1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include "percpu_freelist.h" 14 #include "bpf_lru_list.h" 15 #include "map_in_map.h" 16 17 #define HTAB_CREATE_FLAG_MASK \ 18 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 19 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 20 21 #define BATCH_OPS(_name) \ 22 .map_lookup_batch = \ 23 _name##_map_lookup_batch, \ 24 .map_lookup_and_delete_batch = \ 25 _name##_map_lookup_and_delete_batch, \ 26 .map_update_batch = \ 27 generic_map_update_batch, \ 28 .map_delete_batch = \ 29 generic_map_delete_batch 30 31 /* 32 * The bucket lock has two protection scopes: 33 * 34 * 1) Serializing concurrent operations from BPF programs on differrent 35 * CPUs 36 * 37 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 38 * 39 * BPF programs can execute in any context including perf, kprobes and 40 * tracing. As there are almost no limits where perf, kprobes and tracing 41 * can be invoked from the lock operations need to be protected against 42 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 43 * the lock held section when functions which acquire this lock are invoked 44 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 45 * variable bpf_prog_active, which prevents BPF programs attached to perf 46 * events, kprobes and tracing to be invoked before the prior invocation 47 * from one of these contexts completed. sys_bpf() uses the same mechanism 48 * by pinning the task to the current CPU and incrementing the recursion 49 * protection accross the map operation. 50 * 51 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 52 * operations like memory allocations (even with GFP_ATOMIC) from atomic 53 * contexts. This is required because even with GFP_ATOMIC the memory 54 * allocator calls into code pathes which acquire locks with long held lock 55 * sections. To ensure the deterministic behaviour these locks are regular 56 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 57 * true atomic contexts on an RT kernel are the low level hardware 58 * handling, scheduling, low level interrupt handling, NMIs etc. None of 59 * these contexts should ever do memory allocations. 60 * 61 * As regular device interrupt handlers and soft interrupts are forced into 62 * thread context, the existing code which does 63 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*(); 64 * just works. 65 * 66 * In theory the BPF locks could be converted to regular spinlocks as well, 67 * but the bucket locks and percpu_freelist locks can be taken from 68 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 69 * atomic contexts even on RT. These mechanisms require preallocated maps, 70 * so there is no need to invoke memory allocations within the lock held 71 * sections. 72 * 73 * BPF maps which need dynamic allocation are only used from (forced) 74 * thread context on RT and can therefore use regular spinlocks which in 75 * turn allows to invoke memory allocations from the lock held section. 76 * 77 * On a non RT kernel this distinction is neither possible nor required. 78 * spinlock maps to raw_spinlock and the extra code is optimized out by the 79 * compiler. 80 */ 81 struct bucket { 82 struct hlist_nulls_head head; 83 union { 84 raw_spinlock_t raw_lock; 85 spinlock_t lock; 86 }; 87 }; 88 89 #define HASHTAB_MAP_LOCK_COUNT 8 90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 91 92 struct bpf_htab { 93 struct bpf_map map; 94 struct bucket *buckets; 95 void *elems; 96 union { 97 struct pcpu_freelist freelist; 98 struct bpf_lru lru; 99 }; 100 struct htab_elem *__percpu *extra_elems; 101 atomic_t count; /* number of elements in this hashtable */ 102 u32 n_buckets; /* number of hash buckets */ 103 u32 elem_size; /* size of each element in bytes */ 104 u32 hashrnd; 105 struct lock_class_key lockdep_key; 106 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 107 }; 108 109 /* each htab element is struct htab_elem + key + value */ 110 struct htab_elem { 111 union { 112 struct hlist_nulls_node hash_node; 113 struct { 114 void *padding; 115 union { 116 struct bpf_htab *htab; 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 struct rcu_head rcu; 124 struct bpf_lru_node lru_node; 125 }; 126 u32 hash; 127 char key[] __aligned(8); 128 }; 129 130 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 131 { 132 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 133 } 134 135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab) 136 { 137 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab)); 138 } 139 140 static void htab_init_buckets(struct bpf_htab *htab) 141 { 142 unsigned i; 143 144 for (i = 0; i < htab->n_buckets; i++) { 145 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 146 if (htab_use_raw_lock(htab)) { 147 raw_spin_lock_init(&htab->buckets[i].raw_lock); 148 lockdep_set_class(&htab->buckets[i].raw_lock, 149 &htab->lockdep_key); 150 } else { 151 spin_lock_init(&htab->buckets[i].lock); 152 lockdep_set_class(&htab->buckets[i].lock, 153 &htab->lockdep_key); 154 } 155 } 156 } 157 158 static inline int htab_lock_bucket(const struct bpf_htab *htab, 159 struct bucket *b, u32 hash, 160 unsigned long *pflags) 161 { 162 unsigned long flags; 163 164 hash = hash & HASHTAB_MAP_LOCK_MASK; 165 166 migrate_disable(); 167 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 168 __this_cpu_dec(*(htab->map_locked[hash])); 169 migrate_enable(); 170 return -EBUSY; 171 } 172 173 if (htab_use_raw_lock(htab)) 174 raw_spin_lock_irqsave(&b->raw_lock, flags); 175 else 176 spin_lock_irqsave(&b->lock, flags); 177 *pflags = flags; 178 179 return 0; 180 } 181 182 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 183 struct bucket *b, u32 hash, 184 unsigned long flags) 185 { 186 hash = hash & HASHTAB_MAP_LOCK_MASK; 187 if (htab_use_raw_lock(htab)) 188 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 189 else 190 spin_unlock_irqrestore(&b->lock, flags); 191 __this_cpu_dec(*(htab->map_locked[hash])); 192 migrate_enable(); 193 } 194 195 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 196 197 static bool htab_is_lru(const struct bpf_htab *htab) 198 { 199 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 200 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 201 } 202 203 static bool htab_is_percpu(const struct bpf_htab *htab) 204 { 205 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 206 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 207 } 208 209 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 210 void __percpu *pptr) 211 { 212 *(void __percpu **)(l->key + key_size) = pptr; 213 } 214 215 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 216 { 217 return *(void __percpu **)(l->key + key_size); 218 } 219 220 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 221 { 222 return *(void **)(l->key + roundup(map->key_size, 8)); 223 } 224 225 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 226 { 227 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 228 } 229 230 static void htab_free_elems(struct bpf_htab *htab) 231 { 232 int i; 233 234 if (!htab_is_percpu(htab)) 235 goto free_elems; 236 237 for (i = 0; i < htab->map.max_entries; i++) { 238 void __percpu *pptr; 239 240 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 241 htab->map.key_size); 242 free_percpu(pptr); 243 cond_resched(); 244 } 245 free_elems: 246 bpf_map_area_free(htab->elems); 247 } 248 249 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 250 * (bucket_lock). If both locks need to be acquired together, the lock 251 * order is always lru_lock -> bucket_lock and this only happens in 252 * bpf_lru_list.c logic. For example, certain code path of 253 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 254 * will acquire lru_lock first followed by acquiring bucket_lock. 255 * 256 * In hashtab.c, to avoid deadlock, lock acquisition of 257 * bucket_lock followed by lru_lock is not allowed. In such cases, 258 * bucket_lock needs to be released first before acquiring lru_lock. 259 */ 260 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 261 u32 hash) 262 { 263 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 264 struct htab_elem *l; 265 266 if (node) { 267 l = container_of(node, struct htab_elem, lru_node); 268 memcpy(l->key, key, htab->map.key_size); 269 return l; 270 } 271 272 return NULL; 273 } 274 275 static int prealloc_init(struct bpf_htab *htab) 276 { 277 u32 num_entries = htab->map.max_entries; 278 int err = -ENOMEM, i; 279 280 if (!htab_is_percpu(htab) && !htab_is_lru(htab)) 281 num_entries += num_possible_cpus(); 282 283 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 284 htab->map.numa_node); 285 if (!htab->elems) 286 return -ENOMEM; 287 288 if (!htab_is_percpu(htab)) 289 goto skip_percpu_elems; 290 291 for (i = 0; i < num_entries; i++) { 292 u32 size = round_up(htab->map.value_size, 8); 293 void __percpu *pptr; 294 295 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 296 GFP_USER | __GFP_NOWARN); 297 if (!pptr) 298 goto free_elems; 299 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 300 pptr); 301 cond_resched(); 302 } 303 304 skip_percpu_elems: 305 if (htab_is_lru(htab)) 306 err = bpf_lru_init(&htab->lru, 307 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 308 offsetof(struct htab_elem, hash) - 309 offsetof(struct htab_elem, lru_node), 310 htab_lru_map_delete_node, 311 htab); 312 else 313 err = pcpu_freelist_init(&htab->freelist); 314 315 if (err) 316 goto free_elems; 317 318 if (htab_is_lru(htab)) 319 bpf_lru_populate(&htab->lru, htab->elems, 320 offsetof(struct htab_elem, lru_node), 321 htab->elem_size, num_entries); 322 else 323 pcpu_freelist_populate(&htab->freelist, 324 htab->elems + offsetof(struct htab_elem, fnode), 325 htab->elem_size, num_entries); 326 327 return 0; 328 329 free_elems: 330 htab_free_elems(htab); 331 return err; 332 } 333 334 static void prealloc_destroy(struct bpf_htab *htab) 335 { 336 htab_free_elems(htab); 337 338 if (htab_is_lru(htab)) 339 bpf_lru_destroy(&htab->lru); 340 else 341 pcpu_freelist_destroy(&htab->freelist); 342 } 343 344 static int alloc_extra_elems(struct bpf_htab *htab) 345 { 346 struct htab_elem *__percpu *pptr, *l_new; 347 struct pcpu_freelist_node *l; 348 int cpu; 349 350 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 351 GFP_USER | __GFP_NOWARN); 352 if (!pptr) 353 return -ENOMEM; 354 355 for_each_possible_cpu(cpu) { 356 l = pcpu_freelist_pop(&htab->freelist); 357 /* pop will succeed, since prealloc_init() 358 * preallocated extra num_possible_cpus elements 359 */ 360 l_new = container_of(l, struct htab_elem, fnode); 361 *per_cpu_ptr(pptr, cpu) = l_new; 362 } 363 htab->extra_elems = pptr; 364 return 0; 365 } 366 367 /* Called from syscall */ 368 static int htab_map_alloc_check(union bpf_attr *attr) 369 { 370 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 371 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 372 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 373 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 374 /* percpu_lru means each cpu has its own LRU list. 375 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 376 * the map's value itself is percpu. percpu_lru has 377 * nothing to do with the map's value. 378 */ 379 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 380 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 381 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 382 int numa_node = bpf_map_attr_numa_node(attr); 383 384 BUILD_BUG_ON(offsetof(struct htab_elem, htab) != 385 offsetof(struct htab_elem, hash_node.pprev)); 386 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 387 offsetof(struct htab_elem, hash_node.pprev)); 388 389 if (lru && !bpf_capable()) 390 /* LRU implementation is much complicated than other 391 * maps. Hence, limit to CAP_BPF. 392 */ 393 return -EPERM; 394 395 if (zero_seed && !capable(CAP_SYS_ADMIN)) 396 /* Guard against local DoS, and discourage production use. */ 397 return -EPERM; 398 399 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 400 !bpf_map_flags_access_ok(attr->map_flags)) 401 return -EINVAL; 402 403 if (!lru && percpu_lru) 404 return -EINVAL; 405 406 if (lru && !prealloc) 407 return -ENOTSUPP; 408 409 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 410 return -EINVAL; 411 412 /* check sanity of attributes. 413 * value_size == 0 may be allowed in the future to use map as a set 414 */ 415 if (attr->max_entries == 0 || attr->key_size == 0 || 416 attr->value_size == 0) 417 return -EINVAL; 418 419 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 420 sizeof(struct htab_elem)) 421 /* if key_size + value_size is bigger, the user space won't be 422 * able to access the elements via bpf syscall. This check 423 * also makes sure that the elem_size doesn't overflow and it's 424 * kmalloc-able later in htab_map_update_elem() 425 */ 426 return -E2BIG; 427 428 return 0; 429 } 430 431 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 432 { 433 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 434 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 435 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 436 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 437 /* percpu_lru means each cpu has its own LRU list. 438 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 439 * the map's value itself is percpu. percpu_lru has 440 * nothing to do with the map's value. 441 */ 442 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 443 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 444 struct bpf_htab *htab; 445 int err, i; 446 447 htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT); 448 if (!htab) 449 return ERR_PTR(-ENOMEM); 450 451 lockdep_register_key(&htab->lockdep_key); 452 453 bpf_map_init_from_attr(&htab->map, attr); 454 455 if (percpu_lru) { 456 /* ensure each CPU's lru list has >=1 elements. 457 * since we are at it, make each lru list has the same 458 * number of elements. 459 */ 460 htab->map.max_entries = roundup(attr->max_entries, 461 num_possible_cpus()); 462 if (htab->map.max_entries < attr->max_entries) 463 htab->map.max_entries = rounddown(attr->max_entries, 464 num_possible_cpus()); 465 } 466 467 /* hash table size must be power of 2 */ 468 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 469 470 htab->elem_size = sizeof(struct htab_elem) + 471 round_up(htab->map.key_size, 8); 472 if (percpu) 473 htab->elem_size += sizeof(void *); 474 else 475 htab->elem_size += round_up(htab->map.value_size, 8); 476 477 err = -E2BIG; 478 /* prevent zero size kmalloc and check for u32 overflow */ 479 if (htab->n_buckets == 0 || 480 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 481 goto free_htab; 482 483 err = -ENOMEM; 484 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 485 sizeof(struct bucket), 486 htab->map.numa_node); 487 if (!htab->buckets) 488 goto free_htab; 489 490 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 491 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 492 sizeof(int), 493 sizeof(int), 494 GFP_USER); 495 if (!htab->map_locked[i]) 496 goto free_map_locked; 497 } 498 499 if (htab->map.map_flags & BPF_F_ZERO_SEED) 500 htab->hashrnd = 0; 501 else 502 htab->hashrnd = get_random_int(); 503 504 htab_init_buckets(htab); 505 506 if (prealloc) { 507 err = prealloc_init(htab); 508 if (err) 509 goto free_map_locked; 510 511 if (!percpu && !lru) { 512 /* lru itself can remove the least used element, so 513 * there is no need for an extra elem during map_update. 