xref: /openbmc/linux/kernel/bpf/hashtab.c (revision 802b8362)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include "percpu_freelist.h"
13 #include "bpf_lru_list.h"
14 #include "map_in_map.h"
15 
16 #define HTAB_CREATE_FLAG_MASK						\
17 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
18 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
19 
20 #define BATCH_OPS(_name)			\
21 	.map_lookup_batch =			\
22 	_name##_map_lookup_batch,		\
23 	.map_lookup_and_delete_batch =		\
24 	_name##_map_lookup_and_delete_batch,	\
25 	.map_update_batch =			\
26 	generic_map_update_batch,		\
27 	.map_delete_batch =			\
28 	generic_map_delete_batch
29 
30 /*
31  * The bucket lock has two protection scopes:
32  *
33  * 1) Serializing concurrent operations from BPF programs on differrent
34  *    CPUs
35  *
36  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
37  *
38  * BPF programs can execute in any context including perf, kprobes and
39  * tracing. As there are almost no limits where perf, kprobes and tracing
40  * can be invoked from the lock operations need to be protected against
41  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
42  * the lock held section when functions which acquire this lock are invoked
43  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
44  * variable bpf_prog_active, which prevents BPF programs attached to perf
45  * events, kprobes and tracing to be invoked before the prior invocation
46  * from one of these contexts completed. sys_bpf() uses the same mechanism
47  * by pinning the task to the current CPU and incrementing the recursion
48  * protection accross the map operation.
49  *
50  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
51  * operations like memory allocations (even with GFP_ATOMIC) from atomic
52  * contexts. This is required because even with GFP_ATOMIC the memory
53  * allocator calls into code pathes which acquire locks with long held lock
54  * sections. To ensure the deterministic behaviour these locks are regular
55  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
56  * true atomic contexts on an RT kernel are the low level hardware
57  * handling, scheduling, low level interrupt handling, NMIs etc. None of
58  * these contexts should ever do memory allocations.
59  *
60  * As regular device interrupt handlers and soft interrupts are forced into
61  * thread context, the existing code which does
62  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
63  * just works.
64  *
65  * In theory the BPF locks could be converted to regular spinlocks as well,
66  * but the bucket locks and percpu_freelist locks can be taken from
67  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
68  * atomic contexts even on RT. These mechanisms require preallocated maps,
69  * so there is no need to invoke memory allocations within the lock held
70  * sections.
71  *
72  * BPF maps which need dynamic allocation are only used from (forced)
73  * thread context on RT and can therefore use regular spinlocks which in
74  * turn allows to invoke memory allocations from the lock held section.
75  *
76  * On a non RT kernel this distinction is neither possible nor required.
77  * spinlock maps to raw_spinlock and the extra code is optimized out by the
78  * compiler.
79  */
80 struct bucket {
81 	struct hlist_nulls_head head;
82 	union {
83 		raw_spinlock_t raw_lock;
84 		spinlock_t     lock;
85 	};
86 };
87 
88 struct bpf_htab {
89 	struct bpf_map map;
90 	struct bucket *buckets;
91 	void *elems;
92 	union {
93 		struct pcpu_freelist freelist;
94 		struct bpf_lru lru;
95 	};
96 	struct htab_elem *__percpu *extra_elems;
97 	atomic_t count;	/* number of elements in this hashtable */
98 	u32 n_buckets;	/* number of hash buckets */
99 	u32 elem_size;	/* size of each element in bytes */
100 	u32 hashrnd;
101 };
102 
103 /* each htab element is struct htab_elem + key + value */
104 struct htab_elem {
105 	union {
106 		struct hlist_nulls_node hash_node;
107 		struct {
108 			void *padding;
109 			union {
110 				struct bpf_htab *htab;
111 				struct pcpu_freelist_node fnode;
112 				struct htab_elem *batch_flink;
113 			};
114 		};
115 	};
116 	union {
117 		struct rcu_head rcu;
118 		struct bpf_lru_node lru_node;
119 	};
120 	u32 hash;
121 	char key[] __aligned(8);
122 };
123 
124 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
125 {
126 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
127 }
128 
129 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
130 {
131 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
132 }
133 
134 static void htab_init_buckets(struct bpf_htab *htab)
135 {
136 	unsigned i;
137 
138 	for (i = 0; i < htab->n_buckets; i++) {
139 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
140 		if (htab_use_raw_lock(htab))
141 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
142 		else
143 			spin_lock_init(&htab->buckets[i].lock);
144 	}
145 }
146 
147 static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab,
148 					     struct bucket *b)
149 {
150 	unsigned long flags;
151 
152 	if (htab_use_raw_lock(htab))
153 		raw_spin_lock_irqsave(&b->raw_lock, flags);
154 	else
155 		spin_lock_irqsave(&b->lock, flags);
156 	return flags;
157 }
158 
159 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
160 				      struct bucket *b,
161 				      unsigned long flags)
162 {
163 	if (htab_use_raw_lock(htab))
164 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
165 	else
166 		spin_unlock_irqrestore(&b->lock, flags);
167 }
168 
169 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
170 
171 static bool htab_is_lru(const struct bpf_htab *htab)
172 {
173 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
174 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
175 }
176 
177 static bool htab_is_percpu(const struct bpf_htab *htab)
178 {
179 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
180 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
181 }
182 
183 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
184 				     void __percpu *pptr)
185 {
186 	*(void __percpu **)(l->key + key_size) = pptr;
187 }
188 
189 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
190 {
191 	return *(void __percpu **)(l->key + key_size);
192 }
193 
194 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
195 {
196 	return *(void **)(l->key + roundup(map->key_size, 8));
197 }
198 
199 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
200 {
201 	return (struct htab_elem *) (htab->elems + i * htab->elem_size);
202 }
203 
204 static void htab_free_elems(struct bpf_htab *htab)
205 {
206 	int i;
207 
208 	if (!htab_is_percpu(htab))
209 		goto free_elems;
210 
211 	for (i = 0; i < htab->map.max_entries; i++) {
212 		void __percpu *pptr;
213 
214 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
215 					 htab->map.key_size);
216 		free_percpu(pptr);
217 		cond_resched();
218 	}
219 free_elems:
220 	bpf_map_area_free(htab->elems);
221 }
222 
223 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
224  * (bucket_lock). If both locks need to be acquired together, the lock
225  * order is always lru_lock -> bucket_lock and this only happens in
226  * bpf_lru_list.c logic. For example, certain code path of
227  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
228  * will acquire lru_lock first followed by acquiring bucket_lock.
229  *
230  * In hashtab.c, to avoid deadlock, lock acquisition of
231  * bucket_lock followed by lru_lock is not allowed. In such cases,
232  * bucket_lock needs to be released first before acquiring lru_lock.
