1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 #include "bpf_lru_list.h" 16 #include "map_in_map.h" 17 #include <linux/bpf_mem_alloc.h> 18 19 #define HTAB_CREATE_FLAG_MASK \ 20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 22 23 #define BATCH_OPS(_name) \ 24 .map_lookup_batch = \ 25 _name##_map_lookup_batch, \ 26 .map_lookup_and_delete_batch = \ 27 _name##_map_lookup_and_delete_batch, \ 28 .map_update_batch = \ 29 generic_map_update_batch, \ 30 .map_delete_batch = \ 31 generic_map_delete_batch 32 33 /* 34 * The bucket lock has two protection scopes: 35 * 36 * 1) Serializing concurrent operations from BPF programs on different 37 * CPUs 38 * 39 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 40 * 41 * BPF programs can execute in any context including perf, kprobes and 42 * tracing. As there are almost no limits where perf, kprobes and tracing 43 * can be invoked from the lock operations need to be protected against 44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 45 * the lock held section when functions which acquire this lock are invoked 46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 47 * variable bpf_prog_active, which prevents BPF programs attached to perf 48 * events, kprobes and tracing to be invoked before the prior invocation 49 * from one of these contexts completed. sys_bpf() uses the same mechanism 50 * by pinning the task to the current CPU and incrementing the recursion 51 * protection across the map operation. 52 * 53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 54 * operations like memory allocations (even with GFP_ATOMIC) from atomic 55 * contexts. This is required because even with GFP_ATOMIC the memory 56 * allocator calls into code paths which acquire locks with long held lock 57 * sections. To ensure the deterministic behaviour these locks are regular 58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 59 * true atomic contexts on an RT kernel are the low level hardware 60 * handling, scheduling, low level interrupt handling, NMIs etc. None of 61 * these contexts should ever do memory allocations. 62 * 63 * As regular device interrupt handlers and soft interrupts are forced into 64 * thread context, the existing code which does 65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 66 * just works. 67 * 68 * In theory the BPF locks could be converted to regular spinlocks as well, 69 * but the bucket locks and percpu_freelist locks can be taken from 70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 73 * because there is no memory allocation within the lock held sections. However 74 * after hash map was fully converted to use bpf_mem_alloc, there will be 75 * non-synchronous memory allocation for non-preallocated hash map, so it is 76 * safe to always use raw spinlock for bucket lock. 77 */ 78 struct bucket { 79 struct hlist_nulls_head head; 80 raw_spinlock_t raw_lock; 81 }; 82 83 #define HASHTAB_MAP_LOCK_COUNT 8 84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 85 86 struct bpf_htab { 87 struct bpf_map map; 88 struct bpf_mem_alloc ma; 89 struct bpf_mem_alloc pcpu_ma; 90 struct bucket *buckets; 91 void *elems; 92 union { 93 struct pcpu_freelist freelist; 94 struct bpf_lru lru; 95 }; 96 struct htab_elem *__percpu *extra_elems; 97 /* number of elements in non-preallocated hashtable are kept 98 * in either pcount or count 99 */ 100 struct percpu_counter pcount; 101 atomic_t count; 102 bool use_percpu_counter; 103 u32 n_buckets; /* number of hash buckets */ 104 u32 elem_size; /* size of each element in bytes */ 105 u32 hashrnd; 106 struct lock_class_key lockdep_key; 107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 108 }; 109 110 /* each htab element is struct htab_elem + key + value */ 111 struct htab_elem { 112 union { 113 struct hlist_nulls_node hash_node; 114 struct { 115 void *padding; 116 union { 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 /* pointer to per-cpu pointer */ 124 void *ptr_to_pptr; 125 struct bpf_lru_node lru_node; 126 }; 127 u32 hash; 128 char key[] __aligned(8); 129 }; 130 131 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 132 { 133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 134 } 135 136 static void htab_init_buckets(struct bpf_htab *htab) 137 { 138 unsigned int i; 139 140 for (i = 0; i < htab->n_buckets; i++) { 