514 */ 515 err = alloc_extra_elems(htab); 516 if (err) 517 goto free_prealloc; 518 } 519 } 520 521 return &htab->map; 522 523 free_prealloc: 524 prealloc_destroy(htab); 525 free_map_locked: 526 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 527 free_percpu(htab->map_locked[i]); 528 bpf_map_area_free(htab->buckets); 529 free_htab: 530 lockdep_unregister_key(&htab->lockdep_key); 531 kfree(htab); 532 return ERR_PTR(err); 533 } 534 535 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 536 { 537 return jhash(key, key_len, hashrnd); 538 } 539 540 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 541 { 542 return &htab->buckets[hash & (htab->n_buckets - 1)]; 543 } 544 545 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 546 { 547 return &__select_bucket(htab, hash)->head; 548 } 549 550 /* this lookup function can only be called with bucket lock taken */ 551 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 552 void *key, u32 key_size) 553 { 554 struct hlist_nulls_node *n; 555 struct htab_elem *l; 556 557 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 558 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 559 return l; 560 561 return NULL; 562 } 563 564 /* can be called without bucket lock. it will repeat the loop in 565 * the unlikely event when elements moved from one bucket into another 566 * while link list is being walked 567 */ 568 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 569 u32 hash, void *key, 570 u32 key_size, u32 n_buckets) 571 { 572 struct hlist_nulls_node *n; 573 struct htab_elem *l; 574 575 again: 576 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 577 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 578 return l; 579 580 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 581 goto again; 582 583 return NULL; 584 } 585 586 /* Called from syscall or from eBPF program directly, so 587 * arguments have to match bpf_map_lookup_elem() exactly. 588 * The return value is adjusted by BPF instructions 589 * in htab_map_gen_lookup(). 590 */ 591 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 592 { 593 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 594 struct hlist_nulls_head *head; 595 struct htab_elem *l; 596 u32 hash, key_size; 597 598 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 599 600 key_size = map->key_size; 601 602 hash = htab_map_hash(key, key_size, htab->hashrnd); 603 604 head = select_bucket(htab, hash); 605 606 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 607 608 return l; 609 } 610 611 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 612 { 613 struct htab_elem *l = __htab_map_lookup_elem(map, key); 614 615 if (l) 616 return l->key + round_up(map->key_size, 8); 617 618 return NULL; 619 } 620 621 /* inline bpf_map_lookup_elem() call. 622 * Instead of: 623 * bpf_prog 624 * bpf_map_lookup_elem 625 * map->ops->map_lookup_elem 626 * htab_map_lookup_elem 627 * __htab_map_lookup_elem 628 * do: 629 * bpf_prog 630 * __htab_map_lookup_elem 631 */ 632 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 633 { 634 struct bpf_insn *insn = insn_buf; 635 const int ret = BPF_REG_0; 636 637 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 638 (void *(*)(struct bpf_map *map, void *key))NULL)); 639 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 640 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 641 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 642 offsetof(struct htab_elem, key) + 643 round_up(map->key_size, 8)); 644 return insn - insn_buf; 645 } 646 647 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 648 void *key, const bool mark) 649 { 650 struct htab_elem *l = __htab_map_lookup_elem(map, key); 651 652 if (l) { 653 if (mark) 654 bpf_lru_node_set_ref(&l->lru_node); 655 return l->key + round_up(map->key_size, 8); 656 } 657 658 return NULL; 659 } 660 661 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 662 { 663 return __htab_lru_map_lookup_elem(map, key, true); 664 } 665 666 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 667 { 668 return __htab_lru_map_lookup_elem(map, key, false); 669 } 670 671 static int htab_lru_map_gen_lookup(struct bpf_map *map, 672 struct bpf_insn *insn_buf) 673 { 674 struct bpf_insn *insn = insn_buf; 675 const int ret = BPF_REG_0; 676 const int ref_reg = BPF_REG_1; 677 678 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 679 (void *(*)(struct bpf_map *map, void *key))NULL)); 680 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 681 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 682 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 683 offsetof(struct htab_elem, lru_node) + 684 offsetof(struct bpf_lru_node, ref)); 685 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 686 *insn++ = BPF_ST_MEM(BPF_B, ret, 687 offsetof(struct htab_elem, lru_node) + 688 offsetof(struct bpf_lru_node, ref), 689 1); 690 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 691 offsetof(struct htab_elem, key) + 692 round_up(map->key_size, 8)); 693 return insn - insn_buf; 694 } 695 696 /* It is called from the bpf_lru_list when the LRU needs to delete 697 * older elements from the htab. 698 */ 699 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 700 { 701 struct bpf_htab *htab = (struct bpf_htab *)arg; 702 struct htab_elem *l = NULL, *tgt_l; 703 struct hlist_nulls_head *head; 704 struct hlist_nulls_node *n; 705 unsigned long flags; 706 struct bucket *b; 707 int ret; 708 709 tgt_l = container_of(node, struct htab_elem, lru_node); 710 b = __select_bucket(htab, tgt_l->hash); 711 head = &b->head; 712 713 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 714 if (ret) 715 return false; 716 717 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 718 if (l == tgt_l) { 719 hlist_nulls_del_rcu(&l->hash_node); 720 break; 721 } 722 723 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 724 725 return l == tgt_l; 726 } 727 728 /* Called from syscall */ 729 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 730 { 731 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 732 struct hlist_nulls_head *head; 733 struct htab_elem *l, *next_l; 734 u32 hash, key_size; 735 int i = 0; 736 737 WARN_ON_ONCE(!rcu_read_lock_held()); 738 739 key_size = map->key_size; 740 741 if (!key) 742 goto find_first_elem; 743 744 hash = htab_map_hash(key, key_size, htab->hashrnd); 745 746 head = select_bucket(htab, hash); 747 748 /* lookup the key */ 749 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 750 751 if (!l) 752 goto find_first_elem; 753 754 /* key was found, get next key in the same bucket */ 755 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 756 struct htab_elem, hash_node); 757 758 if (next_l) { 759 /* if next elem in this hash list is non-zero, just return it */ 760 memcpy(next_key, next_l->key, key_size); 761 return 0; 762 } 763 764 /* no more elements in this hash list, go to the next bucket */ 765 i = hash & (htab->n_buckets - 1); 766 i++; 767 768 find_first_elem: 769 /* iterate over buckets */ 770 for (; i < htab->n_buckets; i++) { 771 head = select_bucket(htab, i); 772 773 /* pick first element in the bucket */ 774 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 775 struct htab_elem, hash_node); 776 if (next_l) { 777 /* if it's not empty, just return it */ 778 memcpy(next_key, next_l->key, key_size); 779 return 0; 780 } 781 } 782 783 /* iterated over all buckets and all elements */ 784 return -ENOENT; 785 } 786 787 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 788 { 789 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 790 free_percpu(htab_elem_get_ptr(l, htab->map.key_size)); 791 kfree(l); 