233  */
234 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
235 					  u32 hash)
236 {
237 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
238 	struct htab_elem *l;
239 
240 	if (node) {
241 		l = container_of(node, struct htab_elem, lru_node);
242 		memcpy(l->key, key, htab->map.key_size);
243 		return l;
244 	}
245 
246 	return NULL;
247 }
248 
249 static int prealloc_init(struct bpf_htab *htab)
250 {
251 	u32 num_entries = htab->map.max_entries;
252 	int err = -ENOMEM, i;
253 
254 	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
255 		num_entries += num_possible_cpus();
256 
257 	htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
258 					 htab->map.numa_node);
259 	if (!htab->elems)
260 		return -ENOMEM;
261 
262 	if (!htab_is_percpu(htab))
263 		goto skip_percpu_elems;
264 
265 	for (i = 0; i < num_entries; i++) {
266 		u32 size = round_up(htab->map.value_size, 8);
267 		void __percpu *pptr;
268 
269 		pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
270 		if (!pptr)
271 			goto free_elems;
272 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
273 				  pptr);
274 		cond_resched();
275 	}
276 
277 skip_percpu_elems:
278 	if (htab_is_lru(htab))
279 		err = bpf_lru_init(&htab->lru,
280 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
281 				   offsetof(struct htab_elem, hash) -
282 				   offsetof(struct htab_elem, lru_node),
283 				   htab_lru_map_delete_node,
284 				   htab);
285 	else
286 		err = pcpu_freelist_init(&htab->freelist);
287 
288 	if (err)
289 		goto free_elems;
290 
291 	if (htab_is_lru(htab))
292 		bpf_lru_populate(&htab->lru, htab->elems,
293 				 offsetof(struct htab_elem, lru_node),
294 				 htab->elem_size, num_entries);
295 	else
296 		pcpu_freelist_populate(&htab->freelist,
297 				       htab->elems + offsetof(struct htab_elem, fnode),
298 				       htab->elem_size, num_entries);
299 
300 	return 0;
301 
302 free_elems:
303 	htab_free_elems(htab);
304 	return err;
305 }
306 
307 static void prealloc_destroy(struct bpf_htab *htab)
308 {
309 	htab_free_elems(htab);
310 
311 	if (htab_is_lru(htab))
312 		bpf_lru_destroy(&htab->lru);
313 	else
314 		pcpu_freelist_destroy(&htab->freelist);
315 }
316 
317 static int alloc_extra_elems(struct bpf_htab *htab)
318 {
319 	struct htab_elem *__percpu *pptr, *l_new;
320 	struct pcpu_freelist_node *l;
321 	int cpu;
322 
323 	pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
324 				  GFP_USER | __GFP_NOWARN);
325 	if (!pptr)
326 		return -ENOMEM;
327 
328 	for_each_possible_cpu(cpu) {
329 		l = pcpu_freelist_pop(&htab->freelist);
330 		/* pop will succeed, since prealloc_init()
331 		 * preallocated extra num_possible_cpus elements
332 		 */
333 		l_new = container_of(l, struct htab_elem, fnode);
334 		*per_cpu_ptr(pptr, cpu) = l_new;
335 	}
336 	htab->extra_elems = pptr;
337 	return 0;
338 }
339 
340 /* Called from syscall */
341 static int htab_map_alloc_check(union bpf_attr *attr)
342 {
343 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
344 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
345 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
346 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
347 	/* percpu_lru means each cpu has its own LRU list.
348 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
349 	 * the map's value itself is percpu.  percpu_lru has
350 	 * nothing to do with the map's value.
351 	 */
352 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
353 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
354 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
355 	int numa_node = bpf_map_attr_numa_node(attr);
356 
357 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
358 		     offsetof(struct htab_elem, hash_node.pprev));
359 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
360 		     offsetof(struct htab_elem, hash_node.pprev));
361 
362 	if (lru && !bpf_capable())
363 		/* LRU implementation is much complicated than other
364 		 * maps.  Hence, limit to CAP_BPF.
365 		 */
366 		return -EPERM;
367 
368 	if (zero_seed && !capable(CAP_SYS_ADMIN))
369 		/* Guard against local DoS, and discourage production use. */
370 		return -EPERM;
371 
372 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
373 	    !bpf_map_flags_access_ok(attr->map_flags))
374 		return -EINVAL;
375 
376 	if (!lru && percpu_lru)
377 		return -EINVAL;
378 
379 	if (lru && !prealloc)
380 		return -ENOTSUPP;
381 
382 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
383 		return -EINVAL;
384 
385 	/* check sanity of attributes.
386 	 * value_size == 0 may be allowed in the future to use map as a set
387 	 */
388 	if (attr->max_entries == 0 || attr->key_size == 0 ||
389 	    attr->value_size == 0)
390 		return -EINVAL;
391 
392 	if (attr->key_size > MAX_BPF_STACK)
393 		/* eBPF programs initialize keys on stack, so they cannot be
394 		 * larger than max stack size
395 		 */
396 		return -E2BIG;
397 
398 	if (attr->value_size >= KMALLOC_MAX_SIZE -
399 	    MAX_BPF_STACK - sizeof(struct htab_elem))
400 		/* if value_size is bigger, the user space won't be able to
401 		 * access the elements via bpf syscall. This check also makes
402 		 * sure that the elem_size doesn't overflow and it's
403 		 * kmalloc-able later in htab_map_update_elem()
404 		 */
405 		return -E2BIG;
406 
407 	return 0;
408 }
409 
410 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
411 {
412 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
413 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
414 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
415 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
416 	/* percpu_lru means each cpu has its own LRU list.
417 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
418 	 * the map's value itself is percpu.  percpu_lru has
419 	 * nothing to do with the map's value.
420 	 */
421 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
422 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
423 	struct bpf_htab *htab;
424 	u64 cost;
425 	int err;
426 
427 	htab = kzalloc(sizeof(*htab), GFP_USER);
428 	if (!htab)
429 		return ERR_PTR(-ENOMEM);
430 
431 	bpf_map_init_from_attr(&htab->map, attr);
432 
433 	if (percpu_lru) {
434 		/* ensure each CPU's lru list has >=1 elements.
435 		 * since we are at it, make each lru list has the same
436 		 * number of elements.
437 		 */
438 		htab->map.max_entries = roundup(attr->max_entries,
439 						num_possible_cpus());
440 		if (htab->map.max_entries < attr->max_entries)
441 			htab->map.max_entries = rounddown(attr->max_entries,
442 							  num_possible_cpus());
443 	}
444 
445 	/* hash table size must be power of 2 */
446 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
447 
448 	htab->elem_size = sizeof(struct htab_elem) +
449 			  round_up(htab->map.key_size, 8);
450 	if (percpu)
451 		htab->elem_size += sizeof(void *);
452 	else
453 		htab->elem_size += round_up(htab->map.value_size, 8);
454 
455 	err = -E2BIG;
456 	/* prevent zero size kmalloc and check for u32 overflow */
457 	if (htab->n_buckets == 0 ||
458 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
459 		goto free_htab;
460 
461 	cost = (u64) htab->n_buckets * sizeof(struct bucket) +
462 	       (u64) htab->elem_size * htab->map.max_entries;
463 
464 	if (percpu)
465 		cost += (u64) round_up(htab->map.value_size, 8) *
466 			num_possible_cpus() * htab->map.max_entries;
467 	else
468 	       cost += (u64) htab->elem_size * num_possible_cpus();
469 
470 	/* if map size is larger than memlock limit, reject it */
471 	err = bpf_map_charge_init(&htab->map.memory, cost);
472 	if (err)
473 		goto free_htab;
474 
475 	err = -ENOMEM;
476 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
477 					   sizeof(struct bucket),
478 					   htab->map.numa_node);
479 	if (!htab->buckets)
480 		goto free_charge;
481 
482 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
483 		htab->hashrnd = 0;
484 	else
485 		htab->hashrnd = get_random_int();
486 
487 	htab_init_buckets(htab);
488 
489 	if (prealloc) {
490 		err = prealloc_init(htab);
491 		if (err)
492 			goto free_buckets;
493 
494 		if (!percpu && !lru) {
495 			/* lru itself can remove the least used element, so
496 			 * there is no need for an extra elem during map_update.
497 			 */
498 			err = alloc_extra_elems(htab);
499 			if (err)
500 				goto free_prealloc;
501 		}
502 	}
503 
504 	return &htab->map;
505 
506 free_prealloc:
507 	prealloc_destroy(htab);
508 free_buckets:
509 	bpf_map_area_free(htab->buckets);
510 free_charge:
511 	bpf_map_charge_finish(&htab->map.memory);
512 free_htab:
513 	kfree(htab);
514 	return ERR_PTR(err);
515 }
516 
517 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
518 {
519 	return jhash(key, key_len, hashrnd);
520 }
521 
522 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
523 {
524 	return &htab->buckets[hash & (htab->n_buckets - 1)];
525 }
526 
527 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
528 {
529 	return &__select_bucket(htab, hash)->head;
530 }
531 
532 /* this lookup function can only be called with bucket lock taken */
533 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
534 					 void *key, u32 key_size)
535 {
536 	struct hlist_nulls_node *n;
537 	struct htab_elem *l;
538 
539 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
540 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
541 			return l;
542 
543 	return NULL;
544 }
545 
546 /* can be called without bucket lock. it will repeat the loop in
547  * the unlikely event when elements moved from one bucket into another
548  * while link list is being walked
549  */
550 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
551 					       u32 hash, void *key,
552 					       u32 key_size, u32 n_buckets)
553 {
554 	struct hlist_nulls_node *n;
555 	struct htab_elem *l;
556 
557 again:
558 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
559 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
560 			return l;
561 
562 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
563 		goto again;
564 
565 	return NULL;
566 }
567 
568 /* Called from syscall or from eBPF program directly, so
569  * arguments have to match bpf_map_lookup_elem() exactly.
