access the elements via bpf syscall. This check
457 		 * also makes sure that the elem_size doesn't overflow and it's
458 		 * kmalloc-able later in htab_map_update_elem()
459 		 */
460 		return -E2BIG;
461 	/* percpu map value size is bound by PCPU_MIN_UNIT_SIZE */
462 	if (percpu && round_up(attr->value_size, 8) > PCPU_MIN_UNIT_SIZE)
463 		return -E2BIG;
464 
465 	return 0;
466 }
467 
468 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
469 {
470 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
471 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
472 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
473 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
474 	/* percpu_lru means each cpu has its own LRU list.
475 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
476 	 * the map's value itself is percpu.  percpu_lru has
477 	 * nothing to do with the map's value.
478 	 */
479 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
480 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
481 	struct bpf_htab *htab;
482 	int err, i;
483 
484 	htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
485 	if (!htab)
486 		return ERR_PTR(-ENOMEM);
487 
488 	lockdep_register_key(&htab->lockdep_key);
489 
490 	bpf_map_init_from_attr(&htab->map, attr);
491 
492 	if (percpu_lru) {
493 		/* ensure each CPU's lru list has >=1 elements.
494 		 * since we are at it, make each lru list has the same
495 		 * number of elements.
496 		 */
497 		htab->map.max_entries = roundup(attr->max_entries,
498 						num_possible_cpus());
499 		if (htab->map.max_entries < attr->max_entries)
500 			htab->map.max_entries = rounddown(attr->max_entries,
501 							  num_possible_cpus());
502 	}
503 
504 	/* hash table size must be power of 2; roundup_pow_of_two() can overflow
505 	 * into UB on 32-bit arches, so check that first
506 	 */
507 	err = -E2BIG;
508 	if (htab->map.max_entries > 1UL << 31)
509 		goto free_htab;
510 
511 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
512 
513 	htab->elem_size = sizeof(struct htab_elem) +
514 			  round_up(htab->map.key_size, 8);
515 	if (percpu)
516 		htab->elem_size += sizeof(void *);
517 	else
518 		htab->elem_size += round_up(htab->map.value_size, 8);
519 
520 	/* check for u32 overflow */
521 	if (htab->n_buckets > U32_MAX / sizeof(struct bucket))
522 		goto free_htab;
523 
524 	err = bpf_map_init_elem_count(&htab->map);
525 	if (err)
526 		goto free_htab;
527 
528 	err = -ENOMEM;
529 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
530 					   sizeof(struct bucket),
531 					   htab->map.numa_node);
532 	if (!htab->buckets)
533 		goto free_elem_count;
534 
535 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
536 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
537 							   sizeof(int),
538 							   sizeof(int),
539 							   GFP_USER);
540 		if (!htab->map_locked[i])
541 			goto free_map_locked;
542 	}
543 
544 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
545 		htab->hashrnd = 0;
546 	else
547 		htab->hashrnd = get_random_u32();
548 
549 	htab_init_buckets(htab);
550 
551 /* compute_batch_value() computes batch value as num_online_cpus() * 2
552  * and __percpu_counter_compare() needs
553  * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
554  * for percpu_counter to be faster than atomic_t. In practice the average bpf
555  * hash map size is 10k, which means that a system with 64 cpus will fill
556  * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
557  * define our own batch count as 32 then 10k hash map can be filled up to 80%:
558  * 10k - 8k > 32 _batch_ * 64 _cpus_
559  * and __percpu_counter_compare() will still be fast. At that point hash map
560  * collisions will dominate its performance anyway. Assume that hash map filled
561  * to 50+% isn't going to be O(1) and use the following formula to choose
562  * between percpu_counter and atomic_t.
563  */
564 #define PERCPU_COUNTER_BATCH 32
565 	if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
566 		htab->use_percpu_counter = true;
567 
568 	if (htab->use_percpu_counter) {
569 		err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
570 		if (err)
571 			goto free_map_locked;
572 	}
573 
574 	if (prealloc) {
575 		err = prealloc_init(htab);
576 		if (err)
577 			goto free_map_locked;
578 
579 		if (!percpu && !lru) {
580 			/* lru itself can remove the least used element, so
581 			 * there is no need for an extra elem during map_update.
582 			 */
583 			err = alloc_extra_elems(htab);
584 			if (err)
585 				goto free_prealloc;
586 		}
587 	} else {
588 		err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
589 		if (err)
590 			goto free_map_locked;
591 		if (percpu) {
592 			err = bpf_mem_alloc_init(&htab->pcpu_ma,
593 						 round_up(htab->map.value_size, 8), true);
594 			if (err)
595 				goto free_map_locked;
596 		}
597 	}
598 
599 	return &htab->map;
600 
601 free_prealloc:
602 	prealloc_destroy(htab);
603 free_map_locked:
604 	if (htab->use_percpu_counter)
605 		percpu_counter_destroy(&htab->pcount);
606 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
607 		free_percpu(htab->map_locked[i]);
608 	bpf_map_area_free(htab->buckets);
609 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
610 	bpf_mem_alloc_destroy(&htab->ma);
611 free_elem_count:
612 	bpf_map_free_elem_count(&htab->map);
613 free_htab:
614 	lockdep_unregister_key(&htab->lockdep_key);
615 	bpf_map_area_free(htab);
616 	return ERR_PTR(err);
617 }
618 
619 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
620 {
621 	if (likely(key_len % 4 == 0))
622 		return jhash2(key, key_len / 4, hashrnd);
623 	return jhash(key, key_len, hashrnd);
624 }
625 
626 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
627 {
628 	return &htab->buckets[hash & (htab->n_buckets - 1)];
629 }
630 
631 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
632 {
633 	return &__select_bucket(htab, hash)->head;
634 }
635 
636 /* this lookup function can only be called with bucket lock taken */
637 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
638 					 void *key, u32 key_size)
639 {
640 	struct hlist_nulls_node *n;
641 	struct htab_elem *l;
642 
643 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
644 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
645 			return l;
646 
647 	return NULL;
648 }
649 
650 /* can be called without bucket lock. it will repeat the loop in
651  * the unlikely event when elements moved from one bucket into another
652  * while link list is being walked
653  */
654 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
655 					       u32 hash, void *key,
656 					       u32 key_size, u32 n_buckets)
657 {
658 	struct hlist_nulls_node *n;
659 	struct htab_elem *l;
660 
661 again:
662 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
663 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
664 			return l;
665 
666 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
667 		goto again;
668 
669 	return NULL;
670 }
671 
672 /* Called from syscall or from eBPF program directly, so
673  * arguments have to match bpf_map_lookup_elem() exactly.
674  * The return value is adjusted by BPF instructions
675  * in htab_map_gen_lookup().
676  */
677 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
678 {
679 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
680 	struct hlist_nulls_head *head;
681 	struct htab_elem *l;
682 	u32 hash, key_size;
683 
684 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
685 		     !rcu_read_lock_bh_held());
686 
687 	key_size = map->key_size;
688 
689 	hash = htab_map_hash(key, key_size, htab->hashrnd);
690 
691 	head = select_bucket(htab, hash);
692 
693 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
694 
695 	return l;
696 }
697 
698 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
699 {
700 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
701 
702 	if (l)
703 		return l->key + round_up(map->key_size, 8);
704 
705 	return NULL;
706 }
707 
708 /* inline bpf_map_lookup_elem() call.