141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 142 raw_spin_lock_init(&htab->buckets[i].raw_lock); 143 lockdep_set_class(&htab->buckets[i].raw_lock, 144 &htab->lockdep_key); 145 cond_resched(); 146 } 147 } 148 149 static inline int htab_lock_bucket(const struct bpf_htab *htab, 150 struct bucket *b, u32 hash, 151 unsigned long *pflags) 152 { 153 unsigned long flags; 154 155 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 156 157 preempt_disable(); 158 local_irq_save(flags); 159 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 160 __this_cpu_dec(*(htab->map_locked[hash])); 161 local_irq_restore(flags); 162 preempt_enable(); 163 return -EBUSY; 164 } 165 166 raw_spin_lock(&b->raw_lock); 167 *pflags = flags; 168 169 return 0; 170 } 171 172 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 173 struct bucket *b, u32 hash, 174 unsigned long flags) 175 { 176 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 177 raw_spin_unlock(&b->raw_lock); 178 __this_cpu_dec(*(htab->map_locked[hash])); 179 local_irq_restore(flags); 180 preempt_enable(); 181 } 182 183 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 184 185 static bool htab_is_lru(const struct bpf_htab *htab) 186 { 187 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 188 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 189 } 190 191 static bool htab_is_percpu(const struct bpf_htab *htab) 192 { 193 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 194 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 195 } 196 197 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 198 void __percpu *pptr) 199 { 200 *(void __percpu **)(l->key + key_size) = pptr; 201 } 202 203 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 204 { 205 return *(void __percpu **)(l->key + key_size); 206 } 207 208 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 209 { 210 return *(void **)(l->key + roundup(map->key_size, 8)); 211 } 212 213 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 214 { 215 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 216 } 217 218 static bool htab_has_extra_elems(struct bpf_htab *htab) 219 { 220 return !htab_is_percpu(htab) && !htab_is_lru(htab); 221 } 222 223 static void htab_free_prealloced_timers(struct bpf_htab *htab) 224 { 225 u32 num_entries = htab->map.max_entries; 226 int i; 227 228 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 229 return; 230 if (htab_has_extra_elems(htab)) 231 num_entries += num_possible_cpus(); 232 233 for (i = 0; i < num_entries; i++) { 234 struct htab_elem *elem; 235 236 elem = get_htab_elem(htab, i); 237 bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 238 cond_resched(); 239 } 240 } 241 242 static void htab_free_prealloced_fields(struct bpf_htab *htab) 243 { 244 u32 num_entries = htab->map.max_entries; 245 int i; 246 247 if (IS_ERR_OR_NULL(htab->map.record)) 248 return; 249 if (htab_has_extra_elems(htab)) 250 num_entries += num_possible_cpus(); 251 for (i = 0; i < num_entries; i++) { 252 struct htab_elem *elem; 253 254 elem = get_htab_elem(htab, i); 255 if (htab_is_percpu(htab)) { 256 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 257 int cpu; 258 259 for_each_possible_cpu(cpu) { 260 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 261 cond_resched(); 262 } 263 } else { 264 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 265 cond_resched(); 266 } 267 cond_resched(); 268 } 269 } 270 271 static void htab_free_elems(struct bpf_htab *htab) 272 { 273 int i; 274 275 if (!htab_is_percpu(htab)) 276 goto free_elems; 277 278 for (i = 0; i < htab->map.max_entries; i++) { 279 void __percpu *pptr; 280 281 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 282 htab->map.key_size); 283 free_percpu(pptr); 284 cond_resched(); 285 } 286 free_elems: 287 bpf_map_area_free(htab->elems); 288 } 289 290 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 291 * (bucket_lock). If both locks need to be acquired together, the lock 292 * order is always lru_lock -> bucket_lock and this only happens in 293 * bpf_lru_list.c logic. For example, certain code path of 294 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 295 * will acquire lru_lock first followed by acquiring bucket_lock. 296 * 297 * In hashtab.c, to avoid deadlock, lock acquisition of 298 * bucket_lock followed by lru_lock is not allowed. In such