792 } 793 794 static void htab_elem_free_rcu(struct rcu_head *head) 795 { 796 struct htab_elem *l = container_of(head, struct htab_elem, rcu); 797 struct bpf_htab *htab = l->htab; 798 799 htab_elem_free(htab, l); 800 } 801 802 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 803 { 804 struct bpf_map *map = &htab->map; 805 void *ptr; 806 807 if (map->ops->map_fd_put_ptr) { 808 ptr = fd_htab_map_get_ptr(map, l); 809 map->ops->map_fd_put_ptr(ptr); 810 } 811 } 812 813 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 814 { 815 htab_put_fd_value(htab, l); 816 817 if (htab_is_prealloc(htab)) { 818 __pcpu_freelist_push(&htab->freelist, &l->fnode); 819 } else { 820 atomic_dec(&htab->count); 821 l->htab = htab; 822 call_rcu(&l->rcu, htab_elem_free_rcu); 823 } 824 } 825 826 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 827 void *value, bool onallcpus) 828 { 829 if (!onallcpus) { 830 /* copy true value_size bytes */ 831 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 832 } else { 833 u32 size = round_up(htab->map.value_size, 8); 834 int off = 0, cpu; 835 836 for_each_possible_cpu(cpu) { 837 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 838 value + off, size); 839 off += size; 840 } 841 } 842 } 843 844 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 845 void *value, bool onallcpus) 846 { 847 /* When using prealloc and not setting the initial value on all cpus, 848 * zero-fill element values for other cpus (just as what happens when 849 * not using prealloc). Otherwise, bpf program has no way to ensure 850 * known initial values for cpus other than current one 851 * (onallcpus=false always when coming from bpf prog). 852 */ 853 if (htab_is_prealloc(htab) && !onallcpus) { 854 u32 size = round_up(htab->map.value_size, 8); 855 int current_cpu = raw_smp_processor_id(); 856 int cpu; 857 858 for_each_possible_cpu(cpu) { 859 if (cpu == current_cpu) 860 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value, 861 size); 862 else 863 memset(per_cpu_ptr(pptr, cpu), 0, size); 864 } 865 } else { 866 pcpu_copy_value(htab, pptr, value, onallcpus); 867 } 868 } 869 870 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 871 { 872 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 873 BITS_PER_LONG == 64; 874 } 875 876 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 877 void *value, u32 key_size, u32 hash, 878 bool percpu, bool onallcpus, 879 struct htab_elem *old_elem) 880 { 881 u32 size = htab->map.value_size; 882 bool prealloc = htab_is_prealloc(htab); 883 struct htab_elem *l_new, **pl_new; 884 void __percpu *pptr; 885 886 if (prealloc) { 887 if (old_elem) { 888 /* if we're updating the existing element, 889 * use per-cpu extra elems to avoid freelist_pop/push 890 */ 891 pl_new = this_cpu_ptr(htab->extra_elems); 892 l_new = *pl_new; 893 htab_put_fd_value(htab, old_elem); 894 *pl_new = old_elem; 895 } else { 896 struct pcpu_freelist_node *l; 897 898 l = __pcpu_freelist_pop(&htab->freelist); 899 if (!l) 900 return ERR_PTR(-E2BIG); 901 l_new = container_of(l, struct htab_elem, fnode); 902 } 903 } else { 904 if (atomic_inc_return(&htab->count) > htab->map.max_entries) 905 if (!old_elem) { 906 /* when map is full and update() is replacing 907 * old element, it's ok to allocate, since 908 * old element will be freed immediately. 909 * Otherwise return an error 910 */ 911 l_new = ERR_PTR(-E2BIG); 912 goto dec_count; 913 } 914 l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size, 915 GFP_ATOMIC | __GFP_NOWARN, 916 htab->map.numa_node); 917 if (!l_new) { 918 l_new = ERR_PTR(-ENOMEM); 919 goto dec_count; 920 } 921 check_and_init_map_lock(&htab->map, 922 l_new->key + round_up(key_size, 8)); 923 } 924 925 memcpy(l_new->key, key, key_size); 926 if (percpu) { 927 size = round_up(size, 8); 928 if (prealloc) { 929 pptr = htab_elem_get_ptr(l_new, key_size); 930 } else { 931 /* alloc_percpu zero-fills */ 932 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 933 GFP_ATOMIC | __GFP_NOWARN); 934 if (!pptr) { 935 kfree(l_new); 936 l_new = ERR_PTR(-ENOMEM); 937 goto dec_count; 938 } 939 } 940 941 pcpu_init_value(htab, pptr, value, onallcpus); 942 943 if (!prealloc) 944 htab_elem_set_ptr(l_new, key_size, pptr); 945 } else if (fd_htab_map_needs_adjust(htab)) { 946 size = round_up(size, 8); 947 memcpy(l_new->key + round_up(key_size, 8), value, size); 948 } else { 949 copy_map_value(&htab->map, 950 l_new->key + round_up(key_size, 8), 951 value); 952 } 953 954 l_new->hash = hash; 955 return l_new; 956 dec_count: 957 atomic_dec(&htab->count); 958 return l_new; 959 } 960 961 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 962 u64 map_flags) 963 { 964 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 965 /* elem already exists */ 966 return -EEXIST; 967 968 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 969 /* elem doesn't exist, cannot update it */ 970 return -ENOENT; 971 972 return 0; 973 } 974 975 /* Called from syscall or from eBPF program */ 976 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 977 u64 map_flags) 978 { 979 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 980 struct htab_elem *l_new = NULL, *l_old; 981 struct hlist_nulls_head *head; 982 unsigned long flags; 983 struct bucket *b; 984 u32 key_size, hash; 985 int ret; 986 987 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 988 /* unknown flags */ 989 return -EINVAL; 990 991 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 992 993 key_size = map->key_size; 994 995 hash = htab_map_hash(key, key_size, htab->hashrnd); 996 997 b = __select_bucket(htab, hash); 998 head = &b->head; 999 1000 if (unlikely(map_flags & BPF_F_LOCK)) { 1001 if (unlikely(!map_value_has_spin_lock(map))) 1002 return -EINVAL; 1003 /* find an element without taking the bucket lock */ 1004 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1005 htab->n_buckets); 1006 ret = check_flags(htab, l_old, map_flags); 1007 if (ret) 1008 return ret; 1009 if (l_old) { 1010 /* grab the element lock and update value in place */ 1011 copy_map_value_locked(map, 1012 l_old->key + round_up(key_size, 8), 1013 value, false); 1014 return 0; 1015 } 1016 /* fall through, grab the bucket lock and lookup again. 1017 * 99.9% chance that the element won't be found, 1018 * but second lookup under lock has to be done. 1019 */ 1020 } 1021 1022 ret = htab_lock_bucket(htab, b, hash, &flags); 1023 if (ret) 1024 return ret; 1025 1026 l_old = lookup_elem_raw(head, hash, key, key_size); 1027 1028 ret = check_flags(htab, l_old, map_flags); 1029 if (ret) 1030 goto err; 1031 1032 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1033 /* first lookup without the bucket lock didn't find the element, 1034 * but second lookup with the bucket lock found it. 1035 * This case is highly unlikely, but has to be dealt with: 1036 * grab the element lock in addition to the bucket lock 1037 * and update element in place 1038 */ 1039 copy_map_value_locked(map, 1040 l_old->key + round_up(key_size, 8), 1041 value, false); 1042 ret = 0; 1043 goto err; 1044 } 1045 1046 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1047 l_old); 1048 if (IS_ERR(l_new)) { 1049 /* all pre-allocated elements are in use or memory exhausted */ 1050 ret = PTR_ERR(l_new); 1051 goto err; 1052 } 1053 1054 /* add new element to the head of the list, so that 1055 * concurrent search will find it before old elem 1056 */ 1057 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1058 if (l_old) { 1059 hlist_nulls_del_rcu(&l_old->hash_node); 1060 if (!htab_is_prealloc(htab)) 1061 free_htab_elem(htab, l_old); 1062 } 1063 ret = 0; 1064 err: 1065 htab_unlock_bucket(htab, b, hash, flags); 1066 return ret; 1067 } 1068 1069 