570  * The return value is adjusted by BPF instructions
571  * in htab_map_gen_lookup().
572  */
573 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
574 {
575 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
576 	struct hlist_nulls_head *head;
577 	struct htab_elem *l;
578 	u32 hash, key_size;
579 
580 	/* Must be called with rcu_read_lock. */
581 	WARN_ON_ONCE(!rcu_read_lock_held());
582 
583 	key_size = map->key_size;
584 
585 	hash = htab_map_hash(key, key_size, htab->hashrnd);
586 
587 	head = select_bucket(htab, hash);
588 
589 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
590 
591 	return l;
592 }
593 
594 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
595 {
596 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
597 
598 	if (l)
599 		return l->key + round_up(map->key_size, 8);
600 
601 	return NULL;
602 }
603 
604 /* inline bpf_map_lookup_elem() call.
605  * Instead of:
606  * bpf_prog
607  *   bpf_map_lookup_elem
608  *     map->ops->map_lookup_elem
609  *       htab_map_lookup_elem
610  *         __htab_map_lookup_elem
611  * do:
612  * bpf_prog
613  *   __htab_map_lookup_elem
614  */
615 static u32 htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
616 {
617 	struct bpf_insn *insn = insn_buf;
618 	const int ret = BPF_REG_0;
619 
620 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
621 		     (void *(*)(struct bpf_map *map, void *key))NULL));
622 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
623 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
624 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
625 				offsetof(struct htab_elem, key) +
626 				round_up(map->key_size, 8));
627 	return insn - insn_buf;
628 }
629 
630 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
631 							void *key, const bool mark)
632 {
633 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
634 
635 	if (l) {
636 		if (mark)
637 			bpf_lru_node_set_ref(&l->lru_node);
638 		return l->key + round_up(map->key_size, 8);
639 	}
640 
641 	return NULL;
642 }
643 
644 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
645 {
646 	return __htab_lru_map_lookup_elem(map, key, true);
647 }
648 
649 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
650 {
651 	return __htab_lru_map_lookup_elem(map, key, false);
652 }
653 
654 static u32 htab_lru_map_gen_lookup(struct bpf_map *map,
655 				   struct bpf_insn *insn_buf)
656 {
657 	struct bpf_insn *insn = insn_buf;
658 	const int ret = BPF_REG_0;
659 	const int ref_reg = BPF_REG_1;
660 
661 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
662 		     (void *(*)(struct bpf_map *map, void *key))NULL));
663 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
664 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
665 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
666 			      offsetof(struct htab_elem, lru_node) +
667 			      offsetof(struct bpf_lru_node, ref));
668 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
669 	*insn++ = BPF_ST_MEM(BPF_B, ret,
670 			     offsetof(struct htab_elem, lru_node) +
671 			     offsetof(struct bpf_lru_node, ref),
672 			     1);
673 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
674 				offsetof(struct htab_elem, key) +
675 				round_up(map->key_size, 8));
676 	return insn - insn_buf;
677 }
678 
679 /* It is called from the bpf_lru_list when the LRU needs to delete
680  * older elements from the htab.
681  */
682 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
683 {
684 	struct bpf_htab *htab = (struct bpf_htab *)arg;
685 	struct htab_elem *l = NULL, *tgt_l;
686 	struct hlist_nulls_head *head;
687 	struct hlist_nulls_node *n;
688 	unsigned long flags;
689 	struct bucket *b;
690 
691 	tgt_l = container_of(node, struct htab_elem, lru_node);
692 	b = __select_bucket(htab, tgt_l->hash);
693 	head = &b->head;
694 
695 	flags = htab_lock_bucket(htab, b);
696 
697 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
698 		if (l == tgt_l) {
699 			hlist_nulls_del_rcu(&l->hash_node);
700 			break;
701 		}
702 
703 	htab_unlock_bucket(htab, b, flags);
704 
705 	return l == tgt_l;
706 }
707 
708 /* Called from syscall */
709 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
710 {
711 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
712 	struct hlist_nulls_head *head;
713 	struct htab_elem *l, *next_l;
714 	u32 hash, key_size;
715 	int i = 0;
716 
717 	WARN_ON_ONCE(!rcu_read_lock_held());
718 
719 	key_size = map->key_size;
720 
721 	if (!key)
722 		goto find_first_elem;
723 
724 	hash = htab_map_hash(key, key_size, htab->hashrnd);
725 
726 	head = select_bucket(htab, hash);
727 
728 	/* lookup the key */
729 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
730 
731 	if (!l)
732 		goto find_first_elem;
733 
734 	/* key was found, get next key in the same bucket */
735 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
736 				  struct htab_elem, hash_node);
737 
738 	if (next_l) {
739 		/* if next elem in this hash list is non-zero, just return it */
740 		memcpy(next_key, next_l->key, key_size);
741 		return 0;
742 	}
743 
744 	/* no more elements in this hash list, go to the next bucket */
745 	i = hash & (htab->n_buckets - 1);
746 	i++;
747 
748 find_first_elem:
749 	/* iterate over buckets */
750 	for (; i < htab->n_buckets; i++) {
751 		head = select_bucket(htab, i);
752 
753 		/* pick first element in the bucket */
754 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
755 					  struct htab_elem, hash_node);
756 		if (next_l) {
757 			/* if it's not empty, just return it */
758 			memcpy(next_key, next_l->key, key_size);
759 			return 0;
760 		}
761 	}
762 
763 	/* iterated over all buckets and all elements */
764 	return -ENOENT;
765 }
766 
767 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
768 {
769 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
770 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
771 	kfree(l);
772 }
773 
774 static void htab_elem_free_rcu(struct rcu_head *head)
775 {
776 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
777 	struct bpf_htab *htab = l->htab;
778 
779 	htab_elem_free(htab, l);
780 }
781 
782 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
783 {
784 	struct bpf_map *map = &htab->map;
785 	void *ptr;
786 
787 	if (map->ops->map_fd_put_ptr) {
788 		ptr = fd_htab_map_get_ptr(map, l);
789 		map->ops->map_fd_put_ptr(ptr);
790 	}
791 }
792 
793 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
794 {
795 	htab_put_fd_value(htab, l);
796 
797 	if (htab_is_prealloc(htab)) {
798 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
799 	} else {
800 		atomic_dec(&htab->count);
801 		l->htab = htab;
802 		call_rcu(&l->rcu, htab_elem_free_rcu);
803 	}
804 }
805 
806 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
807 			    void *value, bool onallcpus)
808 {
809 	if (!onallcpus) {
810 		/* copy true value_size bytes */
811 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
812 	} else {
813 		u32 size = round_up(htab->map.value_size, 8);
814 		int off = 0, cpu;
815 
816 		for_each_possible_cpu(cpu) {
817 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
818 					value + off, size);
819 			off += size;
820 		}
821 	}
822 }
823 
824 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
825 {
826 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
827 	       BITS_PER_LONG == 64;
828 }
829 
830 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
831 					 void *value, u32 key_size, u32 hash,
832 					 bool percpu, bool onallcpus,
833 					 struct htab_elem *old_elem)
834 {
835 	u32 size = htab->map.value_size;
836 	bool prealloc = htab_is_prealloc(htab);
837 	struct htab_elem *l_new, **pl_new;
838 	void __percpu *pptr;
839 
840 	if (prealloc) {
841 		if (old_elem) {
842 			/* if we're updating the existing element,
843 			 * use per-cpu extra elems to avoid freelist_pop/push
844 			 */
845 			pl_new = this_cpu_ptr(htab->extra_elems);
846 			l_new = *pl_new;
847 			htab_put_fd_value(htab, old_elem);
848 			*pl_new = old_elem;
849 		} else {
850 			struct pcpu_freelist_node *l;
851 
852 			l = __pcpu_freelist_pop(&htab->freelist);
853 			if (!l)
854 				return ERR_PTR(-E2BIG);
855 			l_new = container_of(l, struct htab_elem, fnode);
856 		}
857 	} else {
858 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
859 			if (!old_elem) {
860 				/* when map is full and update() is replacing
861 				 * old element, it's ok to allocate, since
862 				 * old element will be freed immediately.