cases, 299 * bucket_lock needs to be released first before acquiring lru_lock. 300 */ 301 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 302 u32 hash) 303 { 304 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 305 struct htab_elem *l; 306 307 if (node) { 308 bpf_map_inc_elem_count(&htab->map); 309 l = container_of(node, struct htab_elem, lru_node); 310 memcpy(l->key, key, htab->map.key_size); 311 return l; 312 } 313 314 return NULL; 315 } 316 317 static int prealloc_init(struct bpf_htab *htab) 318 { 319 u32 num_entries = htab->map.max_entries; 320 int err = -ENOMEM, i; 321 322 if (htab_has_extra_elems(htab)) 323 num_entries += num_possible_cpus(); 324 325 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 326 htab->map.numa_node); 327 if (!htab->elems) 328 return -ENOMEM; 329 330 if (!htab_is_percpu(htab)) 331 goto skip_percpu_elems; 332 333 for (i = 0; i < num_entries; i++) { 334 u32 size = round_up(htab->map.value_size, 8); 335 void __percpu *pptr; 336 337 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 338 GFP_USER | __GFP_NOWARN); 339 if (!pptr) 340 goto free_elems; 341 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 342 pptr); 343 cond_resched(); 344 } 345 346 skip_percpu_elems: 347 if (htab_is_lru(htab)) 348 err = bpf_lru_init(&htab->lru, 349 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 350 offsetof(struct htab_elem, hash) - 351 offsetof(struct htab_elem, lru_node), 352 htab_lru_map_delete_node, 353 htab); 354 else 355 err = pcpu_freelist_init(&htab->freelist); 356 357 if (err) 358 goto free_elems; 359 360 if (htab_is_lru(htab)) 361 bpf_lru_populate(&htab->lru, htab->elems, 362 offsetof(struct htab_elem, lru_node), 363 htab->elem_size, num_entries); 364 else 365 pcpu_freelist_populate(&htab->freelist, 366 htab->elems + offsetof(struct htab_elem, fnode), 367 htab->elem_size, num_entries); 368 369 return 0; 370 371 free_elems: 372 htab_free_elems(htab); 373 return err; 374 } 375 376 static void prealloc_destroy(struct bpf_htab *htab) 377 { 378 htab_free_elems(htab); 379 380 if (htab_is_lru(htab)) 381 bpf_lru_destroy(&htab->lru); 382 else 383 pcpu_freelist_destroy(&htab->freelist); 384 } 385 386 static int alloc_extra_elems(struct bpf_htab *htab) 387 { 388 struct htab_elem *__percpu *pptr, *l_new; 389 struct pcpu_freelist_node *l; 390 int cpu; 391 392 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 393 GFP_USER | __GFP_NOWARN); 394 if (!pptr) 395 return -ENOMEM; 396 397 for_each_possible_cpu(cpu) { 398 l = pcpu_freelist_pop(&htab->freelist); 399 /* pop will succeed, since prealloc_init() 400 * preallocated extra num_possible_cpus elements 401 */ 402 l_new = container_of(l, struct htab_elem, fnode); 403 *per_cpu_ptr(pptr, cpu) = l_new; 404 } 405 htab->extra_elems = pptr; 406 return 0; 407 } 408 409 /* Called from syscall */ 410 static int htab_map_alloc_check(union bpf_attr *attr) 411 { 412 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 413 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 414 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 415 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 416 /* percpu_lru means each cpu has its own LRU list. 417 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 418 * the map's value itself is percpu. percpu_lru has 419 * nothing to do with the map's value. 420 */ 421 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 422 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 423 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 424 int numa_node = bpf_map_attr_numa_node(attr); 425 426 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 427 offsetof(struct htab_elem, hash_node.pprev)); 428 429 if (zero_seed && !capable(CAP_SYS_ADMIN)) 430 /* Guard against local DoS, and discourage production use. */ 431 return -EPERM; 432 433 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 434 !bpf_map_flags_access_ok(attr->map_flags)) 435 return -EINVAL; 436 437 if (!lru && percpu_lru) 438 return -EINVAL; 439 440 if (lru && !prealloc) 441 return -ENOTSUPP; 442 443 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 444 return -EINVAL; 445 446 /* check sanity of attributes. 