709  * Instead of:
710  * bpf_prog
711  *   bpf_map_lookup_elem
712  *     map->ops->map_lookup_elem
713  *       htab_map_lookup_elem
714  *         __htab_map_lookup_elem
715  * do:
716  * bpf_prog
717  *   __htab_map_lookup_elem
718  */
719 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
720 {
721 	struct bpf_insn *insn = insn_buf;
722 	const int ret = BPF_REG_0;
723 
724 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
725 		     (void *(*)(struct bpf_map *map, void *key))NULL));
726 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
727 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
728 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
729 				offsetof(struct htab_elem, key) +
730 				round_up(map->key_size, 8));
731 	return insn - insn_buf;
732 }
733 
734 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
735 							void *key, const bool mark)
736 {
737 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
738 
739 	if (l) {
740 		if (mark)
741 			bpf_lru_node_set_ref(&l->lru_node);
742 		return l->key + round_up(map->key_size, 8);
743 	}
744 
745 	return NULL;
746 }
747 
748 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
749 {
750 	return __htab_lru_map_lookup_elem(map, key, true);
751 }
752 
753 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
754 {
755 	return __htab_lru_map_lookup_elem(map, key, false);
756 }
757 
758 static int htab_lru_map_gen_lookup(struct bpf_map *map,
759 				   struct bpf_insn *insn_buf)
760 {
761 	struct bpf_insn *insn = insn_buf;
762 	const int ret = BPF_REG_0;
763 	const int ref_reg = BPF_REG_1;
764 
765 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
766 		     (void *(*)(struct bpf_map *map, void *key))NULL));
767 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
768 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
769 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
770 			      offsetof(struct htab_elem, lru_node) +
771 			      offsetof(struct bpf_lru_node, ref));
772 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
773 	*insn++ = BPF_ST_MEM(BPF_B, ret,
774 			     offsetof(struct htab_elem, lru_node) +
775 			     offsetof(struct bpf_lru_node, ref),
776 			     1);
777 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
778 				offsetof(struct htab_elem, key) +
779 				round_up(map->key_size, 8));
780 	return insn - insn_buf;
781 }
782 
783 static void check_and_free_fields(struct bpf_htab *htab,
784 				  struct htab_elem *elem)
785 {
786 	if (htab_is_percpu(htab)) {
787 		void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
788 		int cpu;
789 
790 		for_each_possible_cpu(cpu)
791 			bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
792 	} else {
793 		void *map_value = elem->key + round_up(htab->map.key_size, 8);
794 
795 		bpf_obj_free_fields(htab->map.record, map_value);
796 	}
797 }
798 
799 /* It is called from the bpf_lru_list when the LRU needs to delete
800  * older elements from the htab.
801  */
802 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
803 {
804 	struct bpf_htab *htab = arg;
805 	struct htab_elem *l = NULL, *tgt_l;
806 	struct hlist_nulls_head *head;
807 	struct hlist_nulls_node *n;
808 	unsigned long flags;
809 	struct bucket *b;
810 	int ret;
811 
812 	tgt_l = container_of(node, struct htab_elem, lru_node);
813 	b = __select_bucket(htab, tgt_l->hash);
814 	head = &b->head;
815 
816 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
817 	if (ret)
818 		return false;
819 
820 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
821 		if (l == tgt_l) {
822 			hlist_nulls_del_rcu(&l->hash_node);
823 			check_and_free_fields(htab, l);
824 			bpf_map_dec_elem_count(&htab->map);
825 			break;
826 		}
827 
828 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
829 
830 	return l == tgt_l;
831 }
832 
833 /* Called from syscall */
834 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
835 {
836 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
837 	struct hlist_nulls_head *head;
838 	struct htab_elem *l, *next_l;
839 	u32 hash, key_size;
840 	int i = 0;
841 
842 	WARN_ON_ONCE(!rcu_read_lock_held());
843 
844 	key_size = map->key_size;
845 
846 	if (!key)
847 		goto find_first_elem;
848 
849 	hash = htab_map_hash(key, key_size, htab->hashrnd);
850 
851 	head = select_bucket(htab, hash);
852 
853 	/* lookup the key */
854 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
855 
856 	if (!l)
857 		goto find_first_elem;
858 
859 	/* key was found, get next key in the same bucket */
860 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
861 				  struct htab_elem, hash_node);
862 
863 	if (next_l) {
864 		/* if next elem in this hash list is non-zero, just return it */
865 		memcpy(next_key, next_l->key, key_size);
866 		return 0;
867 	}
868 
869 	/* no more elements in this hash list, go to the next bucket */
870 	i = hash & (htab->n_buckets - 1);
871 	i++;
872 
873 find_first_elem:
874 	/* iterate over buckets */
875 	for (; i < htab->n_buckets; i++) {
876 		head = select_bucket(htab, i);
877 
878 		/* pick first element in the bucket */
879 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
880 					  struct htab_elem, hash_node);
881 		if (next_l) {
882 			/* if it's not empty, just return it */
883 			memcpy(next_key, next_l->key, key_size);
884 			return 0;
885 		}
886 	}
887 
888 	/* iterated over all buckets and all elements */
889 	return -ENOENT;
890 }
891 
892 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
893 {
894 	check_and_free_fields(htab, l);
895 
896 	migrate_disable();
897 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
898 		bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
899 	bpf_mem_cache_free(&htab->ma, l);
900 	migrate_enable();
901 }
902 
903 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
904 {
905 	struct bpf_map *map = &htab->map;
906 	void *ptr;
907 
908 	if (map->ops->map_fd_put_ptr) {
909 		ptr = fd_htab_map_get_ptr(map, l);
910 		map->ops->map_fd_put_ptr(map, ptr, true);
911 	}
912 }
913 
914 static bool is_map_full(struct bpf_htab *htab)
915 {
916 	if (htab->use_percpu_counter)
917 		return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
918 						PERCPU_COUNTER_BATCH) >= 0;
919 	return atomic_read(&htab->count) >= htab->map.max_entries;
920 }
921 
922 static void inc_elem_count(struct bpf_htab *htab)
923 {
924 	bpf_map_inc_elem_count(&htab->map);
925 
926 	if (htab->use_percpu_counter)
927 		percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
928 	else
929 		atomic_inc(&htab->count);
930 }
931 
932 static void dec_elem_count(struct bpf_htab *htab)
933 {
934 	bpf_map_dec_elem_count(&htab->map);
935 
936 	if (htab->use_percpu_counter)
937 		percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
938 	else
939 		atomic_dec(&htab->count);
940 }
941 
942 
943 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
944 {
945 	htab_put_fd_value(htab, l);
946 
947 	if (htab_is_prealloc(htab)) {
948 		bpf_map_dec_elem_count(&htab->map);
949 		check_and_free_fields(htab, l);
950 		pcpu_freelist_push(&htab->freelist, &l->fnode);
951 	} else {
952 		dec_elem_count(htab);
953 		htab_elem_free(htab, l);
954 	}
955 }
956 
957 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
958 			    void *value, bool onallcpus)
959 {
960 	if (!onallcpus) {
961 		/* copy true value_size bytes */
962 		copy_map_value(&htab->map, this_cpu_ptr(pptr), value);
963 	} else {
964 		u32 size = round_up(htab->map.value_size, 8);
965 		int off = 0, cpu;
966 
967 		for_each_possible_cpu(cpu) {
968 			copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off);
969 			off += size;
970 		}
971 	}
972 }
973 
974 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
975 			    void *value, bool onallcpus)
976 {
977 	/* When not setting the initial value on all cpus, zero-fill element
978 	 * values for other cpus. Otherwise, bpf program has no way to ensure
979 	 * known initial values for cpus other than current one
980 	 * (onallcpus=false always when coming from bpf prog).
981 	 */
982 	if (!onallcpus) {
983 		int current_cpu = raw_smp_processor_id();
984 		int cpu;
985 
986 		for_each_possible_cpu(cpu) {
987 			if (cpu == current_cpu)
988 				copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value);
989 			else /* Since elem is preallocated, we cannot touch special fields */
990 				zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu));
991 		}
992 	} else {
993 		pcpu_copy_value(htab, pptr, value, onallcpus);
994 	}
995 }
996 
997 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
998 {
999 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
1000 	       BITS_PER_LONG == 64;
1001 }
1002 
1003 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
1004 					 void *value, u32 key_size, u32 hash,
1005 					 bool percpu, bool onallcpus,
1006 					 struct htab_elem *old_elem)
1007 {
1008 	u32 size = htab->map.value_size;
1009 	bool prealloc = htab_is_prealloc(htab);
1010 	struct htab_elem *l_new, **pl_new;
1011 	void __percpu *pptr;
1012 
1013 	if (prealloc) {
1014 		if (old_elem) {
1015 			/* if we're updating the existing element,
1016 			 * use per-cpu extra elems to avoid freelist_pop/push
1017 			 */
1018 			pl_new = this_cpu_ptr(htab->extra_elems);
1019 			l_new = *pl_new;
1020 			*pl_new = old_elem;
1021 		} else {
1022 			struct pcpu_freelist_node *l;
1023 
1024 			l = __pcpu_freelist_pop(&htab->freelist);
1025 			if (!l)
1026 				return ERR_PTR(-E2BIG);
1027 			l_new = container_of(l, struct htab_elem, fnode);
1028 			bpf_map_inc_elem_count(&htab->map);
1029 		}
1030 	} else {
1031 		if (is_map_full(htab))
1032 			if (!old_elem)
1033 				/* when map is full and update() is replacing
1034 				 * old element, it's ok to allocate, since
1035 				 * old element will be freed immediately.