863 				 * Otherwise return an error
864 				 */
865 				l_new = ERR_PTR(-E2BIG);
866 				goto dec_count;
867 			}
868 		l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
869 				     htab->map.numa_node);
870 		if (!l_new) {
871 			l_new = ERR_PTR(-ENOMEM);
872 			goto dec_count;
873 		}
874 		check_and_init_map_lock(&htab->map,
875 					l_new->key + round_up(key_size, 8));
876 	}
877 
878 	memcpy(l_new->key, key, key_size);
879 	if (percpu) {
880 		size = round_up(size, 8);
881 		if (prealloc) {
882 			pptr = htab_elem_get_ptr(l_new, key_size);
883 		} else {
884 			/* alloc_percpu zero-fills */
885 			pptr = __alloc_percpu_gfp(size, 8,
886 						  GFP_ATOMIC | __GFP_NOWARN);
887 			if (!pptr) {
888 				kfree(l_new);
889 				l_new = ERR_PTR(-ENOMEM);
890 				goto dec_count;
891 			}
892 		}
893 
894 		pcpu_copy_value(htab, pptr, value, onallcpus);
895 
896 		if (!prealloc)
897 			htab_elem_set_ptr(l_new, key_size, pptr);
898 	} else if (fd_htab_map_needs_adjust(htab)) {
899 		size = round_up(size, 8);
900 		memcpy(l_new->key + round_up(key_size, 8), value, size);
901 	} else {
902 		copy_map_value(&htab->map,
903 			       l_new->key + round_up(key_size, 8),
904 			       value);
905 	}
906 
907 	l_new->hash = hash;
908 	return l_new;
909 dec_count:
910 	atomic_dec(&htab->count);
911 	return l_new;
912 }
913 
914 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
915 		       u64 map_flags)
916 {
917 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
918 		/* elem already exists */
919 		return -EEXIST;
920 
921 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
922 		/* elem doesn't exist, cannot update it */
923 		return -ENOENT;
924 
925 	return 0;
926 }
927 
928 /* Called from syscall or from eBPF program */
929 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
930 				u64 map_flags)
931 {
932 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
933 	struct htab_elem *l_new = NULL, *l_old;
934 	struct hlist_nulls_head *head;
935 	unsigned long flags;
936 	struct bucket *b;
937 	u32 key_size, hash;
938 	int ret;
939 
940 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
941 		/* unknown flags */
942 		return -EINVAL;
943 
944 	WARN_ON_ONCE(!rcu_read_lock_held());
945 
946 	key_size = map->key_size;
947 
948 	hash = htab_map_hash(key, key_size, htab->hashrnd);
949 
950 	b = __select_bucket(htab, hash);
951 	head = &b->head;
952 
953 	if (unlikely(map_flags & BPF_F_LOCK)) {
954 		if (unlikely(!map_value_has_spin_lock(map)))
955 			return -EINVAL;
956 		/* find an element without taking the bucket lock */
957 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
958 					      htab->n_buckets);
959 		ret = check_flags(htab, l_old, map_flags);
960 		if (ret)
961 			return ret;
962 		if (l_old) {
963 			/* grab the element lock and update value in place */
964 			copy_map_value_locked(map,
965 					      l_old->key + round_up(key_size, 8),
966 					      value, false);
967 			return 0;
968 		}
969 		/* fall through, grab the bucket lock and lookup again.
970 		 * 99.9% chance that the element won't be found,
971 		 * but second lookup under lock has to be done.
972 		 */
973 	}
974 
975 	flags = htab_lock_bucket(htab, b);
976 
977 	l_old = lookup_elem_raw(head, hash, key, key_size);
978 
979 	ret = check_flags(htab, l_old, map_flags);
980 	if (ret)
981 		goto err;
982 
983 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
984 		/* first lookup without the bucket lock didn't find the element,
985 		 * but second lookup with the bucket lock found it.
986 		 * This case is highly unlikely, but has to be dealt with:
987 		 * grab the element lock in addition to the bucket lock
988 		 * and update element in place
989 		 */
990 		copy_map_value_locked(map,
991 				      l_old->key + round_up(key_size, 8),
992 				      value, false);
993 		ret = 0;
994 		goto err;
995 	}
996 
997 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
998 				l_old);
999 	if (IS_ERR(l_new)) {
1000 		/* all pre-allocated elements are in use or memory exhausted */
1001 		ret = PTR_ERR(l_new);
1002 		goto err;
1003 	}
1004 
1005 	/* add new element to the head of the list, so that
1006 	 * concurrent search will find it before old elem
1007 	 */
1008 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1009 	if (l_old) {
1010 		hlist_nulls_del_rcu(&l_old->hash_node);
1011 		if (!htab_is_prealloc(htab))
1012 			free_htab_elem(htab, l_old);
1013 	}
1014 	ret = 0;
1015 err:
1016 	htab_unlock_bucket(htab, b, flags);
1017 	return ret;
1018 }
1019 
1020 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1021 				    u64 map_flags)
1022 {
1023 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1024 	struct htab_elem *l_new, *l_old = NULL;
1025 	struct hlist_nulls_head *head;
1026 	unsigned long flags;
1027 	struct bucket *b;
1028 	u32 key_size, hash;
1029 	int ret;
1030 
1031 	if (unlikely(map_flags > BPF_EXIST))
1032 		/* unknown flags */
1033 		return -EINVAL;
1034 
1035 	WARN_ON_ONCE(!rcu_read_lock_held());
1036 
1037 	key_size = map->key_size;
1038 
1039 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1040 
1041 	b = __select_bucket(htab, hash);
1042 	head = &b->head;
1043 
1044 	/* For LRU, we need to alloc before taking bucket's
1045 	 * spinlock because getting free nodes from LRU may need
1046 	 * to remove older elements from htab and this removal
1047 	 * operation will need a bucket lock.
