1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include "percpu_freelist.h" 14 #include "bpf_lru_list.h" 15 #include "map_in_map.h" 16 17 #define HTAB_CREATE_FLAG_MASK \ 18 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 19 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 20 21 #define BATCH_OPS(_name) \ 22 .map_lookup_batch = \ 23 _name##_map_lookup_batch, \ 24 .map_lookup_and_delete_batch = \ 25 _name##_map_lookup_and_delete_batch, \ 26 .map_update_batch = \ 27 generic_map_update_batch, \ 28 .map_delete_batch = \ 29 generic_map_delete_batch 30 31 /* 32 * The bucket lock has two protection scopes: 33 * 34 * 1) Serializing concurrent operations from BPF programs on different 35 * CPUs 36 * 37 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 38 * 39 * BPF programs can execute in any context including perf, kprobes and 40 * tracing. As there are almost no limits where perf, kprobes and tracing 41 * can be invoked from the lock operations need to be protected against 42 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 43 * the lock held section when functions which acquire this lock are invoked 44 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 45 * variable bpf_prog_active, which prevents BPF programs attached to perf 46 * events, kprobes and tracing to be invoked before the prior invocation 47 * from one of these contexts completed. sys_bpf() uses the same mechanism 48 * by pinning the task to the current CPU and incrementing the recursion 49 * protection across the map operation. 50 * 51 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 52 * operations like memory allocations (even with GFP_ATOMIC) from atomic 53 * contexts. This is required because even with GFP_ATOMIC the memory 54 * allocator calls into code paths which acquire locks with long held lock 55 * sections. To ensure the deterministic behaviour these locks are regular 56 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 57 * true atomic contexts on an RT kernel are the low level hardware 58 * handling, scheduling, low level interrupt handling, NMIs etc. None of 59 * these contexts should ever do memory allocations. 60 * 61 * As regular device interrupt handlers and soft interrupts are forced into 62 * thread context, the existing code which does 63 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*(); 64 * just works. 65 * 66 * In theory the BPF locks could be converted to regular spinlocks as well, 67 * but the bucket locks and percpu_freelist locks can be taken from 68 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 69 * atomic contexts even on RT. These mechanisms require preallocated maps, 70 * so there is no need to invoke memory allocations within the lock held 71 * sections. 72 * 73 * BPF maps which need dynamic allocation are only used from (forced) 74 * thread context on RT and can therefore use regular spinlocks which in 75 * turn allows to invoke memory allocations from the lock held section. 76 * 77 * On a non RT kernel this distinction is neither possible nor required. 78 * spinlock maps to raw_spinlock and the extra code is optimized out by the 79 * compiler. 80 */ 81 struct bucket { 82 struct hlist_nulls_head head; 83 union { 84 raw_spinlock_t raw_lock; 85 spinlock_t lock; 86 }; 87 }; 88 89 #define HASHTAB_MAP_LOCK_COUNT 8 90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 91 92 struct bpf_htab { 93 struct bpf_map map; 94 struct bucket *buckets; 95 void *elems; 96 union { 97 struct pcpu_freelist freelist; 98 struct bpf_lru lru; 99 }; 100 struct htab_elem *__percpu *extra_elems; 101 atomic_t count; /* number of elements in this hashtable */ 102 u32 n_buckets; /* number of hash buckets */ 103 u32 elem_size; /* size of each element in bytes */ 104 u32 hashrnd; 105 struct lock_class_key lockdep_key; 106 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 107 }; 108 109 /* each htab element is struct htab_elem + key + value */ 110 struct htab_elem { 111 union { 112 struct hlist_nulls_node hash_node; 113 struct { 114 void *padding; 115 union { 116 struct bpf_htab *htab; 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 struct rcu_head rcu; 124 struct bpf_lru_node lru_node; 125 }; 126 u32 hash; 127 char key[] __aligned(8); 128 }; 129 130 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 131 { 132 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 133 } 134 135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab) 136 { 137 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab)); 138 } 139 140 static void htab_init_buckets(struct bpf_htab *htab) 141 { 142 unsigned i; 143 144 for (i = 0; i < htab->n_buckets; i++) { 145 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 146 if (htab_use_raw_lock(htab)) { 147 raw_spin_lock_init(&htab->buckets[i].raw_lock); 148 lockdep_set_class(&htab->buckets[i].raw_lock, 149 &htab->lockdep_key); 150 } else { 151 spin_lock_init(&htab->buckets[i].lock); 152 lockdep_set_class(&htab->buckets[i].lock, 153 &htab->lockdep_key); 154 } 155 cond_resched(); 156 } 157 } 158 159 static inline int htab_lock_bucket(const struct bpf_htab *htab, 160 struct bucket *b, u32 hash, 161 unsigned long *pflags) 162 { 163 unsigned long flags; 164 165 hash = hash & HASHTAB_MAP_LOCK_MASK; 166 167 migrate_disable(); 168 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 169 __this_cpu_dec(*(htab->map_locked[hash])); 170 migrate_enable(); 171 return -EBUSY; 172 } 173 174 if (htab_use_raw_lock(htab)) 175 raw_spin_lock_irqsave(&b->raw_lock, flags); 176 else 177 spin_lock_irqsave(&b->lock, flags); 178 *pflags = flags; 179 180 return 0; 181 } 182 183 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 184 struct bucket *b, u32 hash, 185 unsigned long flags) 186 { 187 hash = hash & HASHTAB_MAP_LOCK_MASK; 188 if (htab_use_raw_lock(htab)) 189 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 190 else 191 spin_unlock_irqrestore(&b->lock, flags); 192 __this_cpu_dec(*(htab->map_locked[hash])); 193 migrate_enable(); 194 } 195 196 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 197 198 static bool htab_is_lru(const struct bpf_htab *htab) 199 { 200 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 201 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 202 } 203 204 static bool htab_is_percpu(const struct bpf_htab *htab) 205 { 206 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 207 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 208 } 209 210 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 211 void __percpu *pptr) 212 { 213 *(void __percpu **)(l->key + key_size) = pptr; 214 } 215 216 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 217 { 218 return *(void __percpu **)(l->key + key_size); 219 } 220 221 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 222 { 223 return *(void **)(l->key + roundup(map->key_size, 8)); 224 } 225 226 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 227 { 228 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 229 } 230 231 static void htab_free_elems(struct bpf_htab *htab) 232 { 233 int i; 234 235 if (!htab_is_percpu(htab)) 236 goto free_elems; 237 238 for (i = 0; i < htab->map.max_entries; i++) { 239 void __percpu *pptr; 240 241 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 242 htab->map.key_size); 243 free_percpu(pptr); 244 cond_resched(); 245 } 246 free_elems: 247 bpf_map_area_free(htab->elems); 248 } 249 250 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 251 * (bucket_lock). If both locks need to be acquired together, the lock 252 * order is always lru_lock -> bucket_lock and this only happens in 253 * bpf_lru_list.c logic. For example, certain code path of 254 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 255 * will acquire lru_lock first followed by acquiring bucket_lock. 256 * 257 * In hashtab.c, to avoid deadlock, lock acquisition of 258 * bucket_lock followed by lru_lock is not allowed. In such cases, 259 * bucket_lock needs to be released first before acquiring lru_lock. 260 */ 261 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 262 u32 hash) 263 { 264 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 265 struct htab_elem *l; 266 267 if (node) { 268 l = container_of(node, struct htab_elem, lru_node); 269 memcpy(l->key, key, htab->map.key_size); 270 return l; 271 } 272 273 