1036 				 * Otherwise return an error
1037 				 */
1038 				return ERR_PTR(-E2BIG);
1039 		inc_elem_count(htab);
1040 		l_new = bpf_mem_cache_alloc(&htab->ma);
1041 		if (!l_new) {
1042 			l_new = ERR_PTR(-ENOMEM);
1043 			goto dec_count;
1044 		}
1045 	}
1046 
1047 	memcpy(l_new->key, key, key_size);
1048 	if (percpu) {
1049 		if (prealloc) {
1050 			pptr = htab_elem_get_ptr(l_new, key_size);
1051 		} else {
1052 			/* alloc_percpu zero-fills */
1053 			pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
1054 			if (!pptr) {
1055 				bpf_mem_cache_free(&htab->ma, l_new);
1056 				l_new = ERR_PTR(-ENOMEM);
1057 				goto dec_count;
1058 			}
1059 			l_new->ptr_to_pptr = pptr;
1060 			pptr = *(void **)pptr;
1061 		}
1062 
1063 		pcpu_init_value(htab, pptr, value, onallcpus);
1064 
1065 		if (!prealloc)
1066 			htab_elem_set_ptr(l_new, key_size, pptr);
1067 	} else if (fd_htab_map_needs_adjust(htab)) {
1068 		size = round_up(size, 8);
1069 		memcpy(l_new->key + round_up(key_size, 8), value, size);
1070 	} else {
1071 		copy_map_value(&htab->map,
1072 			       l_new->key + round_up(key_size, 8),
1073 			       value);
1074 	}
1075 
1076 	l_new->hash = hash;
1077 	return l_new;
1078 dec_count:
1079 	dec_elem_count(htab);
1080 	return l_new;
1081 }
1082 
1083 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1084 		       u64 map_flags)
1085 {
1086 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1087 		/* elem already exists */
1088 		return -EEXIST;
1089 
1090 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1091 		/* elem doesn't exist, cannot update it */
1092 		return -ENOENT;
1093 
1094 	return 0;
1095 }
1096 
1097 /* Called from syscall or from eBPF program */
1098 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1099 				 u64 map_flags)
1100 {
1101 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1102 	struct htab_elem *l_new = NULL, *l_old;
1103 	struct hlist_nulls_head *head;
1104 	unsigned long flags;
1105 	void *old_map_ptr;
1106 	struct bucket *b;
1107 	u32 key_size, hash;
1108 	int ret;
1109 
1110 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1111 		/* unknown flags */
1112 		return -EINVAL;
1113 
1114 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1115 		     !rcu_read_lock_bh_held());
1116 
1117 	key_size = map->key_size;
1118 
1119 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1120 
1121 	b = __select_bucket(htab, hash);
1122 	head = &b->head;
1123 
1124 	if (unlikely(map_flags & BPF_F_LOCK)) {
1125 		if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1126 			return -EINVAL;
1127 		/* find an element without taking the bucket lock */
1128 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1129 					      htab->n_buckets);
1130 		ret = check_flags(htab, l_old, map_flags);
1131 		if (ret)
1132 			return ret;
1133 		if (l_old) {
1134 			/* grab the element lock and update value in place */
1135 			copy_map_value_locked(map,
1136 					      l_old->key + round_up(key_size, 8),
1137 					      value, false);
1138 			return 0;
1139 		}
1140 		/* fall through, grab the bucket lock and lookup again.
1141 		 * 99.9% chance that the element won't be found,
1142 		 * but second lookup under lock has to be done.
1143 		 */
1144 	}
1145 
1146 	ret = htab_lock_bucket(htab, b, hash, &flags);
1147 	if (ret)
1148 		return ret;
1149 
1150 	l_old = lookup_elem_raw(head, hash, key, key_size);
1151 
1152 	ret = check_flags(htab, l_old, map_flags);
1153 	if (ret)
1154 		goto err;
1155 
1156 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1157 		/* first lookup without the bucket lock didn't find the element,
1158 		 * but second lookup with the bucket lock found it.
1159 		 * This case is highly unlikely, but has to be dealt with:
1160 		 * grab the element lock in addition to the bucket lock
1161 		 * and update element in place
1162 		 */
1163 		copy_map_value_locked(map,
1164 				      l_old->key + round_up(key_size, 8),
1165 				      value, false);
1166 		ret = 0;
1167 		goto err;
1168 	}
1169 
1170 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1171 				l_old);
1172 	if (IS_ERR(l_new)) {
1173 		/* all pre-allocated elements are in use or memory exhausted */
1174 		ret = PTR_ERR(l_new);
1175 		goto err;
1176 	}
1177 
1178 	/* add new element to the head of the list, so that
1179 	 * concurrent search will find it before old elem
1180 	 */
1181 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1182 	if (l_old) {
1183 		hlist_nulls_del_rcu(&l_old->hash_node);
1184 
1185 		/* l_old has already been stashed in htab->extra_elems, free
1186 		 * its special fields before it is available for reuse. Also
1187 		 * save the old map pointer in htab of maps before unlock
1188 		 * and release it after unlock.
1189 		 */
1190 		old_map_ptr = NULL;
1191 		if (htab_is_prealloc(htab)) {
1192 			if (map->ops->map_fd_put_ptr)
1193 				old_map_ptr = fd_htab_map_get_ptr(map, l_old);
1194 			check_and_free_fields(htab, l_old);
1195 		}
1196 	}
1197 	htab_unlock_bucket(htab, b, hash, flags);
1198 	if (l_old) {
1199 		if (old_map_ptr)
1200 			map->ops->map_fd_put_ptr(map, old_map_ptr, true);
1201 		if (!htab_is_prealloc(htab))
1202 			free_htab_elem(htab, l_old);
1203 	}
1204 	return 0;
1205 err:
1206 	htab_unlock_bucket(htab, b, hash, flags);
1207 	return ret;
1208 }
1209 
1210 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1211 {
1212 	check_and_free_fields(htab, elem);
1213 	bpf_map_dec_elem_count(&htab->map);
1214 	bpf_lru_push_free(&htab->lru, &elem->lru_node);
1215 }
1216 
1217 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1218 				     u64 map_flags)
1219 {
1220 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1221 	struct htab_elem *l_new, *l_old = NULL;
1222 	struct hlist_nulls_head *head;
1223 	unsigned long flags;
1224 	struct bucket *b;
1225 	u32 key_size, hash;
1226 	int ret;
1227 
1228 	if (unlikely(map_flags > BPF_EXIST))
1229 		/* unknown flags */
1230 		return -EINVAL;
1231 
1232 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1233 		     !rcu_read_lock_bh_held());
1234 
1235 	key_size = map->key_size;
1236 
1237 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1238 
1239 	b = __select_bucket(htab, hash);
1240 	head = &b->head;
1241 
1242 	/* For LRU, we need to alloc before taking bucket's
1243 	 * spinlock because getting free nodes from LRU may need
1244 	 * to remove older elements from htab and this removal
1245 	 * operation will need a bucket lock.