447 * value_size == 0 may be allowed in the future to use map as a set 448 */ 449 if (attr->max_entries == 0 || attr->key_size == 0 || 450 attr->value_size == 0) 451 return -EINVAL; 452 453 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 454 sizeof(struct htab_elem)) 455 /* if key_size + value_size is bigger, the user space won't be 456 * able to access the elements via bpf syscall. This check 457 * also makes sure that the elem_size doesn't overflow and it's 458 * kmalloc-able later in htab_map_update_elem() 459 */ 460 return -E2BIG; 461 /* percpu map value size is bound by PCPU_MIN_UNIT_SIZE */ 462 if (percpu && round_up(attr->value_size, 8) > PCPU_MIN_UNIT_SIZE) 463 return -E2BIG; 464 465 return 0; 466 } 467 468 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 469 { 470 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 471 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 472 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 473 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 474 /* percpu_lru means each cpu has its own LRU list. 475 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 476 * the map's value itself is percpu. percpu_lru has 477 * nothing to do with the map's value. 478 */ 479 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 480 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 481 struct bpf_htab *htab; 482 int err, i; 483 484 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 485 if (!htab) 486 return ERR_PTR(-ENOMEM); 487 488 lockdep_register_key(&htab->lockdep_key); 489 490 bpf_map_init_from_attr(&htab->map, attr); 491 492 if (percpu_lru) { 493 /* ensure each CPU's lru list has >=1 elements. 494 * since we are at it, make each lru list has the same 495 * number of elements. 496 */ 497 htab->map.max_entries = roundup(attr->max_entries, 498 num_possible_cpus()); 499 if (htab->map.max_entries < attr->max_entries) 500 htab->map.max_entries = rounddown(attr->max_entries, 501 num_possible_cpus()); 502 } 503 504 /* hash table size must be power of 2; roundup_pow_of_two() can overflow 505 * into UB on 32-bit arches, so check that first 506 */ 507 err = -E2BIG; 508 if (htab->map.max_entries > 1UL << 31) 509 goto free_htab; 510 511 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 512 513 htab->elem_size = sizeof(struct htab_elem) + 514 round_up(htab->map.key_size, 8); 515 if (percpu) 516 htab->elem_size += sizeof(void *); 517 else 518 htab->elem_size += round_up(htab->map.value_size, 8); 519 520 /* check for u32 overflow */ 521 if (htab->n_buckets > U32_MAX / sizeof(struct bucket)) 522 goto free_htab; 523 524 err = bpf_map_init_elem_count(&htab->map); 525 if (err) 526 goto free_htab; 527 528 err = -ENOMEM; 529 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 530 sizeof(struct bucket), 531 htab->map.numa_node); 532 if (!htab->buckets) 533 goto free_elem_count; 534 535 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 536 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 537 sizeof(int), 538 sizeof(int), 539 GFP_USER); 540 if (!htab->map_locked[i]) 541 goto free_map_locked; 542 } 543 544 if (htab->map.map_flags & BPF_F_ZERO_SEED) 545 htab->hashrnd = 0; 546 else 547 htab->hashrnd = get_random_u32(); 548 549 htab_init_buckets(htab); 550 551 /* compute_batch_value() computes batch value as num_online_cpus() * 2 552 * and __percpu_counter_compare() needs 553 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 554 * for percpu_counter to be faster than atomic_t. In practice the average bpf 555 * hash map size is 10k, which means that a system with 64 cpus will fill 556 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 557 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 558 * 10k - 8k > 32 _batch_ * 64 _cpus_ 559 * and __percpu_counter_compare() will still be fast. At that point hash map 560 * collisions will dominate its performance anyway. Assume that hash map filled 561 * to 50+% isn't going to be O(1) and use the following formula to choose 562 * between percpu_counter and atomic_t. 563 */ 564 #define PERCPU_COUNTER_BATCH 32 565 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 566 htab->use_percpu_counter = true; 567 568 if (htab->use_percpu_counter) { 569 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 570 if (err) 571 goto free_map_locked; 572 } 573 574 if (prealloc) { 575 err = prealloc_init(htab); 576 if (err) 577 goto free_map_locked; 578 579 if (!percpu && !lru) { 580 /* lru itself can remove the least used element, so 581 * there is no need for an extra elem during map_update. 