return NULL; 274 } 275 276 static int prealloc_init(struct bpf_htab *htab) 277 { 278 u32 num_entries = htab->map.max_entries; 279 int err = -ENOMEM, i; 280 281 if (!htab_is_percpu(htab) && !htab_is_lru(htab)) 282 num_entries += num_possible_cpus(); 283 284 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 285 htab->map.numa_node); 286 if (!htab->elems) 287 return -ENOMEM; 288 289 if (!htab_is_percpu(htab)) 290 goto skip_percpu_elems; 291 292 for (i = 0; i < num_entries; i++) { 293 u32 size = round_up(htab->map.value_size, 8); 294 void __percpu *pptr; 295 296 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 297 GFP_USER | __GFP_NOWARN); 298 if (!pptr) 299 goto free_elems; 300 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 301 pptr); 302 cond_resched(); 303 } 304 305 skip_percpu_elems: 306 if (htab_is_lru(htab)) 307 err = bpf_lru_init(&htab->lru, 308 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 309 offsetof(struct htab_elem, hash) - 310 offsetof(struct htab_elem, lru_node), 311 htab_lru_map_delete_node, 312 htab); 313 else 314 err = pcpu_freelist_init(&htab->freelist); 315 316 if (err) 317 goto free_elems; 318 319 if (htab_is_lru(htab)) 320 bpf_lru_populate(&htab->lru, htab->elems, 321 offsetof(struct htab_elem, lru_node), 322 htab->elem_size, num_entries); 323 else 324 pcpu_freelist_populate(&htab->freelist, 325 htab->elems + offsetof(struct htab_elem, fnode), 326 htab->elem_size, num_entries); 327 328 return 0; 329 330 free_elems: 331 htab_free_elems(htab); 332 return err; 333 } 334 335 static void prealloc_destroy(struct bpf_htab *htab) 336 { 337 htab_free_elems(htab); 338 339 if (htab_is_lru(htab)) 340 bpf_lru_destroy(&htab->lru); 341 else 342 pcpu_freelist_destroy(&htab->freelist); 343 } 344 345 static int alloc_extra_elems(struct bpf_htab *htab) 346 { 347 struct htab_elem *__percpu *pptr, *l_new; 348 struct pcpu_freelist_node *l; 349 int cpu; 350 351 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 352 GFP_USER | __GFP_NOWARN); 353 if (!pptr) 354 return -ENOMEM; 355 356 for_each_possible_cpu(cpu) { 357 l = pcpu_freelist_pop(&htab->freelist); 358 /* pop will succeed, since prealloc_init() 359 * preallocated extra num_possible_cpus elements 360 */ 361 l_new = container_of(l, struct htab_elem, fnode); 362 *per_cpu_ptr(pptr, cpu) = l_new; 363 } 364 htab->extra_elems = pptr; 365 return 0; 366 } 367 368 /* Called from syscall */ 369 static int htab_map_alloc_check(union bpf_attr *attr) 370 { 371 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 372 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 373 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 374 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 375 /* percpu_lru means each cpu has its own LRU list. 376 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 377 * the map's value itself is percpu. percpu_lru has 378 * nothing to do with the map's value. 379 */ 380 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 381 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 382 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 383 int numa_node = bpf_map_attr_numa_node(attr); 384 385 BUILD_BUG_ON(offsetof(struct htab_elem, htab) != 386 offsetof(struct htab_elem, hash_node.pprev)); 387 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 388 offsetof(struct htab_elem, hash_node.pprev)); 389 390 if (lru && !bpf_capable()) 391 /* LRU implementation is much complicated than other 392 * maps. Hence, limit to CAP_BPF. 393 */ 394 return -EPERM; 395 396 if (zero_seed && !capable(CAP_SYS_ADMIN)) 397 /* Guard against local DoS, and discourage production use. */ 398 return -EPERM; 399 400 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 401 !bpf_map_flags_access_ok(attr->map_flags)) 402 return -EINVAL; 403 404 if (!lru && percpu_lru) 405 return -EINVAL; 406 407 if (lru && !prealloc) 408 return -ENOTSUPP; 409 410 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 411 return -EINVAL; 412 413 /* check sanity of attributes. 414 * value_size == 0 may be allowed in the future to use map as a set 415 */ 416 if (attr->max_entries == 0 || attr->key_size == 0 || 417 attr->value_size == 0) 418 return -EINVAL; 419 420 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 421 sizeof(struct htab_elem)) 422 /* if key_size + value_size is bigger, the user space won't be 423 * able to access the elements via bpf syscall. This check 424 * also makes sure that the elem_size doesn't overflow and it's 425 * kmalloc-able later in htab_map_update_elem() 426 */ 427 return -E2BIG; 428 429 return 0; 430 } 431 432 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 433 { 434 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 435 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 436 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 437 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 438 /* percpu_lru means each cpu has its own LRU list. 439 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 440 * the map's value itself is percpu. percpu_lru has 441 * nothing to do with the map's value. 442 */ 443 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 444 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 445 struct bpf_htab *htab; 446 int err, i; 447 448 htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT); 449 if (!htab) 450 return ERR_PTR(-ENOMEM); 451 452 lockdep_register_key(&htab->lockdep_key); 453 454 bpf_map_init_from_attr(&htab->map, attr); 455 456 if (percpu_lru) { 457 /* ensure each CPU's lru list has >=1 elements. 458 * since we are at it, make each lru list has the same 459 * number of elements. 460 */ 461 htab->map.max_entries = roundup(attr->max_entries, 462 num_possible_cpus()); 463 if (htab->map.max_entries < attr->max_entries) 464 htab->map.max_entries = rounddown(attr->max_entries, 465 num_possible_cpus()); 466 } 467 468 /* hash table size must be power of 2 */ 469 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 470 471 htab->elem_size = sizeof(struct htab_elem) + 472 round_up(htab->map.key_size, 8); 473 if (percpu) 474 htab->elem_size += sizeof(void *); 475 else 476 htab->elem_size += round_up(htab->map.value_size, 8); 477 478 err = -E2BIG; 479 /* prevent zero size kmalloc and check for u32 overflow */ 480 if (htab->n_buckets == 0 || 481 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 482 goto free_htab; 483 484 err = -ENOMEM; 485 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 486 sizeof(struct bucket), 487 htab->map.numa_node); 488 if (!htab->buckets) 489 goto free_htab; 490 491 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 492 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 493 sizeof(int), 494 sizeof(int), 495 GFP_USER); 496 if (!htab->map_locked[i]) 497 goto free_map_locked; 498 } 499 500 if (htab->map.map_flags & BPF_F_ZERO_SEED) 501 htab->hashrnd = 0; 502 else 503 htab->hashrnd = get_random_int(); 504 505 htab_init_buckets(htab); 506 507 if (prealloc) { 508 err = prealloc_init(htab); 509 if (err) 510 goto free_map_locked; 511 512 if (!percpu && !lru) { 513 /* lru itself can remove the least used element, so 514 * there is no need for an extra elem during map_update. 515 */ 516 err = alloc_extra_elems(htab); 517 if (err) 518 goto free_prealloc; 519 } 520 } 521 522 return &htab->map; 523 524 free_prealloc: 525 prealloc_destroy(htab); 526 free_map_locked: 527 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 528 free_percpu(htab->map_locked[i]); 529 bpf_map_area_free(htab->buckets); 530 free_htab: 531 lockdep_unregister_key(&htab->lockdep_key); 532 kfree(htab); 533 return ERR_PTR(err); 534 } 535 536 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 537 { 538 return jhash(key, key_len, hashrnd); 539 } 540 541 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 542 { 543 return &htab->buckets[hash & (htab->n_buckets - 1)]; 544 } 545 546 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 547 { 548 return &__select_bucket(htab, hash)->head; 549 } 550 551 /* this lookup function can only be called with bucket lock taken */ 552 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 553 void *key, u32 key_size) 554 { 555 struct hlist_nulls_node *n; 556 struct htab_elem *l; 557 558 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 559 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 560 return l; 561 562 return NULL; 563 } 564 565 /* can be called without bucket lock. it will repeat the loop in 566 * the unlikely event when elements moved from one bucket into another 567 * while link list is being walked 568 */ 569 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 570 u32 hash, void *key, 571 u32 key_size, u32 n_buckets) 572 { 573 struct hlist_nulls_node *n; 574 struct htab_elem *l; 575 576 again: 577 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 578 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 579 return l; 580 581 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 582 goto again; 583 584 return NULL; 585 } 586 587 /* Called from syscall or from eBPF program directly, so 588 * arguments have to match bpf_map_lookup_elem() exactly. 