1246 	 */
1247 	l_new = prealloc_lru_pop(htab, key, hash);
1248 	if (!l_new)
1249 		return -ENOMEM;
1250 	copy_map_value(&htab->map,
1251 		       l_new->key + round_up(map->key_size, 8), value);
1252 
1253 	ret = htab_lock_bucket(htab, b, hash, &flags);
1254 	if (ret)
1255 		goto err_lock_bucket;
1256 
1257 	l_old = lookup_elem_raw(head, hash, key, key_size);
1258 
1259 	ret = check_flags(htab, l_old, map_flags);
1260 	if (ret)
1261 		goto err;
1262 
1263 	/* add new element to the head of the list, so that
1264 	 * concurrent search will find it before old elem
1265 	 */
1266 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1267 	if (l_old) {
1268 		bpf_lru_node_set_ref(&l_new->lru_node);
1269 		hlist_nulls_del_rcu(&l_old->hash_node);
1270 	}
1271 	ret = 0;
1272 
1273 err:
1274 	htab_unlock_bucket(htab, b, hash, flags);
1275 
1276 err_lock_bucket:
1277 	if (ret)
1278 		htab_lru_push_free(htab, l_new);
1279 	else if (l_old)
1280 		htab_lru_push_free(htab, l_old);
1281 
1282 	return ret;
1283 }
1284 
1285 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1286 					  void *value, u64 map_flags,
1287 					  bool onallcpus)
1288 {
1289 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1290 	struct htab_elem *l_new = NULL, *l_old;
1291 	struct hlist_nulls_head *head;
1292 	unsigned long flags;
1293 	struct bucket *b;
1294 	u32 key_size, hash;
1295 	int ret;
1296 
1297 	if (unlikely(map_flags > BPF_EXIST))
1298 		/* unknown flags */
1299 		return -EINVAL;
1300 
1301 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1302 		     !rcu_read_lock_bh_held());
1303 
1304 	key_size = map->key_size;
1305 
1306 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1307 
1308 	b = __select_bucket(htab, hash);
1309 	head = &b->head;
1310 
1311 	ret = htab_lock_bucket(htab, b, hash, &flags);
1312 	if (ret)
1313 		return ret;
1314 
1315 	l_old = lookup_elem_raw(head, hash, key, key_size);
1316 
1317 	ret = check_flags(htab, l_old, map_flags);
1318 	if (ret)
1319 		goto err;
1320 
1321 	if (l_old) {
1322 		/* per-cpu hash map can update value in-place */
1323 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1324 				value, onallcpus);
1325 	} else {
1326 		l_new = alloc_htab_elem(htab, key, value, key_size,
1327 					hash, true, onallcpus, NULL);
1328 		if (IS_ERR(l_new)) {
1329 			ret = PTR_ERR(l_new);
1330 			goto err;
1331 		}
1332 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1333 	}
1334 	ret = 0;
1335 err:
1336 	htab_unlock_bucket(htab, b, hash, flags);
1337 	return ret;
1338 }
1339 
1340 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1341 					      void *value, u64 map_flags,
1342 					      bool onallcpus)
1343 {
1344 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1345 	struct htab_elem *l_new = NULL, *l_old;
1346 	struct hlist_nulls_head *head;
1347 	unsigned long flags;
1348 	struct bucket *b;
1349 	u32 key_size, hash;
1350 	int ret;
1351 
1352 	if (unlikely(map_flags > BPF_EXIST))
1353 		/* unknown flags */
1354 		return -EINVAL;
1355 
1356 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1357 		     !rcu_read_lock_bh_held());
1358 
1359 	key_size = map->key_size;
1360 
1361 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1362 
1363 	b = __select_bucket(htab, hash);
1364 	head = &b->head;
1365 
1366 	/* For LRU, we need to alloc before taking bucket's
1367 	 * spinlock because LRU's elem alloc may need
1368 	 * to remove older elem from htab and this removal
1369 	 * operation will need a bucket lock.
1370 	 */
1371 	if (map_flags != BPF_EXIST) {
1372 		l_new = prealloc_lru_pop(htab, key, hash);
1373 		if (!l_new)
1374 			return -ENOMEM;
1375 	}
1376 
1377 	ret = htab_lock_bucket(htab, b, hash, &flags);
1378 	if (ret)
1379 		goto err_lock_bucket;
1380 
1381 	l_old = lookup_elem_raw(head, hash, key, key_size);
1382 
1383 	ret = check_flags(htab, l_old, map_flags);
1384 	if (ret)
1385 		goto err;
1386 
1387 	if (l_old) {
1388 		bpf_lru_node_set_ref(&l_old->lru_node);
1389 
1390 		/* per-cpu hash map can update value in-place */
1391 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1392 				value, onallcpus);
1393 	} else {
1394 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1395 				value, onallcpus);
1396 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1397 		l_new = NULL;
1398 	}
1399 	ret = 0;
1400 err:
1401 	htab_unlock_bucket(htab, b, hash, flags);
1402 err_lock_bucket:
1403 	if (l_new) {
1404 		bpf_map_dec_elem_count(&htab->map);
1405 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1406 	}
1407 	return ret;
1408 }
1409 
1410 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1411 					void *value, u64 map_flags)
1412 {
1413 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1414 }
1415 
1416 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1417 					    void *value, u64 map_flags)
1418 {
1419 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1420 						 false);
1421 }
1422 
1423 /* Called from syscall or from eBPF program */
1424 static long htab_map_delete_elem(struct bpf_map *map, void *key)
1425 {
1426 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1427 	struct hlist_nulls_head *head;
1428 	struct bucket *b;
1429 	struct htab_elem *l;
1430 	unsigned long flags;
1431 	u32 hash, key_size;
1432 	int ret;
1433 
1434 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1435 		     !rcu_read_lock_bh_held());
1436 
1437 	key_size = map->key_size;
1438 
1439 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1440 	b = __select_bucket(htab, hash);
1441 	head = &b->head;
1442 
1443 	ret = htab_lock_bucket(htab, b, hash, &flags);
1444 	if (ret)
1445 		return ret;
1446 
1447 	l = lookup_elem_raw(head, hash, key, key_size);
1448 	if (l)
1449 		hlist_nulls_del_rcu(&l->hash_node);
1450 	else
1451 		ret = -ENOENT;
1452 
1453 	htab_unlock_bucket(htab, b, hash, flags);
1454 
1455 	if (l)
1456 		free_htab_elem(htab, l);
1457 	return ret;
1458 }
1459 
1460 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1461 {
1462 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1463 	struct hlist_nulls_head *head;
1464 	struct bucket *b;
1465 	struct htab_elem *l;
1466 	unsigned long flags;
1467 	u32 hash, key_size;
1468 	int ret;
1469 
1470 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1471 		     !rcu_read_lock_bh_held());
1472 
1473 	key_size = map->key_size;
1474 
1475 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1476 	b = __select_bucket(htab, hash);
1477 	head = &b->head;
1478 
1479 	ret = htab_lock_bucket(htab, b, hash, &flags);
1480 	if (ret)
1481 		return ret;
1482 
1483 	l = lookup_elem_raw(head, hash, key, key_size);
1484 
1485 	if (l)
1486 		hlist_nulls_del_rcu(&l->hash_node);
1487 	else
1488 		ret = -ENOENT;
1489 
1490 	htab_unlock_bucket(htab, b, hash, flags);
1491 	if (l)
1492 		htab_lru_push_free(htab, l);
1493 	return ret;
1494 }
1495 
1496 static void delete_all_elements(struct bpf_htab *htab)
1497 {
1498 	int i;
1499 
1500 	/* It's called from a worker thread, so disable migration here,
1501 	 * since bpf_mem_cache_free() relies on that.
1502 	 */
1503 	migrate_disable();
1504 	for (i = 0; i < htab->n_buckets; i++) {
1505 		struct hlist_nulls_head *head = select_bucket(htab, i);
1506 		struct hlist_nulls_node *n;
1507 		struct htab_elem *l;
1508 
1509 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1510 			hlist_nulls_del_rcu(&l->hash_node);
1511 			htab_elem_free(htab, l);
1512 		}
1513 	}
1514 	migrate_enable();
1515 }
1516 
1517 static void htab_free_malloced_timers(struct bpf_htab *htab)
1518 {
1519 	int i;
1520 
1521 	rcu_read_lock();
1522 	for (i = 0; i < htab->n_buckets; i++) {
1523 		struct hlist_nulls_head *head = select_bucket(htab, i);
1524 		struct hlist_nulls_node *n;
1525 		struct htab_elem *l;
1526 
1527 		hlist_nulls_for_each_entry(l, n, head, hash_node) {
1528 			/* We only free timer on uref dropping to zero */
1529 			bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
1530 		}
1531 		cond_resched_rcu();
1532 	}
1533 	rcu_read_unlock();
1534 }
1535 
1536 static void htab_map_free_timers(struct bpf_map *map)
1537 {
1538 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1539 
1540 	/* We only free timer on uref dropping to zero */
1541 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
1542 		return;
1543 	if (!htab_is_prealloc(htab))
1544 		htab_free_malloced_timers(htab);
1545 	else
1546 		htab_free_prealloced_timers(htab);
1547 }
1548 
1549 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1550 static void htab_map_free(struct bpf_map *map)
1551 {
1552 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1553 	int i;
1554 
1555 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1556 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1557 	 * There is no need to synchronize_rcu() here to protect map elements.