1048 	 */
1049 	l_new = prealloc_lru_pop(htab, key, hash);
1050 	if (!l_new)
1051 		return -ENOMEM;
1052 	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1053 
1054 	flags = htab_lock_bucket(htab, b);
1055 
1056 	l_old = lookup_elem_raw(head, hash, key, key_size);
1057 
1058 	ret = check_flags(htab, l_old, map_flags);
1059 	if (ret)
1060 		goto err;
1061 
1062 	/* add new element to the head of the list, so that
1063 	 * concurrent search will find it before old elem
1064 	 */
1065 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1066 	if (l_old) {
1067 		bpf_lru_node_set_ref(&l_new->lru_node);
1068 		hlist_nulls_del_rcu(&l_old->hash_node);
1069 	}
1070 	ret = 0;
1071 
1072 err:
1073 	htab_unlock_bucket(htab, b, flags);
1074 
1075 	if (ret)
1076 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1077 	else if (l_old)
1078 		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1079 
1080 	return ret;
1081 }
1082 
1083 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1084 					 void *value, u64 map_flags,
1085 					 bool onallcpus)
1086 {
1087 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1088 	struct htab_elem *l_new = NULL, *l_old;
1089 	struct hlist_nulls_head *head;
1090 	unsigned long flags;
1091 	struct bucket *b;
1092 	u32 key_size, hash;
1093 	int ret;
1094 
1095 	if (unlikely(map_flags > BPF_EXIST))
1096 		/* unknown flags */
1097 		return -EINVAL;
1098 
1099 	WARN_ON_ONCE(!rcu_read_lock_held());
1100 
1101 	key_size = map->key_size;
1102 
1103 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1104 
1105 	b = __select_bucket(htab, hash);
1106 	head = &b->head;
1107 
1108 	flags = htab_lock_bucket(htab, b);
1109 
1110 	l_old = lookup_elem_raw(head, hash, key, key_size);
1111 
1112 	ret = check_flags(htab, l_old, map_flags);
1113 	if (ret)
1114 		goto err;
1115 
1116 	if (l_old) {
1117 		/* per-cpu hash map can update value in-place */
1118 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1119 				value, onallcpus);
1120 	} else {
1121 		l_new = alloc_htab_elem(htab, key, value, key_size,
1122 					hash, true, onallcpus, NULL);
1123 		if (IS_ERR(l_new)) {
1124 			ret = PTR_ERR(l_new);
1125 			goto err;
1126 		}
1127 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1128 	}
1129 	ret = 0;
1130 err:
1131 	htab_unlock_bucket(htab, b, flags);
1132 	return ret;
1133 }
1134 
1135 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1136 					     void *value, u64 map_flags,
1137 					     bool onallcpus)
1138 {
1139 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1140 	struct htab_elem *l_new = NULL, *l_old;
1141 	struct hlist_nulls_head *head;
1142 	unsigned long flags;
1143 	struct bucket *b;
1144 	u32 key_size, hash;
1145 	int ret;
1146 
1147 	if (unlikely(map_flags > BPF_EXIST))
1148 		/* unknown flags */
1149 		return -EINVAL;
1150 
1151 	WARN_ON_ONCE(!rcu_read_lock_held());
1152 
1153 	key_size = map->key_size;
1154 
1155 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1156 
1157 	b = __select_bucket(htab, hash);
1158 	head = &b->head;
1159 
1160 	/* For LRU, we need to alloc before taking bucket's
1161 	 * spinlock because LRU's elem alloc may need
1162 	 * to remove older elem from htab and this removal
1163 	 * operation will need a bucket lock.
1164 	 */
1165 	if (map_flags != BPF_EXIST) {
1166 		l_new = prealloc_lru_pop(htab, key, hash);
1167 		if (!l_new)
1168 			return -ENOMEM;
1169 	}
1170 
1171 	flags = htab_lock_bucket(htab, b);
1172 
1173 	l_old = lookup_elem_raw(head, hash, key, key_size);
1174 
1175 	ret = check_flags(htab, l_old, map_flags);
1176 	if (ret)
1177 		goto err;
1178 
1179 	if (l_old) {
1180 		bpf_lru_node_set_ref(&l_old->lru_node);
1181 
1182 		/* per-cpu hash map can update value in-place */
1183 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1184 				value, onallcpus);
1185 	} else {
1186 		pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size),
1187 				value, onallcpus);
1188 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1189 		l_new = NULL;
1190 	}
1191 	ret = 0;
1192 err:
1193 	htab_unlock_bucket(htab, b, flags);
1194 	if (l_new)
1195 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1196 	return ret;
1197 }
1198 
1199 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1200 				       void *value, u64 map_flags)
1201 {
1202 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1203 }
1204 
1205 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1206 					   void *value, u64 map_flags)
1207 {
1208 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1209 						 false);
1210 }
1211 
1212 /* Called from syscall or from eBPF program */
1213 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1214 {
1215 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1216 	struct hlist_nulls_head *head;
1217 	struct bucket *b;
1218 	struct htab_elem *l;
1219 	unsigned long flags;
1220 	u32 hash, key_size;
1221 	int ret = -ENOENT;
1222 
1223 	WARN_ON_ONCE(!rcu_read_lock_held());
1224 
1225 	key_size = map->key_size;
1226 
1227 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1228 	b = __select_bucket(htab, hash);
1229 	head = &b->head;
1230 
1231 	flags = htab_lock_bucket(htab, b);
1232 
1233 	l = lookup_elem_raw(head, hash, key, key_size);
1234 
1235 	if (l) {
1236 		hlist_nulls_del_rcu(&l->hash_node);
1237 		free_htab_elem(htab, l);
1238 		ret = 0;
1239 	}
1240 
1241 	htab_unlock_bucket(htab, b, flags);
1242 	return ret;
1243 }
1244 
1245 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1246 {
1247 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1248 	struct hlist_nulls_head *head;
1249 	struct bucket *b;
1250 	struct htab_elem *l;
1251 	unsigned long flags;
1252 	u32 hash, key_size;
1253 	int ret = -ENOENT;
1254 
1255 	WARN_ON_ONCE(!rcu_read_lock_held());
1256 
1257 	key_size = map->key_size;
1258 
1259 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1260 	b = __select_bucket(htab, hash);
1261 	head = &b->head;
1262 
1263 	flags = htab_lock_bucket(htab, b);
1264 
1265 	l = lookup_elem_raw(head, hash, key, key_size);
1266 
1267 	if (l) {
1268 		hlist_nulls_del_rcu(&l->hash_node);
1269 		ret = 0;
1270 	}
1271 
1272 	htab_unlock_bucket(htab, b, flags);
1273 	if (l)
1274 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1275 	return ret;
1276 }
1277 
1278 static void delete_all_elements(struct bpf_htab *htab)
1279 {
1280 	int i;
1281 
1282 	for (i = 0; i < htab->n_buckets; i++) {
1283 		struct hlist_nulls_head *head = select_bucket(htab, i);
1284 		struct hlist_nulls_node *n;
1285 		struct htab_elem *l;
1286 
1287 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1288 			hlist_nulls_del_rcu(&l->hash_node);
1289 			htab_elem_free(htab, l);
1290 		}
1291 	}
1292 }
1293 
1294 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1295 static void htab_map_free(struct bpf_map *map)
1296 {
1297 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1298 
1299 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1300 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1301 	 * There is no need to synchronize_rcu() here to protect map elements.
1302 	 */
1303 
1304 	/* some of free_htab_elem() callbacks for elements of this map may
1305 	 * not have executed. Wait for them.
1306 	 */
1307 	rcu_barrier();
1308 	if (!htab_is_prealloc(htab))
1309 		delete_all_elements(htab);
1310 	else
1311 		prealloc_destroy(htab);
1312 
1313 	free_percpu(htab->extra_elems);
1314 	bpf_map_area_free(htab->buckets);
1315 	kfree(htab);
1316 }
1317 
1318 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1319 				   struct seq_file *m)
1320 {
1321 	void *value;
1322 
1323 	rcu_read_lock();
1324 
1325 	value = htab_map_lookup_elem(map, key);
1326 	if (!value) {
1327 		rcu_read_unlock();
1328 		return;
1329 	}
1330 
1331 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1332 	seq_puts(m, ": ");
1333 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1334 	seq_puts(m, "\n");
1335 
1336 	rcu_read_unlock();
1337 }
1338 
1339 static int
1340 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1341 				   const union bpf_attr *attr,
1342 				   union bpf_attr __user *uattr,
1343 				   bool do_delete, bool is_lru_map,
1344 				   bool is_percpu)
1345 {
1346 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1347 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1348 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1349 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1350 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1351 	void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1352 	u32 batch, max_count, size, bucket_size;
1353 	struct htab_elem *node_to_free = NULL;
1354 	u64 elem_map_flags, map_flags;
1355 	struct hlist_nulls_head *head;
1356 	struct hlist_nulls_node *n;
1357 	unsigned long flags = 0;
1358 	bool locked = false;
1359 	struct htab_elem *l;
1360 	struct bucket *b;
1361 	int ret = 0;
1362 
1363 	elem_map_flags = attr->batch.elem_flags;
1364 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1365 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1366 		return -EINVAL;
1367 
1368 	map_flags = attr->batch.flags;
1369 	if (map_flags)
1370 		return -EINVAL;
1371 
1372 	max_count = attr->batch.count;
1373 	if (!max_count)
1374 		return 0;
1375 
1376 	if (put_user(0, &uattr->batch.count))
1377 		return -EFAULT;
1378 
1379 	batch = 0;
1380 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1381 		return -EFAULT;
1382 
1383 	if (batch >= htab->n_buckets)
1384 		return -ENOENT;
1385 
1386 	key_size = htab->map.key_size;
1387 	roundup_key_size = round_up(htab->map.key_size, 8);
1388 	value_size = htab->map.value_size;
1389 	size = round_up(value_size, 8);
1390 	if (is_percpu)
1391 		value_size = size * num_possible_cpus();
1392 	total = 0;
1393 	/* while experimenting with hash tables with sizes ranging from 10 to
1394 	 * 1000, it was observed that a bucket can have upto 5 entries.