589 * The return value is adjusted by BPF instructions 590 * in htab_map_gen_lookup(). 591 */ 592 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 593 { 594 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 595 struct hlist_nulls_head *head; 596 struct htab_elem *l; 597 u32 hash, key_size; 598 599 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 600 !rcu_read_lock_bh_held()); 601 602 key_size = map->key_size; 603 604 hash = htab_map_hash(key, key_size, htab->hashrnd); 605 606 head = select_bucket(htab, hash); 607 608 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 609 610 return l; 611 } 612 613 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 614 { 615 struct htab_elem *l = __htab_map_lookup_elem(map, key); 616 617 if (l) 618 return l->key + round_up(map->key_size, 8); 619 620 return NULL; 621 } 622 623 /* inline bpf_map_lookup_elem() call. 624 * Instead of: 625 * bpf_prog 626 * bpf_map_lookup_elem 627 * map->ops->map_lookup_elem 628 * htab_map_lookup_elem 629 * __htab_map_lookup_elem 630 * do: 631 * bpf_prog 632 * __htab_map_lookup_elem 633 */ 634 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 635 { 636 struct bpf_insn *insn = insn_buf; 637 const int ret = BPF_REG_0; 638 639 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 640 (void *(*)(struct bpf_map *map, void *key))NULL)); 641 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 642 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 643 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 644 offsetof(struct htab_elem, key) + 645 round_up(map->key_size, 8)); 646 return insn - insn_buf; 647 } 648 649 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 650 void *key, const bool mark) 651 { 652 struct htab_elem *l = __htab_map_lookup_elem(map, key); 653 654 if (l) { 655 if (mark) 656 bpf_lru_node_set_ref(&l->lru_node); 657 return l->key + round_up(map->key_size, 8); 658 } 659 660 return NULL; 661 } 662 663 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 664 { 665 return __htab_lru_map_lookup_elem(map, key, true); 666 } 667 668 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 669 { 670 return __htab_lru_map_lookup_elem(map, key, false); 671 } 672 673 static int htab_lru_map_gen_lookup(struct bpf_map *map, 674 struct bpf_insn *insn_buf) 675 { 676 struct bpf_insn *insn = insn_buf; 677 const int ret = BPF_REG_0; 678 const int ref_reg = BPF_REG_1; 679 680 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 681 (void *(*)(struct bpf_map *map, void *key))NULL)); 682 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 683 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 684 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 685 offsetof(struct htab_elem, lru_node) + 686 offsetof(struct bpf_lru_node, ref)); 687 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 688 *insn++ = BPF_ST_MEM(BPF_B, ret, 689 offsetof(struct htab_elem, lru_node) + 690 offsetof(struct bpf_lru_node, ref), 691 1); 692 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 693 offsetof(struct htab_elem, key) + 694 round_up(map->key_size, 8)); 695 return insn - insn_buf; 696 } 697 698 /* It is called from the bpf_lru_list when the LRU needs to delete 699 * older elements from the htab. 700 */ 701 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 702 { 703 struct bpf_htab *htab = (struct bpf_htab *)arg; 704 struct htab_elem *l = NULL, *tgt_l; 705 struct hlist_nulls_head *head; 706 struct hlist_nulls_node *n; 707 unsigned long flags; 708 struct bucket *b; 709 int ret; 710 711 tgt_l = container_of(node, struct htab_elem, lru_node); 712 b = __select_bucket(htab, tgt_l->hash); 713 head = &b->head; 714 715 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 716 if (ret) 717 return false; 718 719 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 720 if (l == tgt_l) { 721 hlist_nulls_del_rcu(&l->hash_node); 722 break; 723 } 724 725 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 726 727 return l == tgt_l; 728 } 729 730 /* Called from syscall */ 731 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 732 { 733 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 734 struct hlist_nulls_head *head; 735 struct htab_elem *l, *next_l; 736 u32 hash, key_size; 737 int i = 0; 738 739 WARN_ON_ONCE(!rcu_read_lock_held()); 740 741 key_size = map->key_size; 742 743 if (!key) 744 goto find_first_elem; 745 746 hash = htab_map_hash(key, key_size, htab->hashrnd); 747 748 head = select_bucket(htab, hash); 749 750 /* lookup the key */ 751 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 752 753 if (!l) 754 goto find_first_elem; 755 756 /* key was found, get next key in the same bucket */ 757 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 758 struct htab_elem, hash_node); 759 760 if (next_l) { 761 /* if next elem in this hash list is non-zero, just return it */ 762 memcpy(next_key, next_l->key, key_size); 763 return 0; 764 } 765 766 /* no more elements in this hash list, go to the next bucket */ 767 i = hash & (htab->n_buckets - 1); 768 i++; 769 770 find_first_elem: 771 /* iterate over buckets */ 772 for (; i < htab->n_buckets; i++) { 773 head = select_bucket(htab, i); 774 775 /* pick first element in the bucket */ 776 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 777 struct htab_elem, hash_node); 778 if (next_l) { 779 /* if it's not empty, just return it */ 780 memcpy(next_key, next_l->key, key_size); 781 return 0; 782 } 783 } 784 785 /* iterated over all buckets and all elements */ 786 return -ENOENT; 787 } 788 789 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 790 { 791 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 792 free_percpu(htab_elem_get_ptr(l, htab->map.key_size)); 793 kfree(l); 794 } 795 796 static void htab_elem_free_rcu(struct rcu_head *head) 797 { 798 struct htab_elem *l = container_of(head, struct htab_elem, rcu); 799 struct bpf_htab *htab = l->htab; 800 801 htab_elem_free(htab, l); 802 } 803 804 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 805 { 806 struct bpf_map *map = &htab->map; 807 void *ptr; 808 809 if (map->ops->map_fd_put_ptr) { 810 ptr = fd_htab_map_get_ptr(map, l); 811 map->ops->map_fd_put_ptr(ptr); 812 } 813 } 814 815 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 816 { 817 htab_put_fd_value(htab, l); 818 819 if (htab_is_prealloc(htab)) { 820 __pcpu_freelist_push(&htab->freelist, &l->fnode); 821 } else { 822 atomic_dec(&htab->count); 823 l->htab = htab; 824 call_rcu(&l->rcu, htab_elem_free_rcu); 825 } 826 } 827 828 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 829 void *value, bool onallcpus) 830 { 831 if (!onallcpus) { 832 /* copy true value_size bytes */ 833 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 834 } else { 835 u32 size = round_up(htab->map.value_size, 8); 836 int off = 0, cpu; 837 838 for_each_possible_cpu(cpu) { 839 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 840 value + off, size); 841 off += size; 842 } 843 } 844 } 845 846 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 847 void *value, bool onallcpus) 848 { 849 /* When using prealloc and not setting the initial value on all cpus, 850 * zero-fill element values for other cpus (just as what happens when 851 * not using prealloc). Otherwise, bpf program has no way to ensure 852 * known initial values for cpus other than current one 853 * (onallcpus=false always when coming from bpf prog). 