1558 	 */
1559 
1560 	/* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
1561 	 * underneath and is reponsible for waiting for callbacks to finish
1562 	 * during bpf_mem_alloc_destroy().
1563 	 */
1564 	if (!htab_is_prealloc(htab)) {
1565 		delete_all_elements(htab);
1566 	} else {
1567 		htab_free_prealloced_fields(htab);
1568 		prealloc_destroy(htab);
1569 	}
1570 
1571 	bpf_map_free_elem_count(map);
1572 	free_percpu(htab->extra_elems);
1573 	bpf_map_area_free(htab->buckets);
1574 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
1575 	bpf_mem_alloc_destroy(&htab->ma);
1576 	if (htab->use_percpu_counter)
1577 		percpu_counter_destroy(&htab->pcount);
1578 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1579 		free_percpu(htab->map_locked[i]);
1580 	lockdep_unregister_key(&htab->lockdep_key);
1581 	bpf_map_area_free(htab);
1582 }
1583 
1584 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1585 				   struct seq_file *m)
1586 {
1587 	void *value;
1588 
1589 	rcu_read_lock();
1590 
1591 	value = htab_map_lookup_elem(map, key);
1592 	if (!value) {
1593 		rcu_read_unlock();
1594 		return;
1595 	}
1596 
1597 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1598 	seq_puts(m, ": ");
1599 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1600 	seq_puts(m, "\n");
1601 
1602 	rcu_read_unlock();
1603 }
1604 
1605 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1606 					     void *value, bool is_lru_map,
1607 					     bool is_percpu, u64 flags)
1608 {
1609 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1610 	struct hlist_nulls_head *head;
1611 	unsigned long bflags;
1612 	struct htab_elem *l;
1613 	u32 hash, key_size;
1614 	struct bucket *b;
1615 	int ret;
1616 
1617 	key_size = map->key_size;
1618 
1619 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1620 	b = __select_bucket(htab, hash);
1621 	head = &b->head;
1622 
1623 	ret = htab_lock_bucket(htab, b, hash, &bflags);
1624 	if (ret)
1625 		return ret;
1626 
1627 	l = lookup_elem_raw(head, hash, key, key_size);
1628 	if (!l) {
1629 		ret = -ENOENT;
1630 	} else {
1631 		if (is_percpu) {
1632 			u32 roundup_value_size = round_up(map->value_size, 8);
1633 			void __percpu *pptr;
1634 			int off = 0, cpu;
1635 
1636 			pptr = htab_elem_get_ptr(l, key_size);
1637 			for_each_possible_cpu(cpu) {
1638 				copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu));
1639 				check_and_init_map_value(&htab->map, value + off);
1640 				off += roundup_value_size;
1641 			}
1642 		} else {
1643 			u32 roundup_key_size = round_up(map->key_size, 8);
1644 
1645 			if (flags & BPF_F_LOCK)
1646 				copy_map_value_locked(map, value, l->key +
1647 						      roundup_key_size,
1648 						      true);
1649 			else
1650 				copy_map_value(map, value, l->key +
1651 					       roundup_key_size);
1652 			/* Zeroing special fields in the temp buffer */
1653 			check_and_init_map_value(map, value);
1654 		}
1655 
1656 		hlist_nulls_del_rcu(&l->hash_node);
1657 		if (!is_lru_map)
1658 			free_htab_elem(htab, l);
1659 	}
1660 
1661 	htab_unlock_bucket(htab, b, hash, bflags);
1662 
1663 	if (is_lru_map && l)
1664 		htab_lru_push_free(htab, l);
1665 
1666 	return ret;
1667 }
1668 
1669 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1670 					   void *value, u64 flags)
1671 {
1672 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1673 						 flags);
1674 }
1675 
1676 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1677 						  void *key, void *value,
1678 						  u64 flags)
1679 {
1680 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1681 						 flags);
1682 }
1683 
1684 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1685 					       void *value, u64 flags)
1686 {
1687 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1688 						 flags);
1689 }
1690 
1691 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1692 						      void *key, void *value,
1693 						      u64 flags)
1694 {
1695 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1696 						 flags);
1697 }
1698 
1699 static int
1700 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1701 				   const union bpf_attr *attr,
1702 				   union bpf_attr __user *uattr,
1703 				   bool do_delete, bool is_lru_map,
1704 				   bool is_percpu)
1705 {
1706 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1707 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1708 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1709 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1710 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1711 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1712 	u32 batch, max_count, size, bucket_size, map_id;
1713 	struct htab_elem *node_to_free = NULL;
1714 	u64 elem_map_flags, map_flags;
1715 	struct hlist_nulls_head *head;
1716 	struct hlist_nulls_node *n;
1717 	unsigned long flags = 0;
1718 	bool locked = false;
1719 	struct htab_elem *l;
1720 	struct bucket *b;
1721 	int ret = 0;
1722 
1723 	elem_map_flags = attr->batch.elem_flags;
1724 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1725 	    ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1726 		return -EINVAL;
1727 
1728 	map_flags = attr->batch.flags;
1729 	if (map_flags)
1730 		return -EINVAL;
1731 
1732 	max_count = attr->batch.count;
1733 	if (!max_count)
1734 		return 0;
1735 
1736 	if (put_user(0, &uattr->batch.count))
1737 		return -EFAULT;
1738 
1739 	batch = 0;
1740 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1741 		return -EFAULT;
1742 
1743 	if (batch >= htab->n_buckets)
1744 		return -ENOENT;
1745 
1746 	key_size = htab->map.key_size;
1747 	roundup_key_size = round_up(htab->map.key_size, 8);
1748 	value_size = htab->map.value_size;
1749 	size = round_up(value_size, 8);
1750 	if (is_percpu)
1751 		value_size = size * num_possible_cpus();
1752 	total = 0;
1753 	/* while experimenting with hash tables with sizes ranging from 10 to
1754 	 * 1000, it was observed that a bucket can have up to 5 entries.
1755 	 */
1756 	bucket_size = 5;
1757 
1758 alloc:
1759 	/* We cannot do copy_from_user or copy_to_user inside
1760 	 * the rcu_read_lock. Allocate enough space here.
1761 	 */
1762 	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1763 	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1764 	if (!keys || !values) {
1765 		ret = -ENOMEM;
1766 		goto after_loop;
1767 	}
1768 
1769 again:
1770 	bpf_disable_instrumentation();
1771 	rcu_read_lock();
1772 again_nocopy:
1773 	dst_key = keys;
1774 	dst_val = values;
1775 	b = &htab->buckets[batch];
1776 	head = &b->head;
1777 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1778 	if (locked) {
1779 		ret = htab_lock_bucket(htab, b, batch, &flags);
1780 		if (ret) {
1781 			rcu_read_unlock();
1782 			bpf_enable_instrumentation();
1783 			goto after_loop;
1784 		}
1785 	}
1786 
1787 	bucket_cnt = 0;
1788 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1789 		bucket_cnt++;
1790 
1791 	if (bucket_cnt && !locked) {
1792 		locked = true;
1793 		goto again_nocopy;
1794 	}
1795 
1796 	if (bucket_cnt > (max_count - total)) {
1797 		if (total == 0)
1798 			ret = -ENOSPC;
1799 		/* Note that since bucket_cnt > 0 here, it is implicit
1800 		 * that the locked was grabbed, so release it.
1801 		 */
1802 		htab_unlock_bucket(htab, b, batch, flags);
1803 		rcu_read_unlock();
1804 		bpf_enable_instrumentation();
1805 		goto after_loop;
1806 	}
1807 
1808 	if (bucket_cnt > bucket_size) {
1809 		bucket_size = bucket_cnt;
1810 		/* Note that since bucket_cnt > 0 here, it is implicit
1811 		 * that the locked was grabbed, so release it.