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1070 u64 map_flags) 1071 { 1072 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1073 struct htab_elem *l_new, *l_old = NULL; 1074 struct hlist_nulls_head *head; 1075 unsigned long flags; 1076 struct bucket *b; 1077 u32 key_size, hash; 1078 int ret; 1079 1080 if (unlikely(map_flags > BPF_EXIST)) 1081 /* unknown flags */ 1082 return -EINVAL; 1083 1084 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 1085 1086 key_size = map->key_size; 1087 1088 hash = htab_map_hash(key, key_size, htab->hashrnd); 1089 1090 b = __select_bucket(htab, hash); 1091 head = &b->head; 1092 1093 /* For LRU, we need to alloc before taking bucket's 1094 * spinlock because getting free nodes from LRU may need 1095 * to remove older elements from htab and this removal 1096 * operation will need a bucket lock. 1097 */ 1098 l_new = prealloc_lru_pop(htab, key, hash); 1099 if (!l_new) 1100 return -ENOMEM; 1101 memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size); 1102 1103 ret = htab_lock_bucket(htab, b, hash, &flags); 1104 if (ret) 1105 return ret; 1106 1107 l_old = lookup_elem_raw(head, hash, key, key_size); 1108 1109 ret = check_flags(htab, l_old, map_flags); 1110 if (ret) 1111 goto err; 1112 1113 /* add new element to the head of the list, so that 1114 * concurrent search will find it before old elem 1115 */ 1116 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1117 if (l_old) { 1118 bpf_lru_node_set_ref(&l_new->lru_node); 1119 hlist_nulls_del_rcu(&l_old->hash_node); 1120 } 1121 ret = 0; 1122 1123 err: 1124 htab_unlock_bucket(htab, b, hash, flags); 1125 1126 if (ret) 1127 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1128 else if (l_old) 1129 bpf_lru_push_free(&htab->lru, &l_old->lru_node); 1130 1131 return ret; 1132 } 1133 1134 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1135 void *value, u64 map_flags, 1136 bool onallcpus) 1137 { 1138 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1139 struct htab_elem *l_new = NULL, *l_old; 1140 struct hlist_nulls_head *head; 1141 unsigned long flags; 1142 struct bucket *b; 1143 u32 key_size, hash; 1144 int ret; 1145 1146 if (unlikely(map_flags > BPF_EXIST)) 1147 /* unknown flags */ 1148 return -EINVAL; 1149 1150 WARN_ON_ONCE(!rcu_read_lock_held()); 1151 1152 key_size = map->key_size; 1153 1154 hash = htab_map_hash(key, key_size, htab->hashrnd); 1155 1156 b = __select_bucket(htab, hash); 1157 head = &b->head; 1158 1159 ret = htab_lock_bucket(htab, b, hash, &flags); 1160 if (ret) 1161 return ret; 1162 1163 l_old = lookup_elem_raw(head, hash, key, key_size); 1164 1165 ret = check_flags(htab, l_old, map_flags); 1166 if (ret) 1167 goto err; 1168 1169 if (l_old) { 1170 /* per-cpu hash map can update value in-place */ 1171 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1172 value, onallcpus); 1173 } else { 1174 l_new = alloc_htab_elem(htab, key, value, key_size, 1175 hash, true, onallcpus, NULL); 1176 if (IS_ERR(l_new)) { 1177 ret = PTR_ERR(l_new); 1178 goto err; 1179 } 1180 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1181 } 1182 ret = 0; 1183 err: 1184 htab_unlock_bucket(htab, b, hash, flags); 1185 return ret; 1186 } 1187 1188 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1189 void *value, u64 map_flags, 1190 bool onallcpus) 1191 { 1192 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1193 struct htab_elem *l_new = NULL, *l_old; 1194 struct hlist_nulls_head *head; 1195 unsigned long flags; 1196 struct bucket *b; 1197 u32 key_size, hash; 1198 int ret; 1199 1200 if (unlikely(map_flags > BPF_EXIST)) 1201 /* unknown flags */ 1202 return -EINVAL; 1203 1204 WARN_ON_ONCE(!rcu_read_lock_held()); 1205 1206 key_size = map->key_size; 1207 1208 hash = htab_map_hash(key, key_size, htab->hashrnd); 1209 1210 b = __select_bucket(htab, hash); 1211 head = &b->head; 1212 1213 /* For LRU, we need to alloc before taking bucket's 1214 * spinlock because LRU's elem alloc may need 1215 * to remove older elem from htab and this removal 1216 * operation will need a bucket lock. 1217 */ 1218 if (map_flags != BPF_EXIST) { 1219 l_new = prealloc_lru_pop(htab, key, hash); 1220 if (!l_new) 1221 return -ENOMEM; 1222 } 1223 1224 ret = htab_lock_bucket(htab, b, hash, &flags); 1225 if (ret) 1226 return ret; 1227 1228 l_old = lookup_elem_raw(head, hash, key, key_size); 1229 1230 ret = check_flags(htab, l_old, map_flags); 1231 if (ret) 1232 goto err; 1233 1234 if (l_old) { 1235 bpf_lru_node_set_ref(&l_old->lru_node); 1236 1237 /* per-cpu hash map can update value in-place */ 1238 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1239 value, onallcpus); 1240 } else { 1241 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1242 value, onallcpus); 1243 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1244 l_new = NULL; 1245 } 1246 ret = 0; 1247 err: 1248 htab_unlock_bucket(htab, b, hash, flags); 1249 if (l_new) 1250 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1251 return ret; 1252 } 1253 1254 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1255 void *value, u64 map_flags) 1256 { 1257 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1258 } 1259 1260 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1261 void *value, u64 map_flags) 1262 { 1263 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1264 false); 1265 } 1266 1267 /* Called from syscall or from eBPF program */ 1268 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1269 { 1270 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1271 struct hlist_nulls_head *head; 1272 struct bucket *b; 1273 struct htab_elem *l; 1274 unsigned long flags; 1275 u32 hash, key_size; 1276 int ret; 1277 1278 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 1279 1280 key_size = map->key_size; 1281 1282 hash = htab_map_hash(key, key_size, htab->hashrnd); 1283 b = __select_bucket(htab, hash); 1284 head = &b->head; 1285 1286 ret = htab_lock_bucket(htab, b, hash, &flags); 1287 if (ret) 1288 return ret; 1289 1290 l = lookup_elem_raw(head, hash, key, key_size); 1291 1292 if (l) { 1293 hlist_nulls_del_rcu(&l->hash_node); 1294 free_htab_elem(htab, l); 1295 } else { 1296 ret = -ENOENT; 1297 } 1298 1299 htab_unlock_bucket(htab, b, hash, flags); 1300 return ret; 1301 } 1302 1303 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1304 { 1305 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1306 struct hlist_nulls_head *head; 1307 struct bucket *b; 1308 struct htab_elem *l; 1309 unsigned long flags; 1310 u32 hash, key_size; 1311 int ret; 1312 1313 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 1314 1315 key_size = map->key_size; 1316 1317 hash = htab_map_hash(key, key_size, htab->hashrnd); 1318 b = __select_bucket(htab, hash); 1319 head = &b->head; 1320 1321 ret = htab_lock_bucket(htab, b, hash, &flags); 1322 if (ret) 1323 return ret; 1324 1325 l = lookup_elem_raw(head, hash, key, key_size); 1326 1327 if (l) 1328 hlist_nulls_del_rcu(&l->hash_node); 1329 else 1330 ret = -ENOENT; 1331 1332 htab_unlock_bucket(htab, b, hash, flags); 1333 if (l) 1334 bpf_lru_push_free(&htab->lru, &l->lru_node); 1335 return ret; 1336 } 1337 1338 static void delete_all_elements(struct bpf_htab *htab) 1339 { 1340 int i; 1341 1342 for (i = 0; i < htab->n_buckets; i++) { 1343 struct hlist_nulls_head *head = select_bucket(htab, i); 1344 struct hlist_nulls_node *n; 1345 struct htab_elem *l; 1346 1347 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1348 hlist_nulls_del_rcu(&l->hash_node); 1349 htab_elem_free(htab, l); 1350 } 1351 } 1352 } 1353 1354 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1355 static void htab_map_free(struct bpf_map *map) 1356 { 1357 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1358 int i; 1359 1360 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1361 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1362 * There is no need to synchronize_rcu() here to protect map elements. 