854 */ 855 if (htab_is_prealloc(htab) && !onallcpus) { 856 u32 size = round_up(htab->map.value_size, 8); 857 int current_cpu = raw_smp_processor_id(); 858 int cpu; 859 860 for_each_possible_cpu(cpu) { 861 if (cpu == current_cpu) 862 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value, 863 size); 864 else 865 memset(per_cpu_ptr(pptr, cpu), 0, size); 866 } 867 } else { 868 pcpu_copy_value(htab, pptr, value, onallcpus); 869 } 870 } 871 872 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 873 { 874 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 875 BITS_PER_LONG == 64; 876 } 877 878 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 879 void *value, u32 key_size, u32 hash, 880 bool percpu, bool onallcpus, 881 struct htab_elem *old_elem) 882 { 883 u32 size = htab->map.value_size; 884 bool prealloc = htab_is_prealloc(htab); 885 struct htab_elem *l_new, **pl_new; 886 void __percpu *pptr; 887 888 if (prealloc) { 889 if (old_elem) { 890 /* if we're updating the existing element, 891 * use per-cpu extra elems to avoid freelist_pop/push 892 */ 893 pl_new = this_cpu_ptr(htab->extra_elems); 894 l_new = *pl_new; 895 htab_put_fd_value(htab, old_elem); 896 *pl_new = old_elem; 897 } else { 898 struct pcpu_freelist_node *l; 899 900 l = __pcpu_freelist_pop(&htab->freelist); 901 if (!l) 902 return ERR_PTR(-E2BIG); 903 l_new = container_of(l, struct htab_elem, fnode); 904 } 905 } else { 906 if (atomic_inc_return(&htab->count) > htab->map.max_entries) 907 if (!old_elem) { 908 /* when map is full and update() is replacing 909 * old element, it's ok to allocate, since 910 * old element will be freed immediately. 911 * Otherwise return an error 912 */ 913 l_new = ERR_PTR(-E2BIG); 914 goto dec_count; 915 } 916 l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size, 917 GFP_ATOMIC | __GFP_NOWARN, 918 htab->map.numa_node); 919 if (!l_new) { 920 l_new = ERR_PTR(-ENOMEM); 921 goto dec_count; 922 } 923 check_and_init_map_lock(&htab->map, 924 l_new->key + round_up(key_size, 8)); 925 } 926 927 memcpy(l_new->key, key, key_size); 928 if (percpu) { 929 size = round_up(size, 8); 930 if (prealloc) { 931 pptr = htab_elem_get_ptr(l_new, key_size); 932 } else { 933 /* alloc_percpu zero-fills */ 934 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 935 GFP_ATOMIC | __GFP_NOWARN); 936 if (!pptr) { 937 kfree(l_new); 938 l_new = ERR_PTR(-ENOMEM); 939 goto dec_count; 940 } 941 } 942 943 pcpu_init_value(htab, pptr, value, onallcpus); 944 945 if (!prealloc) 946 htab_elem_set_ptr(l_new, key_size, pptr); 947 } else if (fd_htab_map_needs_adjust(htab)) { 948 size = round_up(size, 8); 949 memcpy(l_new->key + round_up(key_size, 8), value, size); 950 } else { 951 copy_map_value(&htab->map, 952 l_new->key + round_up(key_size, 8), 953 value); 954 } 955 956 l_new->hash = hash; 957 return l_new; 958 dec_count: 959 atomic_dec(&htab->count); 960 return l_new; 961 } 962 963 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 964 u64 map_flags) 965 { 966 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 967 /* elem already exists */ 968 return -EEXIST; 969 970 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 971 /* elem doesn't exist, cannot update it */ 972 return -ENOENT; 973 974 return 0; 975 } 976 977 /* Called from syscall or from eBPF program */ 978 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 979 u64 map_flags) 980 { 981 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 982 struct htab_elem *l_new = NULL, *l_old; 983 struct hlist_nulls_head *head; 984 unsigned long flags; 985 struct bucket *b; 986 u32 key_size, hash; 987 int ret; 988 989 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 990 /* unknown flags */ 991 return -EINVAL; 992 993 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 994 !rcu_read_lock_bh_held()); 995 996 key_size = map->key_size; 997 998 hash = htab_map_hash(key, key_size, htab->hashrnd); 999 1000 b = __select_bucket(htab, hash); 1001 head = &b->head; 1002 1003 if (unlikely(map_flags & BPF_F_LOCK)) { 1004 if (unlikely(!map_value_has_spin_lock(map))) 1005 return -EINVAL; 1006 /* find an element without taking the bucket lock */ 1007 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1008 htab->n_buckets); 1009 ret = check_flags(htab, l_old, map_flags); 1010 if (ret) 1011 return ret; 1012 if (l_old) { 1013 /* grab the element lock and update value in place */ 1014 copy_map_value_locked(map, 1015 l_old->key + round_up(key_size, 8), 1016 value, false); 1017 return 0; 1018 } 1019 /* fall through, grab the bucket lock and lookup again. 1020 * 99.9% chance that the element won't be found, 1021 * but second lookup under lock has to be done. 1022 */ 1023 } 1024 1025 ret = htab_lock_bucket(htab, b, hash, &flags); 1026 if (ret) 1027 return ret; 1028 1029 l_old = lookup_elem_raw(head, hash, key, key_size); 1030 1031 ret = check_flags(htab, l_old, map_flags); 1032 if (ret) 1033 goto err; 1034 1035 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1036 /* first lookup without the bucket lock didn't find the element, 1037 * but second lookup with the bucket lock found it. 1038 * This case is highly unlikely, but has to be dealt with: 1039 * grab the element lock in addition to the bucket lock 1040 * and update element in place 1041 */ 1042 copy_map_value_locked(map, 1043 l_old->key + round_up(key_size, 8), 1044 value, false); 1045 ret = 0; 1046 goto err; 1047 } 1048 1049 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1050 l_old); 1051 if (IS_ERR(l_new)) { 1052 /* all pre-allocated elements are in use or memory exhausted */ 1053 ret = PTR_ERR(l_new); 1054 goto err; 1055 } 1056 1057 /* add new element to the head of the list, so that 1058 * concurrent search will find it before old elem 1059 */ 1060 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1061 if (l_old) { 1062 hlist_nulls_del_rcu(&l_old->hash_node); 1063 if (!htab_is_prealloc(htab)) 1064 free_htab_elem(htab, l_old); 1065 } 1066 ret = 0; 1067 err: 1068 htab_unlock_bucket(htab, b, hash, flags); 1069 return ret; 1070 } 1071 1072 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1073 u64 map_flags) 1074 { 1075 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1076 struct htab_elem *l_new, *l_old = NULL; 1077 struct hlist_nulls_head *head; 1078 unsigned long flags; 1079 struct bucket *b; 1080 u32 key_size, hash; 1081 int ret; 1082 1083 if (unlikely(map_flags > BPF_EXIST)) 1084 /* unknown flags */ 1085 return -EINVAL; 1086 1087 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1088 !rcu_read_lock_bh_held()); 1089 1090 key_size = map->key_size; 1091 1092 hash = htab_map_hash(key, key_size, htab->hashrnd); 1093 1094 b = __select_bucket(htab, hash); 1095 head = &b->head; 1096 1097 /* For LRU, we need to alloc before taking bucket's 1098 * spinlock because getting free nodes from LRU may need 1099 * to remove older elements from htab and this removal 1100 * operation will need a bucket lock. 1101 */ 1102 l_new = prealloc_lru_pop(htab, key, hash); 1103 if (!l_new) 1104 return -ENOMEM; 1105 memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size); 1106 1107 ret = htab_lock_bucket(htab, b, hash, &flags); 1108 if (ret) 1109 return ret; 1110 1111 l_old = lookup_elem_raw(head, hash, key, key_size); 1112 1113 ret = check_flags(htab, l_old, map_flags); 1114 if (ret) 1115 goto err; 1116 1117 /* add new element to the head of the list, so that 1118 * concurrent search will find it before old elem 1119 */ 1120 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1121 if (l_old) { 1122 bpf_lru_node_set_ref(&l_new->lru_node); 1123 hlist_nulls_del_rcu(&l_old->hash_node); 1124 } 1125 ret = 0; 1126 1127 err: 1128 htab_unlock_bucket(htab, b, hash, flags); 1129 1130 if (ret) 1131 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1132 else if (l_old) 1133 bpf_lru_push_free(&htab->lru, &l_old->lru_node); 1134 1135 return ret; 1136 } 1137 1138 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1139 void *value, u64 map_flags, 1140 bool onallcpus) 1141 { 1142 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1143 struct htab_elem *l_new = NULL, *l_old; 1144 struct hlist_nulls_head *head; 1145 unsigned long flags; 1146 struct bucket *b; 1147 u32 key_size, hash; 1148 int ret; 1149 1150 if (unlikely(map_flags > BPF_EXIST)) 1151 /* unknown flags */ 1152 return -EINVAL; 1153 1154 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1155 !rcu_read_lock_bh_held()); 