1395 	 */
1396 	bucket_size = 5;
1397 
1398 alloc:
1399 	/* We cannot do copy_from_user or copy_to_user inside
1400 	 * the rcu_read_lock. Allocate enough space here.
1401 	 */
1402 	keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1403 	values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1404 	if (!keys || !values) {
1405 		ret = -ENOMEM;
1406 		goto after_loop;
1407 	}
1408 
1409 again:
1410 	bpf_disable_instrumentation();
1411 	rcu_read_lock();
1412 again_nocopy:
1413 	dst_key = keys;
1414 	dst_val = values;
1415 	b = &htab->buckets[batch];
1416 	head = &b->head;
1417 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1418 	if (locked)
1419 		flags = htab_lock_bucket(htab, b);
1420 
1421 	bucket_cnt = 0;
1422 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1423 		bucket_cnt++;
1424 
1425 	if (bucket_cnt && !locked) {
1426 		locked = true;
1427 		goto again_nocopy;
1428 	}
1429 
1430 	if (bucket_cnt > (max_count - total)) {
1431 		if (total == 0)
1432 			ret = -ENOSPC;
1433 		/* Note that since bucket_cnt > 0 here, it is implicit
1434 		 * that the locked was grabbed, so release it.
1435 		 */
1436 		htab_unlock_bucket(htab, b, flags);
1437 		rcu_read_unlock();
1438 		bpf_enable_instrumentation();
1439 		goto after_loop;
1440 	}
1441 
1442 	if (bucket_cnt > bucket_size) {
1443 		bucket_size = bucket_cnt;
1444 		/* Note that since bucket_cnt > 0 here, it is implicit
1445 		 * that the locked was grabbed, so release it.
1446 		 */
1447 		htab_unlock_bucket(htab, b, flags);
1448 		rcu_read_unlock();
1449 		bpf_enable_instrumentation();
1450 		kvfree(keys);
1451 		kvfree(values);
1452 		goto alloc;
1453 	}
1454 
1455 	/* Next block is only safe to run if you have grabbed the lock */
1456 	if (!locked)
1457 		goto next_batch;
1458 
1459 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1460 		memcpy(dst_key, l->key, key_size);
1461 
1462 		if (is_percpu) {
1463 			int off = 0, cpu;
1464 			void __percpu *pptr;
1465 
1466 			pptr = htab_elem_get_ptr(l, map->key_size);
1467 			for_each_possible_cpu(cpu) {
1468 				bpf_long_memcpy(dst_val + off,
1469 						per_cpu_ptr(pptr, cpu), size);
1470 				off += size;
1471 			}
1472 		} else {
1473 			value = l->key + roundup_key_size;
1474 			if (elem_map_flags & BPF_F_LOCK)
1475 				copy_map_value_locked(map, dst_val, value,
1476 						      true);
1477 			else
1478 				copy_map_value(map, dst_val, value);
1479 			check_and_init_map_lock(map, dst_val);
1480 		}
1481 		if (do_delete) {
1482 			hlist_nulls_del_rcu(&l->hash_node);
1483 
1484 			/* bpf_lru_push_free() will acquire lru_lock, which
1485 			 * may cause deadlock. See comments in function
1486 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1487 			 * after releasing the bucket lock.
1488 			 */
1489 			if (is_lru_map) {
1490 				l->batch_flink = node_to_free;
1491 				node_to_free = l;
1492 			} else {
1493 				free_htab_elem(htab, l);
1494 			}
1495 		}
1496 		dst_key += key_size;
1497 		dst_val += value_size;
1498 	}
1499 
1500 	htab_unlock_bucket(htab, b, flags);
1501 	locked = false;
1502 
1503 	while (node_to_free) {
1504 		l = node_to_free;
1505 		node_to_free = node_to_free->batch_flink;
1506 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1507 	}
1508 
1509 next_batch:
1510 	/* If we are not copying data, we can go to next bucket and avoid
1511 	 * unlocking the rcu.
1512 	 */
1513 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1514 		batch++;
1515 		goto again_nocopy;
1516 	}
1517 
1518 	rcu_read_unlock();
1519 	bpf_enable_instrumentation();
1520 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1521 	    key_size * bucket_cnt) ||
1522 	    copy_to_user(uvalues + total * value_size, values,
1523 	    value_size * bucket_cnt))) {
1524 		ret = -EFAULT;
1525 		goto after_loop;
1526 	}
1527 
1528 	total += bucket_cnt;
1529 	batch++;
1530 	if (batch >= htab->n_buckets) {
1531 		ret = -ENOENT;
1532 		goto after_loop;
1533 	}
1534 	goto again;
1535 
1536 after_loop:
1537 	if (ret == -EFAULT)
1538 		goto out;
1539 
1540 	/* copy # of entries and next batch */
1541 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1542 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1543 	    put_user(total, &uattr->batch.count))
1544 		ret = -EFAULT;
1545 
1546 out:
1547 	kvfree(keys);
1548 	kvfree(values);
1549 	return ret;
1550 }
1551 
1552 static int
1553 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1554 			     union bpf_attr __user *uattr)
1555 {
1556 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1557 						  false, true);
1558 }
1559 
1560 static int
1561 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1562 					const union bpf_attr *attr,
1563 					union bpf_attr __user *uattr)
1564 {
1565 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1566 						  false, true);
1567 }
1568 
1569 static int
1570 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1571 		      union bpf_attr __user *uattr)
1572 {
1573 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1574 						  false, false);
1575 }
1576 
1577 static int
1578 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1579 				 const union bpf_attr *attr,
1580 				 union bpf_attr __user *uattr)
1581 {
1582 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1583 						  false, false);
1584 }
1585 
1586 static int
1587 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1588 				 const union bpf_attr *attr,
1589 				 union bpf_attr __user *uattr)
1590 {
1591 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1592 						  true, true);
1593 }
1594 
1595 static int
1596 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1597 					    const union bpf_attr *attr,
1598 					    union bpf_attr __user *uattr)
1599 {
1600 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1601 						  true, true);
1602 }
1603 
1604 static int
1605 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1606 			  union bpf_attr __user *uattr)
1607 {
1608 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1609 						  true, false);
1610 }
1611 
1612 static int
1613 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1614 				     const union bpf_attr *attr,
1615 				     union bpf_attr __user *uattr)
1616 {
1617 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1618 						  true, false);
1619 }
1620 
1621 struct bpf_iter_seq_hash_map_info {
1622 	struct bpf_map *map;
1623 	struct bpf_htab *htab;
1624 	void *percpu_value_buf; // non-zero means percpu hash
1625 	unsigned long flags;
1626 	u32 bucket_id;
1627 	u32 skip_elems;
1628 };
1629 
1630 static struct htab_elem *
1631 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1632 			   struct htab_elem *prev_elem)
1633 {
1634 	const struct bpf_htab *htab = info->htab;
1635 	unsigned long flags = info->flags;
1636 	u32 skip_elems = info->skip_elems;
1637 	u32 bucket_id = info->bucket_id;
1638 	struct hlist_nulls_head *head;
1639 	struct hlist_nulls_node *n;
1640 	struct htab_elem *elem;
1641 	struct bucket *b;
1642 	u32 i, count;
1643 
1644 	if (bucket_id >= htab->n_buckets)
1645 		return NULL;
1646 
1647 	/* try to find next elem in the same bucket */
1648 	if (prev_elem) {
1649 		/* no update/deletion on this bucket, prev_elem should be still valid
1650 		 * and we won't skip elements.