1363 */ 1364 1365 /* some of free_htab_elem() callbacks for elements of this map may 1366 * not have executed. Wait for them. 1367 */ 1368 rcu_barrier(); 1369 if (!htab_is_prealloc(htab)) 1370 delete_all_elements(htab); 1371 else 1372 prealloc_destroy(htab); 1373 1374 free_percpu(htab->extra_elems); 1375 bpf_map_area_free(htab->buckets); 1376 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1377 free_percpu(htab->map_locked[i]); 1378 lockdep_unregister_key(&htab->lockdep_key); 1379 kfree(htab); 1380 } 1381 1382 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1383 struct seq_file *m) 1384 { 1385 void *value; 1386 1387 rcu_read_lock(); 1388 1389 value = htab_map_lookup_elem(map, key); 1390 if (!value) { 1391 rcu_read_unlock(); 1392 return; 1393 } 1394 1395 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1396 seq_puts(m, ": "); 1397 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1398 seq_puts(m, "\n"); 1399 1400 rcu_read_unlock(); 1401 } 1402 1403 static int 1404 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1405 const union bpf_attr *attr, 1406 union bpf_attr __user *uattr, 1407 bool do_delete, bool is_lru_map, 1408 bool is_percpu) 1409 { 1410 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1411 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1412 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1413 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1414 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1415 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1416 u32 batch, max_count, size, bucket_size; 1417 struct htab_elem *node_to_free = NULL; 1418 u64 elem_map_flags, map_flags; 1419 struct hlist_nulls_head *head; 1420 struct hlist_nulls_node *n; 1421 unsigned long flags = 0; 1422 bool locked = false; 1423 struct htab_elem *l; 1424 struct bucket *b; 1425 int ret = 0; 1426 1427 elem_map_flags = attr->batch.elem_flags; 1428 if ((elem_map_flags & ~BPF_F_LOCK) || 1429 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 1430 return -EINVAL; 1431 1432 map_flags = attr->batch.flags; 1433 if (map_flags) 1434 return -EINVAL; 1435 1436 max_count = attr->batch.count; 1437 if (!max_count) 1438 return 0; 1439 1440 if (put_user(0, &uattr->batch.count)) 1441 return -EFAULT; 1442 1443 batch = 0; 1444 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1445 return -EFAULT; 1446 1447 if (batch >= htab->n_buckets) 1448 return -ENOENT; 1449 1450 key_size = htab->map.key_size; 1451 roundup_key_size = round_up(htab->map.key_size, 8); 1452 value_size = htab->map.value_size; 1453 size = round_up(value_size, 8); 1454 if (is_percpu) 1455 value_size = size * num_possible_cpus(); 1456 total = 0; 1457 /* while experimenting with hash tables with sizes ranging from 10 to 1458 * 1000, it was observed that a bucket can have upto 5 entries. 1459 */ 1460 bucket_size = 5; 1461 1462 alloc: 1463 /* We cannot do copy_from_user or copy_to_user inside 1464 * the rcu_read_lock. Allocate enough space here. 1465 */ 1466 keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN); 1467 values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN); 1468 if (!keys || !values) { 1469 ret = -ENOMEM; 1470 goto after_loop; 1471 } 1472 1473 again: 1474 bpf_disable_instrumentation(); 1475 rcu_read_lock(); 1476 again_nocopy: 1477 dst_key = keys; 1478 dst_val = values; 1479 b = &htab->buckets[batch]; 1480 head = &b->head; 1481 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1482 if (locked) { 1483 ret = htab_lock_bucket(htab, b, batch, &flags); 1484 if (ret) 1485 goto next_batch; 1486 } 1487 1488 bucket_cnt = 0; 1489 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1490 bucket_cnt++; 1491 1492 if (bucket_cnt && !locked) { 1493 locked = true; 1494 goto again_nocopy; 1495 } 1496 1497 if (bucket_cnt > (max_count - total)) { 1498 if (total == 0) 1499 ret = -ENOSPC; 1500 /* Note that since bucket_cnt > 0 here, it is implicit 1501 * that the locked was grabbed, so release it. 1502 */ 1503 htab_unlock_bucket(htab, b, batch, flags); 1504 rcu_read_unlock(); 1505 bpf_enable_instrumentation(); 1506 goto after_loop; 1507 } 1508 1509 if (bucket_cnt > bucket_size) { 1510 bucket_size = bucket_cnt; 1511 /* Note that since bucket_cnt > 0 here, it is implicit 1512 * that the locked was grabbed, so release it. 1513 */ 1514 htab_unlock_bucket(htab, b, batch, flags); 1515 rcu_read_unlock(); 1516 bpf_enable_instrumentation(); 1517 kvfree(keys); 1518 kvfree(values); 1519 goto alloc; 1520 } 1521 1522 /* Next block is only safe to run if you have grabbed the lock */ 1523 if (!locked) 1524 goto next_batch; 1525 1526 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1527 memcpy(dst_key, l->key, key_size); 1528 1529 if (is_percpu) { 1530 int off = 0, cpu; 1531 void __percpu *pptr; 1532 1533 pptr = htab_elem_get_ptr(l, map->key_size); 1534 for_each_possible_cpu(cpu) { 1535 bpf_long_memcpy(dst_val + off, 1536 per_cpu_ptr(pptr, cpu), size); 1537 off += size; 1538 } 1539 } else { 1540 value = l->key + roundup_key_size; 1541 if (elem_map_flags & BPF_F_LOCK) 1542 copy_map_value_locked(map, dst_val, value, 1543 true); 1544 else 1545 copy_map_value(map, dst_val, value); 1546 check_and_init_map_lock(map, dst_val); 1547 } 1548 if (do_delete) { 1549 hlist_nulls_del_rcu(&l->hash_node); 1550 1551 /* bpf_lru_push_free() will acquire lru_lock, which 1552 * may cause deadlock. See comments in function 1553 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1554 * after releasing the bucket lock. 1555 */ 1556 if (is_lru_map) { 1557 l->batch_flink = node_to_free; 1558 node_to_free = l; 1559 } else { 1560 free_htab_elem(htab, l); 1561 } 1562 } 1563 dst_key += key_size; 1564 dst_val += value_size; 1565 } 1566 1567 htab_unlock_bucket(htab, b, batch, flags); 1568 locked = false; 1569 1570 while (node_to_free) { 1571 l = node_to_free; 1572 node_to_free = node_to_free->batch_flink; 1573 bpf_lru_push_free(&htab->lru, &l->lru_node); 1574 } 1575 1576 next_batch: 1577 /* If we are not copying data, we can go to next bucket and avoid 1578 * unlocking the rcu. 1579 */ 1580 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1581 batch++; 1582 goto again_nocopy; 1583 } 1584 1585 rcu_read_unlock(); 1586 bpf_enable_instrumentation(); 1587 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1588 key_size * bucket_cnt) || 1589 copy_to_user(uvalues + total * value_size, values, 1590 value_size * bucket_cnt))) { 1591 ret = -EFAULT; 1592 goto after_loop; 1593 } 1594 1595 total += bucket_cnt; 1596 batch++; 1597 if (batch >= htab->n_buckets) { 1598 ret = -ENOENT; 1599 goto after_loop; 1600 } 1601 goto again; 1602 1603 after_loop: 1604 if (ret == -EFAULT) 1605 goto out; 1606 1607 /* copy # of entries and next batch */ 1608 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1609 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1610 put_user(total, &uattr->batch.count)) 1611 ret = -EFAULT; 1612 1613 out: 1614 kvfree(keys); 1615 kvfree(values); 1616 return ret; 1617 } 1618 1619 static int 1620 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1621 union bpf_attr __user *uattr) 1622 { 1623 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1624 false, true); 1625 } 1626 1627 static int 1628 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1629 const union bpf_attr *attr, 1630 union bpf_attr __user *uattr) 1631 { 1632 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1633 false, true); 1634 } 1635 1636 static int 1637 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1638 union bpf_attr __user *uattr) 1639 { 1640 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1641 false, false); 1642 } 1643 1644 static int 1645 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1646 const union bpf_attr *attr, 1647 union bpf_attr __user *uattr) 1648 { 1649 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1650 false, false); 1651 } 1652 1653 static int 1654 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1655 const union bpf_attr *attr, 1656 union bpf_attr __user *uattr) 1657 { 1658 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1659 true, true); 1660 } 1661 1662 static int 1663 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1664 const union bpf_attr *attr, 1665 union bpf_attr __user *uattr) 1666 { 1667 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1668 true, true); 1669 } 1670 1671 static int 1672 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1673 union bpf_attr __user *uattr) 1674 { 1675 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1676 true, false); 1677 } 1678 1679 static int 1680 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1681 const union bpf_attr *attr, 1682 union bpf_attr __user *uattr) 1683 { 1684 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1685 true, false); 1686 } 1687 1688 struct bpf_iter_seq_hash_map_info { 1689 struct bpf_map *map; 1690 struct bpf_htab *htab; 1691 void *percpu_value_buf; // non-zero means percpu hash 1692 u32 bucket_id; 1693 u32 skip_elems; 1694 }; 1695 1696 static struct htab_elem * 1697 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1698 struct htab_elem *prev_elem) 1699 { 1700 const struct bpf_htab *htab = info->htab; 1701 u32 skip_elems = info->skip_elems; 1702 u32 bucket_id = info->bucket_id; 1703 struct hlist_nulls_head *head; 1704 struct hlist_nulls_node *n; 1705 struct htab_elem *elem; 1706 struct bucket *b; 1707 u32 i, count; 1708 1709 if (bucket_id >= htab->n_buckets) 1710 return NULL; 1711 1712 /* try to find next elem in the same bucket */ 1713 if (prev_elem) { 1714 /* no update/deletion on this bucket, prev_elem should be still valid 1715 * and we won't skip elements. 1716 */ 1717 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1718 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1719 if (elem) 1720 return elem; 1721 1722 /* not found, unlock and go to the next bucket */ 1723 b = &htab->buckets[bucket_id++]; 1724 rcu_read_unlock(); 1725 skip_elems = 0; 1726 } 1727 1728 for (i = bucket_id; i < htab->n_buckets; i++) { 1729 b = &htab->buckets[i]; 1730 rcu_read_lock(); 1731 1732 count = 0; 1733 head = &b->head; 1734 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 1735 if (count >= skip_elems) { 1736 info->bucket_id = i; 1737 info->skip_elems = count; 1738 return elem; 1739 } 1740 count++; 1741 } 1742 1743 rcu_read_unlock(); 1744 skip_elems = 0; 1745 } 1746 1747 info->bucket_id = i; 1748 info->skip_elems = 0; 1749 return NULL; 1750 } 1751 1752 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 1753 { 1754 struct bpf_iter_seq_hash_map_info *info = seq->private; 1755 struct htab_elem *elem; 1756 1757 elem = bpf_hash_map_seq_find_next(info, NULL); 1758 if (!elem) 1759 return NULL; 1760 1761 if (*pos == 0) 1762 ++*pos; 1763 return elem; 1764 } 1765 1766 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1767 { 1768 struct bpf_iter_seq_hash_map_info *info = seq->private; 1769 1770 ++*pos; 1771 ++info->skip_elems; 1772 return bpf_hash_map_seq_find_next(info, v); 1773 } 1774 1775 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 1776 { 1777 struct bpf_iter_seq_hash_map_info *info = seq->private; 1778 u32 roundup_key_size, roundup_value_size; 1779 struct bpf_iter__bpf_map_elem ctx = {}; 1780 struct bpf_map *map = info->map; 1781 struct bpf_iter_meta meta; 1782 int ret = 0, off = 0, cpu; 1783 struct bpf_prog *prog; 1784 void __percpu *pptr; 1785 1786 meta.seq = seq; 1787 prog = bpf_iter_get_info(&meta, elem == NULL); 1788 if (prog) { 1789 ctx.meta = &meta; 1790 ctx.map = info->map; 1791 if (elem) { 1792 roundup_key_size = round_up(map->key_size, 8); 1793 ctx.key = elem->key; 1794 if (!info->percpu_value_buf) { 1795 ctx.value = elem->key + roundup_key_size; 1796 } else { 1797 roundup_value_size = round_up(map->value_size, 8); 1798 pptr = htab_elem_get_ptr(elem, map->key_size); 1799 for_each_possible_cpu(cpu) { 1800 bpf_long_memcpy(info->percpu_value_buf + off, 1801 per_cpu_ptr(pptr, cpu), 1802 roundup_value_size); 1803 off += roundup_value_size; 1804 } 1805 ctx.value = info->percpu_value_buf; 1806 } 1807 } 1808 ret = bpf_iter_run_prog(prog, &ctx); 1809 } 1810 1811 return ret; 1812 } 1813 1814 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 1815 { 1816 return __bpf_hash_map_seq_show(seq, v); 1817 } 1818 1819 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 1820 { 1821 if (!v) 1822 (void)__bpf_hash_map_seq_show(seq, NULL); 1823 else 1824 rcu_read_unlock(); 1825 } 1826 1827 static int bpf_iter_init_hash_map(void *priv_data, 1828 struct bpf_iter_aux_info *aux) 1829 { 1830 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 1831 struct bpf_map *map = aux->map; 1832 void *value_buf; 1833 u32 buf_size; 1834 1835 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 1836 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 1837 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 1838 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 1839 if (!value_buf) 1840 return -ENOMEM; 1841 1842 seq_info->percpu_value_buf = value_buf; 1843 } 1844 1845 seq_info->map = map; 1846 seq_info->htab = container_of(map, struct bpf_htab, map); 1847 return 0; 1848 } 1849 1850 static void bpf_iter_fini_hash_map(void *priv_data) 1851 { 1852 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 1853 1854 kfree(seq_info->percpu_value_buf); 1855 } 1856 1857 static const struct seq_operations bpf_hash_map_seq_ops = { 1858 .start = bpf_hash_map_seq_start, 1859 .next = bpf_hash_map_seq_next, 1860 .stop = bpf_hash_map_seq_stop, 1861 .show = bpf_hash_map_seq_show, 1862 }; 1863 1864 static const struct bpf_iter_seq_info iter_seq_info = { 1865 .seq_ops = &bpf_hash_map_seq_ops, 1866 .init_seq_private = bpf_iter_init_hash_map, 1867 .fini_seq_private = bpf_iter_fini_hash_map, 1868 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 1869 }; 1870 1871 static int htab_map_btf_id; 1872 const struct bpf_map_ops htab_map_ops = { 1873 .map_meta_equal = bpf_map_meta_equal, 1874 .map_alloc_check = htab_map_alloc_check, 1875 .map_alloc = htab_map_alloc, 1876 .map_free = htab_map_free, 1877 .map_get_next_key = htab_map_get_next_key, 1878 .map_lookup_elem = htab_map_lookup_elem, 1879 .map_update_elem = htab_map_update_elem, 1880 .map_delete_elem = htab_map_delete_elem, 1881 .map_gen_lookup = htab_map_gen_lookup, 1882 .map_seq_show_elem = htab_map_seq_show_elem, 1883 BATCH_OPS(htab), 1884 .map_btf_name = "bpf_htab", 1885 .map_btf_id = &htab_map_btf_id, 1886 .iter_seq_info = &iter_seq_info, 1887 }; 1888 1889 static int htab_lru_map_btf_id; 1890 const struct bpf_map_ops htab_lru_map_ops = { 1891 .map_meta_equal = bpf_map_meta_equal, 1892 .map_alloc_check = htab_map_alloc_check, 1893 .map_alloc = htab_map_alloc, 1894 .map_free = htab_map_free, 1895 .map_get_next_key = htab_map_get_next_key, 1896 .map_lookup_elem = htab_lru_map_lookup_elem, 1897 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 1898 .map_update_elem = htab_lru_map_update_elem, 1899 .map_delete_elem = htab_lru_map_delete_elem, 1900 .map_gen_lookup = htab_lru_map_gen_lookup, 1901 .map_seq_show_elem = htab_map_seq_show_elem, 1902 BATCH_OPS(htab_lru), 1903 .map_btf_name = "bpf_htab", 1904 .map_btf_id = &htab_lru_map_btf_id, 1905 .iter_seq_info = &iter_seq_info, 1906 }; 1907 1908 /* Called from eBPF program */ 1909 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 1910 { 1911 struct htab_elem *l = __htab_map_lookup_elem(map, key); 1912 1913 if (l) 1914 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 1915 else 1916 return NULL; 1917 } 1918 1919 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 1920 { 1921 struct htab_elem *l = __htab_map_lookup_elem(map, key); 1922 1923 if (l) { 1924 bpf_lru_node_set_ref(&l->lru_node); 1925 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 1926 } 1927 1928 return NULL; 1929 } 1930 1931 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 1932 { 1933 struct htab_elem *l; 1934 void __percpu *pptr; 1935 int ret = -ENOENT; 1936 int cpu, off = 0; 1937 u32 size; 1938 1939 /* per_cpu areas are zero-filled and bpf programs can only 1940 * access 'value_size' of them, so copying rounded areas 1941 * will not leak any kernel data 1942 */ 1943 size = round_up(map->value_size, 8); 1944 rcu_read_lock(); 1945 l = __htab_map_lookup_elem(map, key); 1946 if (!l) 1947 goto out; 1948 /* We do not mark LRU map element here in order to not mess up 1949 * eviction heuristics when user space does a map walk. 1950 */ 1951 pptr = htab_elem_get_ptr(l, map->key_size); 1952 for_each_possible_cpu(cpu) { 1953 bpf_long_memcpy(value + off, 1954 per_cpu_ptr(pptr, cpu), size); 1955 off += size; 1956 } 1957 ret = 0; 1958 out: 1959 rcu_read_unlock(); 1960 return ret; 1961 } 1962 1963 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 1964 u64 map_flags) 1965 { 1966 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1967 int ret; 1968 1969 rcu_read_lock(); 1970 if (htab_is_lru(htab)) 1971 ret = __htab_lru_percpu_map_update_elem(map, key, value, 1972 map_flags, true); 1973 else 1974 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 1975 true); 1976 rcu_read_unlock(); 1977 1978 return ret; 1979 } 1980 1981 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 1982 struct seq_file *m) 1983 { 1984 struct htab_elem *l; 1985 void __percpu *pptr; 1986 int cpu; 1987 1988 rcu_read_lock(); 1989 1990 l = __htab_map_lookup_elem(map, key); 1991 if (!l) { 1992 rcu_read_unlock(); 1993 return; 1994 } 1995 1996 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1997 seq_puts(m, ": {\n"); 1998 pptr = htab_elem_get_ptr(l, map->key_size); 1999 for_each_possible_cpu(cpu) { 2000 seq_printf(m, "\tcpu%d: ", cpu); 2001 btf_type_seq_show(map->btf, map->btf_value_type_id, 2002 per_cpu_ptr(pptr, cpu), m); 2003 seq_puts(m, "\n"); 2004 } 2005 seq_puts(m, "}\n"); 2006 2007 rcu_read_unlock(); 2008 } 2009 2010 static int htab_percpu_map_btf_id; 2011 const struct bpf_map_ops htab_percpu_map_ops = { 2012 .map_meta_equal = bpf_map_meta_equal, 2013 .map_alloc_check = htab_map_alloc_check, 2014 .map_alloc = htab_map_alloc, 2015 .map_free = htab_map_free, 2016 .map_get_next_key = htab_map_get_next_key, 2017 .map_lookup_elem = htab_percpu_map_lookup_elem, 2018 .map_update_elem = htab_percpu_map_update_elem, 2019 .map_delete_elem = htab_map_delete_elem, 2020 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2021 BATCH_OPS(htab_percpu), 2022 .map_btf_name = "bpf_htab", 2023 .map_btf_id = &htab_percpu_map_btf_id, 2024 .iter_seq_info = &iter_seq_info, 2025 }; 2026 2027 static int htab_lru_percpu_map_btf_id; 2028 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2029 .map_meta_equal = bpf_map_meta_equal, 2030 .map_alloc_check = htab_map_alloc_check, 2031 .map_alloc = htab_map_alloc, 2032 .map_free = htab_map_free, 2033 .map_get_next_key = htab_map_get_next_key, 2034 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2035 .map_update_elem = htab_lru_percpu_map_update_elem, 2036 .map_delete_elem = htab_lru_map_delete_elem, 2037 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2038 BATCH_OPS(htab_lru_percpu), 2039 .map_btf_name = "bpf_htab", 2040 .map_btf_id = &htab_lru_percpu_map_btf_id, 2041 .iter_seq_info = &iter_seq_info, 2042 }; 2043 2044 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2045 { 2046 if (attr->value_size != sizeof(u32)) 2047 return -EINVAL; 2048 return htab_map_alloc_check(attr); 2049 } 2050 2051 static void fd_htab_map_free(struct bpf_map *map) 2052 { 2053 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2054 struct hlist_nulls_node *n; 2055 struct hlist_nulls_head *head; 2056 struct htab_elem *l; 2057 int i; 2058 2059 for (i = 0; i < htab->n_buckets; i++) { 2060 head = select_bucket(htab, i); 2061 2062 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2063 void *ptr = fd_htab_map_get_ptr(map, l); 2064 2065 map->ops->map_fd_put_ptr(ptr); 2066 } 2067 } 2068 2069 htab_map_free(map); 2070 } 2071 2072 /* only called from syscall */ 2073 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2074 { 2075 void **ptr; 2076 int ret = 0; 2077 2078 if (!map->ops->map_fd_sys_lookup_elem) 2079 return -ENOTSUPP; 2080 2081 rcu_read_lock(); 2082 ptr = htab_map_lookup_elem(map, key); 2083 if (ptr) 2084 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2085 else 2086 ret = -ENOENT; 2087 rcu_read_unlock(); 2088 2089 return ret; 2090 } 2091 2092 /* only called from syscall */ 2093 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2094 void *key, void *value, u64 map_flags) 2095 { 2096 void *ptr; 2097 int ret; 2098 u32 ufd = *(u32 *)value; 2099 2100 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2101 if (IS_ERR(ptr)) 2102 return PTR_ERR(ptr); 2103 2104 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2105 if (ret) 2106 map->ops->map_fd_put_ptr(ptr); 2107 2108 return ret; 2109 } 2110 2111 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2112 { 2113 struct bpf_map *map, *inner_map_meta; 2114 2115 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2116 if (IS_ERR(inner_map_meta)) 2117 return inner_map_meta; 2118 2119 map = htab_map_alloc(attr); 2120 if (IS_ERR(map)) { 2121 bpf_map_meta_free(inner_map_meta); 2122 return map; 2123 } 2124 2125 map->inner_map_meta = inner_map_meta; 2126 2127 return map; 2128 } 2129 2130 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2131 { 2132 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2133 2134 if (!inner_map) 2135 return NULL; 2136 2137 return READ_ONCE(*inner_map); 2138 } 2139 2140 static int htab_of_map_gen_lookup(struct bpf_map *map, 2141 struct bpf_insn *insn_buf) 2142 { 2143 struct bpf_insn *insn = insn_buf; 2144 const int ret = BPF_REG_0; 2145 2146 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2147 (void *(*)(struct bpf_map *map, void *key))NULL)); 2148 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 2149 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2150 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2151 offsetof(struct htab_elem, key) + 2152 round_up(map->key_size, 8)); 2153 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2154 2155 return insn - insn_buf; 2156 } 2157 2158 static void htab_of_map_free(struct bpf_map *map) 2159 { 2160 bpf_map_meta_free(map->inner_map_meta); 2161 fd_htab_map_free(map); 2162 } 2163 2164 static int htab_of_maps_map_btf_id; 2165 const struct bpf_map_ops htab_of_maps_map_ops = { 2166 .map_alloc_check = fd_htab_map_alloc_check, 2167 .map_alloc = htab_of_map_alloc, 2168 .map_free = htab_of_map_free, 2169 .map_get_next_key = htab_map_get_next_key, 2170 .map_lookup_elem = htab_of_map_lookup_elem, 2171 .map_delete_elem = htab_map_delete_elem, 2172 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2173 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2174 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2175 .map_gen_lookup = htab_of_map_gen_lookup, 2176 .map_check_btf = map_check_no_btf, 2177 .map_btf_name = "bpf_htab", 2178 .map_btf_id = &htab_of_maps_map_btf_id, 2179 }; 2180