1156 1157 key_size = map->key_size; 1158 1159 hash = htab_map_hash(key, key_size, htab->hashrnd); 1160 1161 b = __select_bucket(htab, hash); 1162 head = &b->head; 1163 1164 ret = htab_lock_bucket(htab, b, hash, &flags); 1165 if (ret) 1166 return ret; 1167 1168 l_old = lookup_elem_raw(head, hash, key, key_size); 1169 1170 ret = check_flags(htab, l_old, map_flags); 1171 if (ret) 1172 goto err; 1173 1174 if (l_old) { 1175 /* per-cpu hash map can update value in-place */ 1176 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1177 value, onallcpus); 1178 } else { 1179 l_new = alloc_htab_elem(htab, key, value, key_size, 1180 hash, true, onallcpus, NULL); 1181 if (IS_ERR(l_new)) { 1182 ret = PTR_ERR(l_new); 1183 goto err; 1184 } 1185 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1186 } 1187 ret = 0; 1188 err: 1189 htab_unlock_bucket(htab, b, hash, flags); 1190 return ret; 1191 } 1192 1193 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1194 void *value, u64 map_flags, 1195 bool onallcpus) 1196 { 1197 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1198 struct htab_elem *l_new = NULL, *l_old; 1199 struct hlist_nulls_head *head; 1200 unsigned long flags; 1201 struct bucket *b; 1202 u32 key_size, hash; 1203 int ret; 1204 1205 if (unlikely(map_flags > BPF_EXIST)) 1206 /* unknown flags */ 1207 return -EINVAL; 1208 1209 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1210 !rcu_read_lock_bh_held()); 1211 1212 key_size = map->key_size; 1213 1214 hash = htab_map_hash(key, key_size, htab->hashrnd); 1215 1216 b = __select_bucket(htab, hash); 1217 head = &b->head; 1218 1219 /* For LRU, we need to alloc before taking bucket's 1220 * spinlock because LRU's elem alloc may need 1221 * to remove older elem from htab and this removal 1222 * operation will need a bucket lock. 1223 */ 1224 if (map_flags != BPF_EXIST) { 1225 l_new = prealloc_lru_pop(htab, key, hash); 1226 if (!l_new) 1227 return -ENOMEM; 1228 } 1229 1230 ret = htab_lock_bucket(htab, b, hash, &flags); 1231 if (ret) 1232 return ret; 1233 1234 l_old = lookup_elem_raw(head, hash, key, key_size); 1235 1236 ret = check_flags(htab, l_old, map_flags); 1237 if (ret) 1238 goto err; 1239 1240 if (l_old) { 1241 bpf_lru_node_set_ref(&l_old->lru_node); 1242 1243 /* per-cpu hash map can update value in-place */ 1244 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1245 value, onallcpus); 1246 } else { 1247 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1248 value, onallcpus); 1249 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1250 l_new = NULL; 1251 } 1252 ret = 0; 1253 err: 1254 htab_unlock_bucket(htab, b, hash, flags); 1255 if (l_new) 1256 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1257 return ret; 1258 } 1259 1260 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1261 void *value, u64 map_flags) 1262 { 1263 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1264 } 1265 1266 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1267 void *value, u64 map_flags) 1268 { 1269 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1270 false); 1271 } 1272 1273 /* Called from syscall or from eBPF program */ 1274 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1275 { 1276 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1277 struct hlist_nulls_head *head; 1278 struct bucket *b; 1279 struct htab_elem *l; 1280 unsigned long flags; 1281 u32 hash, key_size; 1282 int ret; 1283 1284 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1285 !rcu_read_lock_bh_held()); 1286 1287 key_size = map->key_size; 1288 1289 hash = htab_map_hash(key, key_size, htab->hashrnd); 1290 b = __select_bucket(htab, hash); 1291 head = &b->head; 1292 1293 ret = htab_lock_bucket(htab, b, hash, &flags); 1294 if (ret) 1295 return ret; 1296 1297 l = lookup_elem_raw(head, hash, key, key_size); 1298 1299 if (l) { 1300 hlist_nulls_del_rcu(&l->hash_node); 1301 free_htab_elem(htab, l); 1302 } else { 1303 ret = -ENOENT; 1304 } 1305 1306 htab_unlock_bucket(htab, b, hash, flags); 1307 return ret; 1308 } 1309 1310 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1311 { 1312 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1313 struct hlist_nulls_head *head; 1314 struct bucket *b; 1315 struct htab_elem *l; 1316 unsigned long flags; 1317 u32 hash, key_size; 1318 int ret; 1319 1320 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1321 !rcu_read_lock_bh_held()); 1322 1323 key_size = map->key_size; 1324 1325 hash = htab_map_hash(key, key_size, htab->hashrnd); 1326 b = __select_bucket(htab, hash); 1327 head = &b->head; 1328 1329 ret = htab_lock_bucket(htab, b, hash, &flags); 1330 if (ret) 1331 return ret; 1332 1333 l = lookup_elem_raw(head, hash, key, key_size); 1334 1335 if (l) 1336 hlist_nulls_del_rcu(&l->hash_node); 1337 else 1338 ret = -ENOENT; 1339 1340 htab_unlock_bucket(htab, b, hash, flags); 1341 if (l) 1342 bpf_lru_push_free(&htab->lru, &l->lru_node); 1343 return ret; 1344 } 1345 1346 static void delete_all_elements(struct bpf_htab *htab) 1347 { 1348 int i; 1349 1350 for (i = 0; i < htab->n_buckets; i++) { 1351 struct hlist_nulls_head *head = select_bucket(htab, i); 1352 struct hlist_nulls_node *n; 1353 struct htab_elem *l; 1354 1355 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1356 hlist_nulls_del_rcu(&l->hash_node); 1357 htab_elem_free(htab, l); 1358 } 1359 } 1360 } 1361 1362 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1363 static void htab_map_free(struct bpf_map *map) 1364 { 1365 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1366 int i; 1367 1368 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1369 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1370 * There is no need to synchronize_rcu() here to protect map elements. 1371 */ 1372 1373 /* some of free_htab_elem() callbacks for elements of this map may 1374 * not have executed. Wait for them. 1375 */ 1376 rcu_barrier(); 1377 if (!htab_is_prealloc(htab)) 1378 delete_all_elements(htab); 1379 else 1380 prealloc_destroy(htab); 1381 1382 free_percpu(htab->extra_elems); 1383 bpf_map_area_free(htab->buckets); 1384 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1385 free_percpu(htab->map_locked[i]); 1386 lockdep_unregister_key(&htab->lockdep_key); 1387 kfree(htab); 1388 } 1389 1390 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1391 struct seq_file *m) 1392 { 1393 void *value; 1394 1395 rcu_read_lock(); 1396 1397 value = htab_map_lookup_elem(map, key); 1398 if (!value) { 1399 rcu_read_unlock(); 1400 return; 1401 } 1402 1403 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1404 seq_puts(m, ": "); 1405 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1406 seq_puts(m, "\n"); 1407 1408 rcu_read_unlock(); 1409 } 1410 1411 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1412 void *value, bool is_lru_map, 1413 bool is_percpu, u64 flags) 1414 { 1415 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1416 struct hlist_nulls_head *head; 1417 unsigned long bflags; 1418 struct htab_elem *l; 1419 u32 hash, key_size; 1420 struct bucket *b; 1421 int ret; 1422 1423 key_size = map->key_size; 1424 1425 hash = htab_map_hash(key, key_size, htab->hashrnd); 1426 b = __select_bucket(htab, hash); 1427 head = &b->head; 1428 1429 ret = htab_lock_bucket(htab, b, hash, &bflags); 1430 if (ret) 1431 return ret; 1432 1433 l = lookup_elem_raw(head, hash, key, key_size); 1434 if (!l) { 1435 ret = -ENOENT; 1436 } else { 1437 if (is_percpu) { 1438 u32 roundup_value_size = round_up(map->value_size, 8); 1439 void __percpu *pptr; 1440 int off = 0, cpu; 1441 1442 pptr = htab_elem_get_ptr(l, key_size); 1443 for_each_possible_cpu(cpu) { 1444 bpf_long_memcpy(value + off, 1445 per_cpu_ptr(pptr, cpu), 1446 roundup_value_size); 1447 off += roundup_value_size; 1448 } 1449 } else { 1450 u32 roundup_key_size = round_up(map->key_size, 8); 1451 1452 if (flags & BPF_F_LOCK) 1453 copy_map_value_locked(map, value, l->key + 1454 roundup_key_size, 1455 true); 1456 else 1457 copy_map_value(map, value, l->key + 1458 roundup_key_size); 1459 check_and_init_map_lock(map, value); 1460 } 1461 1462 hlist_nulls_del_rcu(&l->hash_node); 1463 if (!is_lru_map) 1464 free_htab_elem(htab, l); 1465 } 1466 1467 htab_unlock_bucket(htab, b, hash, bflags); 1468 1469 if (is_lru_map && l) 1470 bpf_lru_push_free(&htab->lru, &l->lru_node); 1471 1472 