1812 		 */
1813 		htab_unlock_bucket(htab, b, batch, flags);
1814 		rcu_read_unlock();
1815 		bpf_enable_instrumentation();
1816 		kvfree(keys);
1817 		kvfree(values);
1818 		goto alloc;
1819 	}
1820 
1821 	/* Next block is only safe to run if you have grabbed the lock */
1822 	if (!locked)
1823 		goto next_batch;
1824 
1825 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1826 		memcpy(dst_key, l->key, key_size);
1827 
1828 		if (is_percpu) {
1829 			int off = 0, cpu;
1830 			void __percpu *pptr;
1831 
1832 			pptr = htab_elem_get_ptr(l, map->key_size);
1833 			for_each_possible_cpu(cpu) {
1834 				copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu));
1835 				check_and_init_map_value(&htab->map, dst_val + off);
1836 				off += size;
1837 			}
1838 		} else {
1839 			value = l->key + roundup_key_size;
1840 			if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1841 				struct bpf_map **inner_map = value;
1842 
1843 				 /* Actual value is the id of the inner map */
1844 				map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1845 				value = &map_id;
1846 			}
1847 
1848 			if (elem_map_flags & BPF_F_LOCK)
1849 				copy_map_value_locked(map, dst_val, value,
1850 						      true);
1851 			else
1852 				copy_map_value(map, dst_val, value);
1853 			/* Zeroing special fields in the temp buffer */
1854 			check_and_init_map_value(map, dst_val);
1855 		}
1856 		if (do_delete) {
1857 			hlist_nulls_del_rcu(&l->hash_node);
1858 
1859 			/* bpf_lru_push_free() will acquire lru_lock, which
1860 			 * may cause deadlock. See comments in function
1861 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1862 			 * after releasing the bucket lock.
1863 			 *
1864 			 * For htab of maps, htab_put_fd_value() in
1865 			 * free_htab_elem() may acquire a spinlock with bucket
1866 			 * lock being held and it violates the lock rule, so
1867 			 * invoke free_htab_elem() after unlock as well.
1868 			 */
1869 			l->batch_flink = node_to_free;
1870 			node_to_free = l;
1871 		}
1872 		dst_key += key_size;
1873 		dst_val += value_size;
1874 	}
1875 
1876 	htab_unlock_bucket(htab, b, batch, flags);
1877 	locked = false;
1878 
1879 	while (node_to_free) {
1880 		l = node_to_free;
1881 		node_to_free = node_to_free->batch_flink;
1882 		if (is_lru_map)
1883 			htab_lru_push_free(htab, l);
1884 		else
1885 			free_htab_elem(htab, l);
1886 	}
1887 
1888 next_batch:
1889 	/* If we are not copying data, we can go to next bucket and avoid
1890 	 * unlocking the rcu.
1891 	 */
1892 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1893 		batch++;
1894 		goto again_nocopy;
1895 	}
1896 
1897 	rcu_read_unlock();
1898 	bpf_enable_instrumentation();
1899 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1900 	    key_size * bucket_cnt) ||
1901 	    copy_to_user(uvalues + total * value_size, values,
1902 	    value_size * bucket_cnt))) {
1903 		ret = -EFAULT;
1904 		goto after_loop;
1905 	}
1906 
1907 	total += bucket_cnt;
1908 	batch++;
1909 	if (batch >= htab->n_buckets) {
1910 		ret = -ENOENT;
1911 		goto after_loop;
1912 	}
1913 	goto again;
1914 
1915 after_loop:
1916 	if (ret == -EFAULT)
1917 		goto out;
1918 
1919 	/* copy # of entries and next batch */
1920 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1921 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1922 	    put_user(total, &uattr->batch.count))
1923 		ret = -EFAULT;
1924 
1925 out:
1926 	kvfree(keys);
1927 	kvfree(values);
1928 	return ret;
1929 }
1930 
1931 static int
1932 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1933 			     union bpf_attr __user *uattr)
1934 {
1935 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1936 						  false, true);
1937 }
1938 
1939 static int
1940 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1941 					const union bpf_attr *attr,
1942 					union bpf_attr __user *uattr)
1943 {
1944 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1945 						  false, true);
1946 }
1947 
1948 static int
1949 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1950 		      union bpf_attr __user *uattr)
1951 {
1952 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1953 						  false, false);
1954 }
1955 
1956 static int
1957 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1958 				 const union bpf_attr *attr,
1959 				 union bpf_attr __user *uattr)
1960 {
1961 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1962 						  false, false);
1963 }
1964 
1965 static int
1966 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1967 				 const union bpf_attr *attr,
1968 				 union bpf_attr __user *uattr)
1969 {
1970 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1971 						  true, true);
1972 }
1973 
1974 static int
1975 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1976 					    const union bpf_attr *attr,
1977 					    union bpf_attr __user *uattr)
1978 {
1979 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1980 						  true, true);
1981 }
1982 
1983 static int
1984 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1985 			  union bpf_attr __user *uattr)
1986 {
1987 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1988 						  true, false);
1989 }
1990 
1991 static int
1992 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1993 				     const union bpf_attr *attr,
1994 				     union bpf_attr __user *uattr)
1995 {
1996 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1997 						  true, false);
1998 }
1999 
2000 struct bpf_iter_seq_hash_map_info {
2001 	struct bpf_map *map;
2002 	struct bpf_htab *htab;
2003 	void *percpu_value_buf; // non-zero means percpu hash
2004 	u32 bucket_id;
2005 	u32 skip_elems;
2006 };
2007 
2008 static struct htab_elem *
2009 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
2010 			   struct htab_elem *prev_elem)
2011 {
2012 	const struct bpf_htab *htab = info->htab;
2013 	u32 skip_elems = info->skip_elems;
2014 	u32 bucket_id = info->bucket_id;
2015 	struct hlist_nulls_head *head;
2016 	struct hlist_nulls_node *n;
2017 	struct htab_elem *elem;
2018 	struct bucket *b;
2019 	u32 i, count;
2020 
2021 	if (bucket_id >= htab->n_buckets)
2022 		return NULL;
2023 
2024 	/* try to find next elem in the same bucket */
2025 	if (prev_elem) {
2026 		/* no update/deletion on this bucket, prev_elem should be still valid
2027 		 * and we won't skip elements.
2028 		 */
2029 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
2030 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
2031 		if (elem)
2032 			return elem;
2033 
2034 		/* not found, unlock and go to the next bucket */
2035 		b = &htab->buckets[bucket_id++];
2036 		rcu_read_unlock();
2037 		skip_elems = 0;
2038 	}
2039 
2040 	for (i = bucket_id; i < htab->n_buckets; i++) {
2041 		b = &htab->buckets[i];
2042 		rcu_read_lock();
2043 
2044 		count = 0;
2045 		head = &b->head;
2046 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2047 			if (count >= skip_elems) {
2048 				info->bucket_id = i;
2049 				info->skip_elems = count;
2050 				return elem;
2051 			}
2052 			count++;
2053 		}
2054 
2055 		rcu_read_unlock();
2056 		skip_elems = 0;
2057 	}
2058 
2059 	info->bucket_id = i;
2060 	info->skip_elems = 0;
2061 	return NULL;
2062 }
2063 
2064 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
2065 {
2066 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2067 	struct htab_elem *elem;
2068 
2069 	elem = bpf_hash_map_seq_find_next(info, NULL);
2070 	if (!elem)
2071 		return NULL;
2072 
2073 	if (*pos == 0)
2074 		++*pos;
2075 	return elem;
2076 }
2077 
2078 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2079 {
2080 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2081 
2082 	++*pos;
2083 	++info->skip_elems;
2084 	return bpf_hash_map_seq_find_next(info, v);
2085 }
2086 
2087 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
2088 {
2089 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2090 	u32 roundup_key_size, roundup_value_size;
2091 	struct bpf_iter__bpf_map_elem ctx = {};
2092 	struct bpf_map *map = info->map;
2093 	struct bpf_iter_meta meta;
2094 	int ret = 0, off = 0, cpu;
2095 	struct bpf_prog *prog;
2096 	void __percpu *pptr;
2097 
2098 	meta.seq = seq;
2099 	prog = bpf_iter_get_info(&meta, elem == NULL);
2100 	if (prog) {
2101 		ctx.meta = &meta;
2102 		ctx.map = info->map;
2103 		if (elem) {
2104 			roundup_key_size = round_up(map->key_size, 8);
2105 			ctx.key = elem->key;
2106 			if (!info->percpu_value_buf) {
2107 				ctx.value = elem->key + roundup_key_size;
2108 			} else {
2109 				roundup_value_size = round_up(map->value_size, 8);
2110 				pptr = htab_elem_get_ptr(elem, map->key_size);
2111 				for_each_possible_cpu(cpu) {
2112 					copy_map_value_long(map, info->percpu_value_buf + off,
2113 							    per_cpu_ptr(pptr, cpu));