1651 		 */
1652 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1653 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1654 		if (elem)
1655 			return elem;
1656 
1657 		/* not found, unlock and go to the next bucket */
1658 		b = &htab->buckets[bucket_id++];
1659 		htab_unlock_bucket(htab, b, flags);
1660 		skip_elems = 0;
1661 	}
1662 
1663 	for (i = bucket_id; i < htab->n_buckets; i++) {
1664 		b = &htab->buckets[i];
1665 		flags = htab_lock_bucket(htab, b);
1666 
1667 		count = 0;
1668 		head = &b->head;
1669 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1670 			if (count >= skip_elems) {
1671 				info->flags = flags;
1672 				info->bucket_id = i;
1673 				info->skip_elems = count;
1674 				return elem;
1675 			}
1676 			count++;
1677 		}
1678 
1679 		htab_unlock_bucket(htab, b, flags);
1680 		skip_elems = 0;
1681 	}
1682 
1683 	info->bucket_id = i;
1684 	info->skip_elems = 0;
1685 	return NULL;
1686 }
1687 
1688 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1689 {
1690 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1691 	struct htab_elem *elem;
1692 
1693 	elem = bpf_hash_map_seq_find_next(info, NULL);
1694 	if (!elem)
1695 		return NULL;
1696 
1697 	if (*pos == 0)
1698 		++*pos;
1699 	return elem;
1700 }
1701 
1702 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1703 {
1704 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1705 
1706 	++*pos;
1707 	++info->skip_elems;
1708 	return bpf_hash_map_seq_find_next(info, v);
1709 }
1710 
1711 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1712 {
1713 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1714 	u32 roundup_key_size, roundup_value_size;
1715 	struct bpf_iter__bpf_map_elem ctx = {};
1716 	struct bpf_map *map = info->map;
1717 	struct bpf_iter_meta meta;
1718 	int ret = 0, off = 0, cpu;
1719 	struct bpf_prog *prog;
1720 	void __percpu *pptr;
1721 
1722 	meta.seq = seq;
1723 	prog = bpf_iter_get_info(&meta, elem == NULL);
1724 	if (prog) {
1725 		ctx.meta = &meta;
1726 		ctx.map = info->map;
1727 		if (elem) {
1728 			roundup_key_size = round_up(map->key_size, 8);
1729 			ctx.key = elem->key;
1730 			if (!info->percpu_value_buf) {
1731 				ctx.value = elem->key + roundup_key_size;
1732 			} else {
1733 				roundup_value_size = round_up(map->value_size, 8);
1734 				pptr = htab_elem_get_ptr(elem, map->key_size);
1735 				for_each_possible_cpu(cpu) {
1736 					bpf_long_memcpy(info->percpu_value_buf + off,
1737 							per_cpu_ptr(pptr, cpu),
1738 							roundup_value_size);
1739 					off += roundup_value_size;
1740 				}
1741 				ctx.value = info->percpu_value_buf;
1742 			}
1743 		}
1744 		ret = bpf_iter_run_prog(prog, &ctx);
1745 	}
1746 
1747 	return ret;
1748 }
1749 
1750 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1751 {
1752 	return __bpf_hash_map_seq_show(seq, v);
1753 }
1754 
1755 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1756 {
1757 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1758 
1759 	if (!v)
1760 		(void)__bpf_hash_map_seq_show(seq, NULL);
1761 	else
1762 		htab_unlock_bucket(info->htab,
1763 				   &info->htab->buckets[info->bucket_id],
1764 				   info->flags);
1765 }
1766 
1767 static int bpf_iter_init_hash_map(void *priv_data,
1768 				  struct bpf_iter_aux_info *aux)
1769 {
1770 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1771 	struct bpf_map *map = aux->map;
1772 	void *value_buf;
1773 	u32 buf_size;
1774 
1775 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1776 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1777 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1778 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1779 		if (!value_buf)
1780 			return -ENOMEM;
1781 
1782 		seq_info->percpu_value_buf = value_buf;
1783 	}
1784 
1785 	seq_info->map = map;
1786 	seq_info->htab = container_of(map, struct bpf_htab, map);
1787 	return 0;
1788 }
1789 
1790 static void bpf_iter_fini_hash_map(void *priv_data)
1791 {
1792 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1793 
1794 	kfree(seq_info->percpu_value_buf);
1795 }
1796 
1797 static const struct seq_operations bpf_hash_map_seq_ops = {
1798 	.start	= bpf_hash_map_seq_start,
1799 	.next	= bpf_hash_map_seq_next,
1800 	.stop	= bpf_hash_map_seq_stop,
1801 	.show	= bpf_hash_map_seq_show,
1802 };
1803 
1804 static const struct bpf_iter_seq_info iter_seq_info = {
1805 	.seq_ops		= &bpf_hash_map_seq_ops,
1806 	.init_seq_private	= bpf_iter_init_hash_map,
1807 	.fini_seq_private	= bpf_iter_fini_hash_map,
1808 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
1809 };
1810 
1811 static int htab_map_btf_id;
1812 const struct bpf_map_ops htab_map_ops = {
1813 	.map_alloc_check = htab_map_alloc_check,
1814 	.map_alloc = htab_map_alloc,
1815 	.map_free = htab_map_free,
1816 	.map_get_next_key = htab_map_get_next_key,
1817 	.map_lookup_elem = htab_map_lookup_elem,
1818 	.map_update_elem = htab_map_update_elem,
1819 	.map_delete_elem = htab_map_delete_elem,
1820 	.map_gen_lookup = htab_map_gen_lookup,
1821 	.map_seq_show_elem = htab_map_seq_show_elem,
1822 	BATCH_OPS(htab),
1823 	.map_btf_name = "bpf_htab",
1824 	.map_btf_id = &htab_map_btf_id,
1825 	.iter_seq_info = &iter_seq_info,
1826 };
1827 
1828 static int htab_lru_map_btf_id;
1829 const struct bpf_map_ops htab_lru_map_ops = {
1830 	.map_alloc_check = htab_map_alloc_check,
1831 	.map_alloc = htab_map_alloc,
1832 	.map_free = htab_map_free,
1833 	.map_get_next_key = htab_map_get_next_key,
1834 	.map_lookup_elem = htab_lru_map_lookup_elem,
1835 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1836 	.map_update_elem = htab_lru_map_update_elem,
1837 	.map_delete_elem = htab_lru_map_delete_elem,
1838 	.map_gen_lookup = htab_lru_map_gen_lookup,
1839 	.map_seq_show_elem = htab_map_seq_show_elem,
1840 	BATCH_OPS(htab_lru),
1841 	.map_btf_name = "bpf_htab",
1842 	.map_btf_id = &htab_lru_map_btf_id,
1843 	.iter_seq_info = &iter_seq_info,
1844 };
1845 
1846 /* Called from eBPF program */
1847 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1848 {
1849 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1850 
1851 	if (l)
1852 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1853 	else
1854 		return NULL;
1855 }
1856 
1857 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1858 {
1859 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1860 
1861 	if (l) {
1862 		bpf_lru_node_set_ref(&l->lru_node);
1863 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1864 	}
1865 
1866 	return NULL;
1867 }
1868 
1869 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1870 {
1871 	struct htab_elem *l;
1872 	void __percpu *pptr;
1873 	int ret = -ENOENT;
1874 	int cpu, off = 0;
1875 	u32 size;
1876 
1877 	/* per_cpu areas are zero-filled and bpf programs can only
1878 	 * access 'value_size' of them, so copying rounded areas
1879 	 * will not leak any kernel data
1880 	 */
1881 	size = round_up(map->value_size, 8);
1882 	rcu_read_lock();
1883 	l = __htab_map_lookup_elem(map, key);
1884 	if (!l)
1885 		goto out;
1886 	/* We do not mark LRU map element here in order to not mess up
1887 	 * eviction heuristics when user space does a map walk.