return ret; 1473 } 1474 1475 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1476 void *value, u64 flags) 1477 { 1478 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1479 flags); 1480 } 1481 1482 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1483 void *key, void *value, 1484 u64 flags) 1485 { 1486 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1487 flags); 1488 } 1489 1490 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1491 void *value, u64 flags) 1492 { 1493 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1494 flags); 1495 } 1496 1497 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1498 void *key, void *value, 1499 u64 flags) 1500 { 1501 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1502 flags); 1503 } 1504 1505 static int 1506 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1507 const union bpf_attr *attr, 1508 union bpf_attr __user *uattr, 1509 bool do_delete, bool is_lru_map, 1510 bool is_percpu) 1511 { 1512 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1513 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1514 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1515 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1516 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1517 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1518 u32 batch, max_count, size, bucket_size; 1519 struct htab_elem *node_to_free = NULL; 1520 u64 elem_map_flags, map_flags; 1521 struct hlist_nulls_head *head; 1522 struct hlist_nulls_node *n; 1523 unsigned long flags = 0; 1524 bool locked = false; 1525 struct htab_elem *l; 1526 struct bucket *b; 1527 int ret = 0; 1528 1529 elem_map_flags = attr->batch.elem_flags; 1530 if ((elem_map_flags & ~BPF_F_LOCK) || 1531 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 1532 return -EINVAL; 1533 1534 map_flags = attr->batch.flags; 1535 if (map_flags) 1536 return -EINVAL; 1537 1538 max_count = attr->batch.count; 1539 if (!max_count) 1540 return 0; 1541 1542 if (put_user(0, &uattr->batch.count)) 1543 return -EFAULT; 1544 1545 batch = 0; 1546 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1547 return -EFAULT; 1548 1549 if (batch >= htab->n_buckets) 1550 return -ENOENT; 1551 1552 key_size = htab->map.key_size; 1553 roundup_key_size = round_up(htab->map.key_size, 8); 1554 value_size = htab->map.value_size; 1555 size = round_up(value_size, 8); 1556 if (is_percpu) 1557 value_size = size * num_possible_cpus(); 1558 total = 0; 1559 /* while experimenting with hash tables with sizes ranging from 10 to 1560 * 1000, it was observed that a bucket can have upto 5 entries. 1561 */ 1562 bucket_size = 5; 1563 1564 alloc: 1565 /* We cannot do copy_from_user or copy_to_user inside 1566 * the rcu_read_lock. Allocate enough space here. 1567 */ 1568 keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN); 1569 values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN); 1570 if (!keys || !values) { 1571 ret = -ENOMEM; 1572 goto after_loop; 1573 } 1574 1575 again: 1576 bpf_disable_instrumentation(); 1577 rcu_read_lock(); 1578 again_nocopy: 1579 dst_key = keys; 1580 dst_val = values; 1581 b = &htab->buckets[batch]; 1582 head = &b->head; 1583 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1584 if (locked) { 1585 ret = htab_lock_bucket(htab, b, batch, &flags); 1586 if (ret) 1587 goto next_batch; 1588 } 1589 1590 bucket_cnt = 0; 1591 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1592 bucket_cnt++; 1593 1594 if (bucket_cnt && !locked) { 1595 locked = true; 1596 goto again_nocopy; 1597 } 1598 1599 if (bucket_cnt > (max_count - total)) { 1600 if (total == 0) 1601 ret = -ENOSPC; 1602 /* Note that since bucket_cnt > 0 here, it is implicit 1603 * that the locked was grabbed, so release it. 1604 */ 1605 htab_unlock_bucket(htab, b, batch, flags); 1606 rcu_read_unlock(); 1607 bpf_enable_instrumentation(); 1608 goto after_loop; 1609 } 1610 1611 if (bucket_cnt > bucket_size) { 1612 bucket_size = bucket_cnt; 1613 /* Note that since bucket_cnt > 0 here, it is implicit 1614 * that the locked was grabbed, so release it. 1615 */ 1616 htab_unlock_bucket(htab, b, batch, flags); 1617 rcu_read_unlock(); 1618 bpf_enable_instrumentation(); 1619 kvfree(keys); 1620 kvfree(values); 1621 goto alloc; 1622 } 1623 1624 /* Next block is only safe to run if you have grabbed the lock */ 1625 if (!locked) 1626 goto next_batch; 1627 1628 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1629 memcpy(dst_key, l->key, key_size); 1630 1631 if (is_percpu) { 1632 int off = 0, cpu; 1633 void __percpu *pptr; 1634 1635 pptr = htab_elem_get_ptr(l, map->key_size); 1636 for_each_possible_cpu(cpu) { 1637 bpf_long_memcpy(dst_val + off, 1638 per_cpu_ptr(pptr, cpu), size); 1639 off += size; 1640 } 1641 } else { 1642 value = l->key + roundup_key_size; 1643 if (elem_map_flags & BPF_F_LOCK) 1644 copy_map_value_locked(map, dst_val, value, 1645 true); 1646 else 1647 copy_map_value(map, dst_val, value); 1648 check_and_init_map_lock(map, dst_val); 1649 } 1650 if (do_delete) { 1651 hlist_nulls_del_rcu(&l->hash_node); 1652 1653 /* bpf_lru_push_free() will acquire lru_lock, which 1654 * may cause deadlock. See comments in function 1655 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1656 * after releasing the bucket lock. 1657 */ 1658 if (is_lru_map) { 1659 l->batch_flink = node_to_free; 1660 node_to_free = l; 1661 } else { 1662 free_htab_elem(htab, l); 1663 } 1664 } 1665 dst_key += key_size; 1666 dst_val += value_size; 1667 } 1668 1669 htab_unlock_bucket(htab, b, batch, flags); 1670 locked = false; 1671 1672 while (node_to_free) { 1673 l = node_to_free; 1674 node_to_free = node_to_free->batch_flink; 1675 bpf_lru_push_free(&htab->lru, &l->lru_node); 1676 } 1677 1678 next_batch: 1679 /* If we are not copying data, we can go to next bucket and avoid 1680 * unlocking the rcu. 1681 */ 1682 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1683 batch++; 1684 goto again_nocopy; 1685 } 1686 1687 rcu_read_unlock(); 1688 bpf_enable_instrumentation(); 1689 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1690 key_size * bucket_cnt) || 1691 copy_to_user(uvalues + total * value_size, values, 1692 value_size * bucket_cnt))) { 1693 ret = -EFAULT; 1694 goto after_loop; 1695 } 1696 1697 total += bucket_cnt; 1698 batch++; 1699 if (batch >= htab->n_buckets) { 1700 ret = -ENOENT; 1701 goto after_loop; 1702 } 1703 goto again; 1704 1705 after_loop: 1706 if (ret == -EFAULT) 1707 goto out; 1708 1709 /* copy # of entries and next batch */ 1710 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1711 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1712 put_user(total, &uattr->batch.count)) 1713 ret = -EFAULT; 1714 1715 out: 1716 kvfree(keys); 1717 kvfree(values); 1718 return ret; 1719 } 1720 1721 static int 1722 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1723 union bpf_attr __user *uattr) 1724 { 1725 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1726 false, true); 1727 } 1728 1729 static int 1730 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1731 const union bpf_attr *attr, 1732 union bpf_attr __user *uattr) 1733 { 1734 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1735 false, true); 1736 } 1737 1738 static int 1739 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1740 union bpf_attr __user *uattr) 1741 { 1742 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1743 false, false); 1744 } 1745 1746 static int 1747 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1748 const union bpf_attr *attr, 1749 union bpf_attr __user *uattr) 1750 { 1751 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1752 false, false); 1753 } 1754 1755 static int 1756 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1757 const union bpf_attr *attr, 1758 union bpf_attr __user *uattr) 1759 { 1760 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1761 true, true); 1762 } 1763 1764 static int 1765 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1766 const union bpf_attr *attr, 1767 union bpf_attr __user *uattr) 1768 { 1769 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1770 true, true); 1771 } 1772 1773 static int 1774 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1775 union bpf_attr __user *uattr) 1776 { 1777 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1778 true, false); 1779 } 1780 1781 static int 1782 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1783 const union bpf_attr *attr, 1784 union bpf_attr __user *uattr) 1785 { 1786 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1787 true, false); 1788 } 1789 1790 struct bpf_iter_seq_hash_map_info { 1791 struct bpf_map *map; 1792 struct bpf_htab *htab; 1793 void *percpu_value_buf; // non-zero means percpu hash 1794 u32 bucket_id; 1795 u32 skip_elems; 1796 }; 1797 1798 static struct htab_elem * 1799 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1800 struct htab_elem *prev_elem) 1801 { 1802 const struct bpf_htab *htab = info->htab; 1803 u32 skip_elems = info->skip_elems; 1804 u32 bucket_id = info->bucket_id; 1805 struct hlist_nulls_head *head; 1806 struct hlist_nulls_node *n; 1807 struct htab_elem *elem; 1808 struct bucket *b; 1809 u32 i, count; 1810 1811 if (bucket_id >= htab->n_buckets) 1812 return NULL; 1813 1814 /* try to find next elem in the same bucket */ 1815 if (prev_elem) { 1816 /* no update/deletion on this bucket, prev_elem should be still valid 1817 * and we won't skip elements. 