2114 					check_and_init_map_value(map, info->percpu_value_buf + off);
2115 					off += roundup_value_size;
2116 				}
2117 				ctx.value = info->percpu_value_buf;
2118 			}
2119 		}
2120 		ret = bpf_iter_run_prog(prog, &ctx);
2121 	}
2122 
2123 	return ret;
2124 }
2125 
2126 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2127 {
2128 	return __bpf_hash_map_seq_show(seq, v);
2129 }
2130 
2131 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2132 {
2133 	if (!v)
2134 		(void)__bpf_hash_map_seq_show(seq, NULL);
2135 	else
2136 		rcu_read_unlock();
2137 }
2138 
2139 static int bpf_iter_init_hash_map(void *priv_data,
2140 				  struct bpf_iter_aux_info *aux)
2141 {
2142 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2143 	struct bpf_map *map = aux->map;
2144 	void *value_buf;
2145 	u32 buf_size;
2146 
2147 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2148 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2149 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2150 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2151 		if (!value_buf)
2152 			return -ENOMEM;
2153 
2154 		seq_info->percpu_value_buf = value_buf;
2155 	}
2156 
2157 	bpf_map_inc_with_uref(map);
2158 	seq_info->map = map;
2159 	seq_info->htab = container_of(map, struct bpf_htab, map);
2160 	return 0;
2161 }
2162 
2163 static void bpf_iter_fini_hash_map(void *priv_data)
2164 {
2165 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2166 
2167 	bpf_map_put_with_uref(seq_info->map);
2168 	kfree(seq_info->percpu_value_buf);
2169 }
2170 
2171 static const struct seq_operations bpf_hash_map_seq_ops = {
2172 	.start	= bpf_hash_map_seq_start,
2173 	.next	= bpf_hash_map_seq_next,
2174 	.stop	= bpf_hash_map_seq_stop,
2175 	.show	= bpf_hash_map_seq_show,
2176 };
2177 
2178 static const struct bpf_iter_seq_info iter_seq_info = {
2179 	.seq_ops		= &bpf_hash_map_seq_ops,
2180 	.init_seq_private	= bpf_iter_init_hash_map,
2181 	.fini_seq_private	= bpf_iter_fini_hash_map,
2182 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
2183 };
2184 
2185 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2186 				   void *callback_ctx, u64 flags)
2187 {
2188 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2189 	struct hlist_nulls_head *head;
2190 	struct hlist_nulls_node *n;
2191 	struct htab_elem *elem;
2192 	u32 roundup_key_size;
2193 	int i, num_elems = 0;
2194 	void __percpu *pptr;
2195 	struct bucket *b;
2196 	void *key, *val;
2197 	bool is_percpu;
2198 	u64 ret = 0;
2199 
2200 	if (flags != 0)
2201 		return -EINVAL;
2202 
2203 	is_percpu = htab_is_percpu(htab);
2204 
2205 	roundup_key_size = round_up(map->key_size, 8);
2206 	/* disable migration so percpu value prepared here will be the
2207 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2208 	 */
2209 	if (is_percpu)
2210 		migrate_disable();
2211 	for (i = 0; i < htab->n_buckets; i++) {
2212 		b = &htab->buckets[i];
2213 		rcu_read_lock();
2214 		head = &b->head;
2215 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2216 			key = elem->key;
2217 			if (is_percpu) {
2218 				/* current cpu value for percpu map */
2219 				pptr = htab_elem_get_ptr(elem, map->key_size);
2220 				val = this_cpu_ptr(pptr);
2221 			} else {
2222 				val = elem->key + roundup_key_size;
2223 			}
2224 			num_elems++;
2225 			ret = callback_fn((u64)(long)map, (u64)(long)key,
2226 					  (u64)(long)val, (u64)(long)callback_ctx, 0);
2227 			/* return value: 0 - continue, 1 - stop and return */
2228 			if (ret) {
2229 				rcu_read_unlock();
2230 				goto out;
2231 			}
2232 		}
2233 		rcu_read_unlock();
2234 	}
2235 out:
2236 	if (is_percpu)
2237 		migrate_enable();
2238 	return num_elems;
2239 }
2240 
2241 static u64 htab_map_mem_usage(const struct bpf_map *map)
2242 {
2243 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2244 	u32 value_size = round_up(htab->map.value_size, 8);
2245 	bool prealloc = htab_is_prealloc(htab);
2246 	bool percpu = htab_is_percpu(htab);
2247 	bool lru = htab_is_lru(htab);
2248 	u64 num_entries;
2249 	u64 usage = sizeof(struct bpf_htab);
2250 
2251 	usage += sizeof(struct bucket) * htab->n_buckets;
2252 	usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT;
2253 	if (prealloc) {
2254 		num_entries = map->max_entries;
2255 		if (htab_has_extra_elems(htab))
2256 			num_entries += num_possible_cpus();
2257 
2258 		usage += htab->elem_size * num_entries;
2259 
2260 		if (percpu)
2261 			usage += value_size * num_possible_cpus() * num_entries;
2262 		else if (!lru)
2263 			usage += sizeof(struct htab_elem *) * num_possible_cpus();
2264 	} else {
2265 #define LLIST_NODE_SZ sizeof(struct llist_node)
2266 
2267 		num_entries = htab->use_percpu_counter ?
2268 					  percpu_counter_sum(&htab->pcount) :
2269 					  atomic_read(&htab->count);
2270 		usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries;
2271 		if (percpu) {
2272 			usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries;
2273 			usage += value_size * num_possible_cpus() * num_entries;
2274 		}
2275 	}
2276 	return usage;
2277 }
2278 
2279 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2280 const struct bpf_map_ops htab_map_ops = {
2281 	.map_meta_equal = bpf_map_meta_equal,
2282 	.map_alloc_check = htab_map_alloc_check,
2283 	.map_alloc = htab_map_alloc,
2284 	.map_free = htab_map_free,
2285 	.map_get_next_key = htab_map_get_next_key,
2286 	.map_release_uref = htab_map_free_timers,
2287 	.map_lookup_elem = htab_map_lookup_elem,
2288 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2289 	.map_update_elem = htab_map_update_elem,
2290 	.map_delete_elem = htab_map_delete_elem,
2291 	.map_gen_lookup = htab_map_gen_lookup,
2292 	.map_seq_show_elem = htab_map_seq_show_elem,
2293 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2294 	.map_for_each_callback = bpf_for_each_hash_elem,
2295 	.map_mem_usage = htab_map_mem_usage,
2296 	BATCH_OPS(htab),
2297 	.map_btf_id = &htab_map_btf_ids[0],
2298 	.iter_seq_info = &iter_seq_info,
2299 };
2300 
2301 const struct bpf_map_ops htab_lru_map_ops = {
2302 	.map_meta_equal = bpf_map_meta_equal,
2303 	.map_alloc_check = htab_map_alloc_check,
2304 	.map_alloc = htab_map_alloc,
2305 	.map_free = htab_map_free,
2306 	.map_get_next_key = htab_map_get_next_key,
2307 	.map_release_uref = htab_map_free_timers,
2308 	.map_lookup_elem = htab_lru_map_lookup_elem,
2309 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2310 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2311 	.map_update_elem = htab_lru_map_update_elem,
2312 	.map_delete_elem = htab_lru_map_delete_elem,
2313 	.map_gen_lookup = htab_lru_map_gen_lookup,
2314 	.map_seq_show_elem = htab_map_seq_show_elem,
2315 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2316 	.map_for_each_callback = bpf_for_each_hash_elem,
2317 	.map_mem_usage = htab_map_mem_usage,
2318 	BATCH_OPS(htab_lru),
2319 	.map_btf_id = &htab_map_btf_ids[0],
2320 	.iter_seq_info = &iter_seq_info,
2321 };
2322 
2323 /* Called from eBPF program */
2324 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2325 {
2326 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2327 
2328 	if (l)
2329 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2330 	else
2331 		return NULL;
2332 }
2333 
2334 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2335 {
2336 	struct htab_elem *l;
2337 
2338 	if (cpu >= nr_cpu_ids)
2339 		return NULL;
2340 
2341 	l = __htab_map_lookup_elem(map, key);
2342 	if (l)
2343 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2344 	else
2345 		return NULL;
2346 }
2347 
2348 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2349 {
2350 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2351 
2352 	if (l) {
2353 		bpf_lru_node_set_ref(&l->lru_node);
2354 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2355 	}
2356 
2357 	return NULL;
2358 }
2359 
2360 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2361 {
2362 	struct htab_elem *l;
2363 
2364 	if (cpu >= nr_cpu_ids)
2365 		return NULL;
2366 
2367 	l = __htab_map_lookup_elem(map, key);
2368 	if (l) {
2369 		bpf_lru_node_set_ref(&l->lru_node);
2370 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2371 	}
2372 
2373 	return NULL;
2374 }
2375 
2376 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2377 {
2378 	struct htab_elem *l;
2379 	void __percpu *pptr;
2380 	int ret = -ENOENT;
2381 	int cpu, off = 0;
2382 	u32 size;
2383 
2384 	/* per_cpu areas are zero-filled and bpf programs can only
2385 	 * access 'value_size' of them, so copying rounded areas
2386 	 * will not leak any kernel data
2387 	 */
2388 	size = round_up(map->value_size, 8);
2389 	rcu_read_lock();
2390 	l = __htab_map_lookup_elem(map, key);
2391 	if (!l)
2392 		goto out;
2393 	/* We do not mark LRU map element here in order to not mess up
2394 	 * eviction heuristics when user space does a map walk.