1888 	 */
1889 	pptr = htab_elem_get_ptr(l, map->key_size);
1890 	for_each_possible_cpu(cpu) {
1891 		bpf_long_memcpy(value + off,
1892 				per_cpu_ptr(pptr, cpu), size);
1893 		off += size;
1894 	}
1895 	ret = 0;
1896 out:
1897 	rcu_read_unlock();
1898 	return ret;
1899 }
1900 
1901 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1902 			   u64 map_flags)
1903 {
1904 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1905 	int ret;
1906 
1907 	rcu_read_lock();
1908 	if (htab_is_lru(htab))
1909 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
1910 							map_flags, true);
1911 	else
1912 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1913 						    true);
1914 	rcu_read_unlock();
1915 
1916 	return ret;
1917 }
1918 
1919 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1920 					  struct seq_file *m)
1921 {
1922 	struct htab_elem *l;
1923 	void __percpu *pptr;
1924 	int cpu;
1925 
1926 	rcu_read_lock();
1927 
1928 	l = __htab_map_lookup_elem(map, key);
1929 	if (!l) {
1930 		rcu_read_unlock();
1931 		return;
1932 	}
1933 
1934 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1935 	seq_puts(m, ": {\n");
1936 	pptr = htab_elem_get_ptr(l, map->key_size);
1937 	for_each_possible_cpu(cpu) {
1938 		seq_printf(m, "\tcpu%d: ", cpu);
1939 		btf_type_seq_show(map->btf, map->btf_value_type_id,
1940 				  per_cpu_ptr(pptr, cpu), m);
1941 		seq_puts(m, "\n");
1942 	}
1943 	seq_puts(m, "}\n");
1944 
1945 	rcu_read_unlock();
1946 }
1947 
1948 static int htab_percpu_map_btf_id;
1949 const struct bpf_map_ops htab_percpu_map_ops = {
1950 	.map_alloc_check = htab_map_alloc_check,
1951 	.map_alloc = htab_map_alloc,
1952 	.map_free = htab_map_free,
1953 	.map_get_next_key = htab_map_get_next_key,
1954 	.map_lookup_elem = htab_percpu_map_lookup_elem,
1955 	.map_update_elem = htab_percpu_map_update_elem,
1956 	.map_delete_elem = htab_map_delete_elem,
1957 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
1958 	BATCH_OPS(htab_percpu),
1959 	.map_btf_name = "bpf_htab",
1960 	.map_btf_id = &htab_percpu_map_btf_id,
1961 	.iter_seq_info = &iter_seq_info,
1962 };
1963 
1964 static int htab_lru_percpu_map_btf_id;
1965 const struct bpf_map_ops htab_lru_percpu_map_ops = {
1966 	.map_alloc_check = htab_map_alloc_check,
1967 	.map_alloc = htab_map_alloc,
1968 	.map_free = htab_map_free,
1969 	.map_get_next_key = htab_map_get_next_key,
1970 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
1971 	.map_update_elem = htab_lru_percpu_map_update_elem,
1972 	.map_delete_elem = htab_lru_map_delete_elem,
1973 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
1974 	BATCH_OPS(htab_lru_percpu),
1975 	.map_btf_name = "bpf_htab",
1976 	.map_btf_id = &htab_lru_percpu_map_btf_id,
1977 	.iter_seq_info = &iter_seq_info,
1978 };
1979 
1980 static int fd_htab_map_alloc_check(union bpf_attr *attr)
1981 {
1982 	if (attr->value_size != sizeof(u32))
1983 		return -EINVAL;
1984 	return htab_map_alloc_check(attr);
1985 }
1986 
1987 static void fd_htab_map_free(struct bpf_map *map)
1988 {
1989 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1990 	struct hlist_nulls_node *n;
1991 	struct hlist_nulls_head *head;
1992 	struct htab_elem *l;
1993 	int i;
1994 
1995 	for (i = 0; i < htab->n_buckets; i++) {
1996 		head = select_bucket(htab, i);
1997 
1998 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1999 			void *ptr = fd_htab_map_get_ptr(map, l);
2000 
2001 			map->ops->map_fd_put_ptr(ptr);
2002 		}
2003 	}
2004 
2005 	htab_map_free(map);
2006 }
2007 
2008 /* only called from syscall */
2009 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2010 {
2011 	void **ptr;
2012 	int ret = 0;
2013 
2014 	if (!map->ops->map_fd_sys_lookup_elem)
2015 		return -ENOTSUPP;
2016 
2017 	rcu_read_lock();
2018 	ptr = htab_map_lookup_elem(map, key);
2019 	if (ptr)
2020 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2021 	else
2022 		ret = -ENOENT;
2023 	rcu_read_unlock();
2024 
2025 	return ret;
2026 }
2027 
2028 /* only called from syscall */
2029 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2030 				void *key, void *value, u64 map_flags)
2031 {
2032 	void *ptr;
2033 	int ret;
2034 	u32 ufd = *(u32 *)value;
2035 
2036 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2037 	if (IS_ERR(ptr))
2038 		return PTR_ERR(ptr);
2039 
2040 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2041 	if (ret)
2042 		map->ops->map_fd_put_ptr(ptr);
2043 
2044 	return ret;
2045 }
2046 
2047 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2048 {
2049 	struct bpf_map *map, *inner_map_meta;
2050 
2051 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2052 	if (IS_ERR(inner_map_meta))
2053 		return inner_map_meta;
2054 
2055 	map = htab_map_alloc(attr);
2056 	if (IS_ERR(map)) {
2057 		bpf_map_meta_free(inner_map_meta);
2058 		return map;
2059 	}
2060 
2061 	map->inner_map_meta = inner_map_meta;
2062 
2063 	return map;
2064 }
2065 
2066 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2067 {
2068 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2069 
2070 	if (!inner_map)
2071 		return NULL;
2072 
2073 	return READ_ONCE(*inner_map);
2074 }
2075 
2076 static u32 htab_of_map_gen_lookup(struct bpf_map *map,
2077 				  struct bpf_insn *insn_buf)
2078 {
2079 	struct bpf_insn *insn = insn_buf;
2080 	const int ret = BPF_REG_0;
2081 
2082 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2083 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2084 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2085 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2086 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2087 				offsetof(struct htab_elem, key) +
2088 				round_up(map->key_size, 8));
2089 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2090 
2091 	return insn - insn_buf;
2092 }
2093 
2094 static void htab_of_map_free(struct bpf_map *map)
2095 {
2096 	bpf_map_meta_free(map->inner_map_meta);
2097 	fd_htab_map_free(map);
2098 }
2099 
2100 static int htab_of_maps_map_btf_id;
2101 const struct bpf_map_ops htab_of_maps_map_ops = {
2102 	.map_alloc_check = fd_htab_map_alloc_check,
2103 	.map_alloc = htab_of_map_alloc,
2104 	.map_free = htab_of_map_free,
2105 	.map_get_next_key = htab_map_get_next_key,
2106 	.map_lookup_elem = htab_of_map_lookup_elem,
2107 	.map_delete_elem = htab_map_delete_elem,
2108 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2109 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2110 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2111 	.map_gen_lookup = htab_of_map_gen_lookup,
2112 	.map_check_btf = map_check_no_btf,
2113 	.map_btf_name = "bpf_htab",
2114 	.map_btf_id = &htab_of_maps_map_btf_id,
2115 };
2116