1818 */ 1819 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1820 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1821 if (elem) 1822 return elem; 1823 1824 /* not found, unlock and go to the next bucket */ 1825 b = &htab->buckets[bucket_id++]; 1826 rcu_read_unlock(); 1827 skip_elems = 0; 1828 } 1829 1830 for (i = bucket_id; i < htab->n_buckets; i++) { 1831 b = &htab->buckets[i]; 1832 rcu_read_lock(); 1833 1834 count = 0; 1835 head = &b->head; 1836 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 1837 if (count >= skip_elems) { 1838 info->bucket_id = i; 1839 info->skip_elems = count; 1840 return elem; 1841 } 1842 count++; 1843 } 1844 1845 rcu_read_unlock(); 1846 skip_elems = 0; 1847 } 1848 1849 info->bucket_id = i; 1850 info->skip_elems = 0; 1851 return NULL; 1852 } 1853 1854 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 1855 { 1856 struct bpf_iter_seq_hash_map_info *info = seq->private; 1857 struct htab_elem *elem; 1858 1859 elem = bpf_hash_map_seq_find_next(info, NULL); 1860 if (!elem) 1861 return NULL; 1862 1863 if (*pos == 0) 1864 ++*pos; 1865 return elem; 1866 } 1867 1868 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1869 { 1870 struct bpf_iter_seq_hash_map_info *info = seq->private; 1871 1872 ++*pos; 1873 ++info->skip_elems; 1874 return bpf_hash_map_seq_find_next(info, v); 1875 } 1876 1877 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 1878 { 1879 struct bpf_iter_seq_hash_map_info *info = seq->private; 1880 u32 roundup_key_size, roundup_value_size; 1881 struct bpf_iter__bpf_map_elem ctx = {}; 1882 struct bpf_map *map = info->map; 1883 struct bpf_iter_meta meta; 1884 int ret = 0, off = 0, cpu; 1885 struct bpf_prog *prog; 1886 void __percpu *pptr; 1887 1888 meta.seq = seq; 1889 prog = bpf_iter_get_info(&meta, elem == NULL); 1890 if (prog) { 1891 ctx.meta = &meta; 1892 ctx.map = info->map; 1893 if (elem) { 1894 roundup_key_size = round_up(map->key_size, 8); 1895 ctx.key = elem->key; 1896 if (!info->percpu_value_buf) { 1897 ctx.value = elem->key + roundup_key_size; 1898 } else { 1899 roundup_value_size = round_up(map->value_size, 8); 1900 pptr = htab_elem_get_ptr(elem, map->key_size); 1901 for_each_possible_cpu(cpu) { 1902 bpf_long_memcpy(info->percpu_value_buf + off, 1903 per_cpu_ptr(pptr, cpu), 1904 roundup_value_size); 1905 off += roundup_value_size; 1906 } 1907 ctx.value = info->percpu_value_buf; 1908 } 1909 } 1910 ret = bpf_iter_run_prog(prog, &ctx); 1911 } 1912 1913 return ret; 1914 } 1915 1916 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 1917 { 1918 return __bpf_hash_map_seq_show(seq, v); 1919 } 1920 1921 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 1922 { 1923 if (!v) 1924 (void)__bpf_hash_map_seq_show(seq, NULL); 1925 else 1926 rcu_read_unlock(); 1927 } 1928 1929 static int bpf_iter_init_hash_map(void *priv_data, 1930 struct bpf_iter_aux_info *aux) 1931 { 1932 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 1933 struct bpf_map *map = aux->map; 1934 void *value_buf; 1935 u32 buf_size; 1936 1937 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 1938 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 1939 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 1940 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 1941 if (!value_buf) 1942 return -ENOMEM; 1943 1944 seq_info->percpu_value_buf = value_buf; 1945 } 1946 1947 seq_info->map = map; 1948 seq_info->htab = container_of(map, struct bpf_htab, map); 1949 return 0; 1950 } 1951 1952 static void bpf_iter_fini_hash_map(void *priv_data) 1953 { 1954 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 1955 1956 kfree(seq_info->percpu_value_buf); 1957 } 1958 1959 static const struct seq_operations bpf_hash_map_seq_ops = { 1960 .start = bpf_hash_map_seq_start, 1961 .next = bpf_hash_map_seq_next, 1962 .stop = bpf_hash_map_seq_stop, 1963 .show = bpf_hash_map_seq_show, 1964 }; 1965 1966 static const struct bpf_iter_seq_info iter_seq_info = { 1967 .seq_ops = &bpf_hash_map_seq_ops, 1968 .init_seq_private = bpf_iter_init_hash_map, 1969 .fini_seq_private = bpf_iter_fini_hash_map, 1970 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 1971 }; 1972 1973 static int bpf_for_each_hash_elem(struct bpf_map *map, void *callback_fn, 1974 void *callback_ctx, u64 flags) 1975 { 1976 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1977 struct hlist_nulls_head *head; 1978 struct hlist_nulls_node *n; 1979 struct htab_elem *elem; 1980 u32 roundup_key_size; 1981 int i, num_elems = 0; 1982 void __percpu *pptr; 1983 struct bucket *b; 1984 void *key, *val; 1985 bool is_percpu; 1986 u64 ret = 0; 1987 1988 if (flags != 0) 1989 return -EINVAL; 1990 1991 is_percpu = htab_is_percpu(htab); 1992 1993 roundup_key_size = round_up(map->key_size, 8); 1994 /* disable migration so percpu value prepared here will be the 1995 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 1996 */ 1997 if (is_percpu) 1998 migrate_disable(); 1999 for (i = 0; i < htab->n_buckets; i++) { 2000 b = &htab->buckets[i]; 2001 rcu_read_lock(); 2002 head = &b->head; 2003 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2004 key = elem->key; 2005 if (is_percpu) { 2006 /* current cpu value for percpu map */ 2007 pptr = htab_elem_get_ptr(elem, map->key_size); 2008 val = this_cpu_ptr(pptr); 2009 } else { 2010 val = elem->key + roundup_key_size; 2011 } 2012 num_elems++; 2013 ret = BPF_CAST_CALL(callback_fn)((u64)(long)map, 2014 (u64)(long)key, (u64)(long)val, 2015 (u64)(long)callback_ctx, 0); 2016 /* return value: 0 - continue, 1 - stop and return */ 2017 if (ret) { 2018 rcu_read_unlock(); 2019 goto out; 2020 } 2021 } 2022 rcu_read_unlock(); 2023 } 2024 out: 2025 if (is_percpu) 2026 migrate_enable(); 2027 return num_elems; 2028 } 2029 2030 static int htab_map_btf_id; 2031 const struct bpf_map_ops htab_map_ops = { 2032 .map_meta_equal = bpf_map_meta_equal, 2033 .map_alloc_check = htab_map_alloc_check, 2034 .map_alloc = htab_map_alloc, 2035 .map_free = htab_map_free, 2036 .map_get_next_key = htab_map_get_next_key, 2037 .map_lookup_elem = htab_map_lookup_elem, 2038 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2039 .map_update_elem = htab_map_update_elem, 2040 .map_delete_elem = htab_map_delete_elem, 2041 .map_gen_lookup = htab_map_gen_lookup, 2042 .map_seq_show_elem = htab_map_seq_show_elem, 2043 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2044 .map_for_each_callback = bpf_for_each_hash_elem, 2045 BATCH_OPS(htab), 2046 .map_btf_name = "bpf_htab", 2047 .map_btf_id = &htab_map_btf_id, 2048 .iter_seq_info = &iter_seq_info, 2049 }; 2050 2051 static int htab_lru_map_btf_id; 2052 const struct bpf_map_ops htab_lru_map_ops = { 2053 .map_meta_equal = bpf_map_meta_equal, 2054 .map_alloc_check = htab_map_alloc_check, 2055 .map_alloc = htab_map_alloc, 2056 .map_free = htab_map_free, 2057 .map_get_next_key = htab_map_get_next_key, 2058 .map_lookup_elem = htab_lru_map_lookup_elem, 2059 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2060 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2061 .map_update_elem = htab_lru_map_update_elem, 2062 .map_delete_elem = htab_lru_map_delete_elem, 2063 .map_gen_lookup = htab_lru_map_gen_lookup, 2064 .map_seq_show_elem = htab_map_seq_show_elem, 2065 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2066 .map_for_each_callback = bpf_for_each_hash_elem, 2067 BATCH_OPS(htab_lru), 2068 .map_btf_name = "bpf_htab", 2069 .map_btf_id = &htab_lru_map_btf_id, 2070 .iter_seq_info = &iter_seq_info, 2071 }; 2072 2073 /* Called from eBPF program */ 2074 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2075 { 2076 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2077 2078 if (l) 2079 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2080 else 2081 return NULL; 2082 } 2083 2084 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2085 { 2086 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2087 2088 if (l) { 2089 bpf_lru_node_set_ref(&l->lru_node); 2090 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2091 } 2092 2093 return NULL; 2094 } 2095 2096 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2097 { 2098 struct htab_elem *l; 2099 void __percpu *pptr; 2100 int ret = -ENOENT; 2101 int cpu, off = 0; 2102 u32 size; 2103 2104 /* per_cpu areas are zero-filled and bpf programs can only 2105 * access 'value_size' of them, so copying rounded areas 2106 * will not leak any kernel data 2107 */ 2108 size = round_up(map->value_size, 8); 2109 rcu_read_lock(); 2110 l = __htab_map_lookup_elem(map, key); 2111 if (!l) 2112 goto out; 2113 /* We do not mark LRU map element here in order to not mess up 2114 * eviction heuristics when user space does a map walk. 2115 */ 2116 pptr = htab_elem_get_ptr(l, map->key_size); 2117 for_each_possible_cpu(cpu) { 2118 bpf_long_memcpy(value + off, 2119 per_cpu_ptr(pptr, cpu), size); 2120 off += size; 2121 } 2122 ret = 0; 2123 out: 2124 rcu_read_unlock(); 2125 return ret; 2126 } 2127 2128 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2129 u64 map_flags) 2130 { 2131 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2132 int ret; 2133 2134 rcu_read_lock(); 2135 if (htab_is_lru(htab)) 2136 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2137 map_flags, true); 2138 else 2139 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2140 true); 2141 rcu_read_unlock(); 2142 2143 return ret; 2144 } 2145 2146 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2147 struct seq_file *m) 2148 { 2149 struct htab_elem *l; 2150 void __percpu *pptr; 2151 int cpu; 2152 2153 rcu_read_lock(); 2154 2155 l = __htab_map_lookup_elem(map, key); 2156 if (!l) { 2157 rcu_read_unlock(); 2158 return; 2159 } 2160 2161 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2162 seq_puts(m, ": {\n"); 2163 pptr = htab_elem_get_ptr(l, map->key_size); 2164 for_each_possible_cpu(cpu) { 2165 seq_printf(m, "\tcpu%d: ", cpu); 2166 btf_type_seq_show(map->btf, map->btf_value_type_id, 2167 per_cpu_ptr(pptr, cpu), m); 2168 seq_puts(m, "\n"); 2169 } 2170 seq_puts(m, "}\n"); 2171 2172 rcu_read_unlock(); 2173 } 2174 2175 static int htab_percpu_map_btf_id; 2176 const struct bpf_map_ops htab_percpu_map_ops = { 2177 .map_meta_equal = bpf_map_meta_equal, 2178 .map_alloc_check = htab_map_alloc_check, 2179 .map_alloc = htab_map_alloc, 2180 .map_free = htab_map_free, 2181 .map_get_next_key = htab_map_get_next_key, 2182 .map_lookup_elem = htab_percpu_map_lookup_elem, 2183 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2184 .map_update_elem = htab_percpu_map_update_elem, 2185 .map_delete_elem = htab_map_delete_elem, 2186 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2187 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2188 .map_for_each_callback = bpf_for_each_hash_elem, 2189 BATCH_OPS(htab_percpu), 2190 .map_btf_name = "bpf_htab", 2191 .map_btf_id = &htab_percpu_map_btf_id, 2192 .iter_seq_info = &iter_seq_info, 2193 }; 2194 2195 static int htab_lru_percpu_map_btf_id; 2196 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2197 .map_meta_equal = bpf_map_meta_equal, 2198 .map_alloc_check = htab_map_alloc_check, 2199 .map_alloc = htab_map_alloc, 2200 .map_free = htab_map_free, 2201 .map_get_next_key = htab_map_get_next_key, 2202 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2203 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2204 .map_update_elem = htab_lru_percpu_map_update_elem, 2205 .map_delete_elem = htab_lru_map_delete_elem, 2206 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2207 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2208 .map_for_each_callback = bpf_for_each_hash_elem, 2209 BATCH_OPS(htab_lru_percpu), 2210 .map_btf_name = "bpf_htab", 2211 .map_btf_id = &htab_lru_percpu_map_btf_id, 2212 .iter_seq_info = &iter_seq_info, 2213 }; 2214 2215 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2216 { 2217 if (attr->value_size != sizeof(u32)) 2218 return -EINVAL; 2219 return htab_map_alloc_check(attr); 2220 } 2221 2222 static void fd_htab_map_free(struct bpf_map *map) 2223 { 2224 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2225 struct hlist_nulls_node *n; 2226 struct hlist_nulls_head *head; 2227 struct htab_elem *l; 2228 int i; 2229 2230 for (i = 0; i < htab->n_buckets; i++) { 2231 head = select_bucket(htab, i); 2232 2233 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2234 void *ptr = fd_htab_map_get_ptr(map, l); 2235 2236 map->ops->map_fd_put_ptr(ptr); 2237 } 2238 } 2239 2240 htab_map_free(map); 2241 } 2242 2243 /* only called from syscall */ 2244 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2245 { 2246 void **ptr; 2247 int ret = 0; 2248 2249 if (!map->ops->map_fd_sys_lookup_elem) 2250 return -ENOTSUPP; 2251 2252 rcu_read_lock(); 2253 ptr = htab_map_lookup_elem(map, key); 2254 if (ptr) 2255 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2256 else 2257 ret = -ENOENT; 2258 rcu_read_unlock(); 2259 2260 return ret; 2261 } 2262 2263 /* only called from syscall */ 2264 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2265 void *key, void *value, u64 map_flags) 2266 { 2267 void *ptr; 2268 int ret; 2269 u32 ufd = *(u32 *)value; 2270 2271 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2272 if (IS_ERR(ptr)) 2273 return PTR_ERR(ptr); 2274 2275 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2276 if (ret) 2277 map->ops->map_fd_put_ptr(ptr); 2278 2279 return ret; 2280 } 2281 2282 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2283 { 2284 struct bpf_map *map, *inner_map_meta; 2285 2286 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2287 if (IS_ERR(inner_map_meta)) 2288 return inner_map_meta; 2289 2290 map = htab_map_alloc(attr); 2291 if (IS_ERR(map)) { 2292 bpf_map_meta_free(inner_map_meta); 2293 return map; 2294 } 2295 2296 map->inner_map_meta = inner_map_meta; 2297 2298 return map; 2299 } 2300 2301 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2302 { 2303 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2304 2305 if (!inner_map) 2306 return NULL; 2307 2308 return READ_ONCE(*inner_map); 2309 } 2310 2311 static int htab_of_map_gen_lookup(struct bpf_map *map, 2312 struct bpf_insn *insn_buf) 2313 { 2314 struct bpf_insn *insn = insn_buf; 2315 const int ret = BPF_REG_0; 2316 2317 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2318 (void *(*)(struct bpf_map *map, void *key))NULL)); 2319 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 2320 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2321 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2322 offsetof(struct htab_elem, key) + 2323 round_up(map->key_size, 8)); 2324 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2325 2326 return insn - insn_buf; 2327 } 2328 2329 static void htab_of_map_free(struct bpf_map *map) 2330 { 2331 bpf_map_meta_free(map->inner_map_meta); 2332 fd_htab_map_free(map); 2333 } 2334 2335 static int htab_of_maps_map_btf_id; 2336 const struct bpf_map_ops htab_of_maps_map_ops = { 2337 .map_alloc_check = fd_htab_map_alloc_check, 2338 .map_alloc = htab_of_map_alloc, 2339 .map_free = htab_of_map_free, 2340 .map_get_next_key = htab_map_get_next_key, 2341 .map_lookup_elem = htab_of_map_lookup_elem, 2342 .map_delete_elem = htab_map_delete_elem, 2343 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2344 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2345 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2346 .map_gen_lookup = htab_of_map_gen_lookup, 2347 .map_check_btf = map_check_no_btf, 2348 .map_btf_name = "bpf_htab", 2349 .map_btf_id = &htab_of_maps_map_btf_id, 2350 }; 2351