2395 	 */
2396 	pptr = htab_elem_get_ptr(l, map->key_size);
2397 	for_each_possible_cpu(cpu) {
2398 		copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
2399 		check_and_init_map_value(map, value + off);
2400 		off += size;
2401 	}
2402 	ret = 0;
2403 out:
2404 	rcu_read_unlock();
2405 	return ret;
2406 }
2407 
2408 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2409 			   u64 map_flags)
2410 {
2411 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2412 	int ret;
2413 
2414 	rcu_read_lock();
2415 	if (htab_is_lru(htab))
2416 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2417 							map_flags, true);
2418 	else
2419 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2420 						    true);
2421 	rcu_read_unlock();
2422 
2423 	return ret;
2424 }
2425 
2426 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2427 					  struct seq_file *m)
2428 {
2429 	struct htab_elem *l;
2430 	void __percpu *pptr;
2431 	int cpu;
2432 
2433 	rcu_read_lock();
2434 
2435 	l = __htab_map_lookup_elem(map, key);
2436 	if (!l) {
2437 		rcu_read_unlock();
2438 		return;
2439 	}
2440 
2441 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2442 	seq_puts(m, ": {\n");
2443 	pptr = htab_elem_get_ptr(l, map->key_size);
2444 	for_each_possible_cpu(cpu) {
2445 		seq_printf(m, "\tcpu%d: ", cpu);
2446 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2447 				  per_cpu_ptr(pptr, cpu), m);
2448 		seq_puts(m, "\n");
2449 	}
2450 	seq_puts(m, "}\n");
2451 
2452 	rcu_read_unlock();
2453 }
2454 
2455 const struct bpf_map_ops htab_percpu_map_ops = {
2456 	.map_meta_equal = bpf_map_meta_equal,
2457 	.map_alloc_check = htab_map_alloc_check,
2458 	.map_alloc = htab_map_alloc,
2459 	.map_free = htab_map_free,
2460 	.map_get_next_key = htab_map_get_next_key,
2461 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2462 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2463 	.map_update_elem = htab_percpu_map_update_elem,
2464 	.map_delete_elem = htab_map_delete_elem,
2465 	.map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2466 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2467 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2468 	.map_for_each_callback = bpf_for_each_hash_elem,
2469 	.map_mem_usage = htab_map_mem_usage,
2470 	BATCH_OPS(htab_percpu),
2471 	.map_btf_id = &htab_map_btf_ids[0],
2472 	.iter_seq_info = &iter_seq_info,
2473 };
2474 
2475 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2476 	.map_meta_equal = bpf_map_meta_equal,
2477 	.map_alloc_check = htab_map_alloc_check,
2478 	.map_alloc = htab_map_alloc,
2479 	.map_free = htab_map_free,
2480 	.map_get_next_key = htab_map_get_next_key,
2481 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2482 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2483 	.map_update_elem = htab_lru_percpu_map_update_elem,
2484 	.map_delete_elem = htab_lru_map_delete_elem,
2485 	.map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2486 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2487 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2488 	.map_for_each_callback = bpf_for_each_hash_elem,
2489 	.map_mem_usage = htab_map_mem_usage,
2490 	BATCH_OPS(htab_lru_percpu),
2491 	.map_btf_id = &htab_map_btf_ids[0],
2492 	.iter_seq_info = &iter_seq_info,
2493 };
2494 
2495 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2496 {
2497 	if (attr->value_size != sizeof(u32))
2498 		return -EINVAL;
2499 	return htab_map_alloc_check(attr);
2500 }
2501 
2502 static void fd_htab_map_free(struct bpf_map *map)
2503 {
2504 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2505 	struct hlist_nulls_node *n;
2506 	struct hlist_nulls_head *head;
2507 	struct htab_elem *l;
2508 	int i;
2509 
2510 	for (i = 0; i < htab->n_buckets; i++) {
2511 		head = select_bucket(htab, i);
2512 
2513 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2514 			void *ptr = fd_htab_map_get_ptr(map, l);
2515 
2516 			map->ops->map_fd_put_ptr(map, ptr, false);
2517 		}
2518 	}
2519 
2520 	htab_map_free(map);
2521 }
2522 
2523 /* only called from syscall */
2524 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2525 {
2526 	void **ptr;
2527 	int ret = 0;
2528 
2529 	if (!map->ops->map_fd_sys_lookup_elem)
2530 		return -ENOTSUPP;
2531 
2532 	rcu_read_lock();
2533 	ptr = htab_map_lookup_elem(map, key);
2534 	if (ptr)
2535 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2536 	else
2537 		ret = -ENOENT;
2538 	rcu_read_unlock();
2539 
2540 	return ret;
2541 }
2542 
2543 /* only called from syscall */
2544 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2545 				void *key, void *value, u64 map_flags)
2546 {
2547 	void *ptr;
2548 	int ret;
2549 	u32 ufd = *(u32 *)value;
2550 
2551 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2552 	if (IS_ERR(ptr))
2553 		return PTR_ERR(ptr);
2554 
2555 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2556 	if (ret)
2557 		map->ops->map_fd_put_ptr(map, ptr, false);
2558 
2559 	return ret;
2560 }
2561 
2562 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2563 {
2564 	struct bpf_map *map, *inner_map_meta;
2565 
2566 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2567 	if (IS_ERR(inner_map_meta))
2568 		return inner_map_meta;
2569 
2570 	map = htab_map_alloc(attr);
2571 	if (IS_ERR(map)) {
2572 		bpf_map_meta_free(inner_map_meta);
2573 		return map;
2574 	}
2575 
2576 	map->inner_map_meta = inner_map_meta;
2577 
2578 	return map;
2579 }
2580 
2581 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2582 {
2583 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2584 
2585 	if (!inner_map)
2586 		return NULL;
2587 
2588 	return READ_ONCE(*inner_map);
2589 }
2590 
2591 static int htab_of_map_gen_lookup(struct bpf_map *map,
2592 				  struct bpf_insn *insn_buf)
2593 {
2594 	struct bpf_insn *insn = insn_buf;
2595 	const int ret = BPF_REG_0;
2596 
2597 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2598 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2599 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2600 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2601 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2602 				offsetof(struct htab_elem, key) +
2603 				round_up(map->key_size, 8));
2604 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2605 
2606 	return insn - insn_buf;
2607 }
2608 
2609 static void htab_of_map_free(struct bpf_map *map)
2610 {
2611 	bpf_map_meta_free(map->inner_map_meta);
2612 	fd_htab_map_free(map);
2613 }
2614 
2615 const struct bpf_map_ops htab_of_maps_map_ops = {
2616 	.map_alloc_check = fd_htab_map_alloc_check,
2617 	.map_alloc = htab_of_map_alloc,
2618 	.map_free = htab_of_map_free,
2619 	.map_get_next_key = htab_map_get_next_key,
2620 	.map_lookup_elem = htab_of_map_lookup_elem,
2621 	.map_delete_elem = htab_map_delete_elem,
2622 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2623 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2624 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2625 	.map_gen_lookup = htab_of_map_gen_lookup,
2626 	.map_check_btf = map_check_no_btf,
2627 	.map_mem_usage = htab_map_mem_usage,
2628 	BATCH_OPS(htab),
2629 	.map_btf_id = &htab_map_btf_ids[0],
2630 };
2631