582 */ 583 err = alloc_extra_elems(htab); 584 if (err) 585 goto free_prealloc; 586 } 587 } else { 588 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 589 if (err) 590 goto free_map_locked; 591 if (percpu) { 592 err = bpf_mem_alloc_init(&htab->pcpu_ma, 593 round_up(htab->map.value_size, 8), true); 594 if (err) 595 goto free_map_locked; 596 } 597 } 598 599 return &htab->map; 600 601 free_prealloc: 602 prealloc_destroy(htab); 603 free_map_locked: 604 if (htab->use_percpu_counter) 605 percpu_counter_destroy(&htab->pcount); 606 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 607 free_percpu(htab->map_locked[i]); 608 bpf_map_area_free(htab->buckets); 609 bpf_mem_alloc_destroy(&htab->pcpu_ma); 610 bpf_mem_alloc_destroy(&htab->ma); 611 free_elem_count: 612 bpf_map_free_elem_count(&htab->map); 613 free_htab: 614 lockdep_unregister_key(&htab->lockdep_key); 615 bpf_map_area_free(htab); 616 return ERR_PTR(err); 617 } 618 619 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 620 { 621 if (likely(key_len % 4 == 0)) 622 return jhash2(key, key_len / 4, hashrnd); 623 return jhash(key, key_len, hashrnd); 624 } 625 626 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 627 { 628 return &htab->buckets[hash & (htab->n_buckets - 1)]; 629 } 630 631 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 632 { 633 return &__select_bucket(htab, hash)->head; 634 } 635 636 /* this lookup function can only be called with bucket lock taken */ 637 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 638 void *key, u32 key_size) 639 { 640 struct hlist_nulls_node *n; 641 struct htab_elem *l; 642 643 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 644 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 645 return l; 646 647 return NULL; 648 } 649 650 /* can be called without bucket lock. it will repeat the loop in 651 * the unlikely event when elements moved from one bucket into another 652 * while link list is being walked 653 */ 654 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 655 u32 hash, void *key, 656 u32 key_size, u32 n_buckets) 657 { 658 struct hlist_nulls_node *n; 659 struct htab_elem *l; 660 661 again: 662 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 663 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 664 return l; 665 666 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 667 goto again; 668 669 return NULL; 670 } 671 672 /* Called from syscall or from eBPF program directly, so 673 * arguments have to match bpf_map_lookup_elem() exactly. 674 * The return value is adjusted by BPF instructions 675 * in htab_map_gen_lookup(). 676 */ 677 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 678 { 679 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 680 struct hlist_nulls_head *head; 681 struct htab_elem *l; 682 u32 hash, key_size; 683 684 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 685 !rcu_read_lock_bh_held()); 686 687 key_size = map->key_size; 688 689 hash = htab_map_hash(key, key_size, htab->hashrnd); 690 691 head = select_bucket(htab, hash); 692 693 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 694 695 return l; 696 } 697 698 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 699 { 700 struct htab_elem *l = __htab_map_lookup_elem(map, key); 701 702 if (l) 703 return l->key + round_up(map->key_size, 8); 704 705 return NULL; 706 } 707 708 /* inline bpf_map_lookup_elem() call. 709 * Instead of: 710 * bpf_prog 711 * bpf_map_lookup_elem 712 * map->ops->map_lookup_elem 713 * htab_map_lookup_elem 714 * __htab_map_lookup_elem 715 * do: 716 * bpf_prog 717 * __htab_map_lookup_elem 718 */ 719 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 720 { 721 struct bpf_insn *insn = insn_buf; 722 const int ret = BPF_REG_0; 723 724 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 725 (void *(*)(struct bpf_map *map, void *key))NULL)); 726 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 727 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 728 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 729 offsetof(struct htab_elem, key) + 730 round_up(map->key_size, 8)); 731 return insn - insn_buf; 732 } 733 734 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 735 void *key, const bool mark) 736 { 737 struct htab_elem *l = __htab_map_lookup_elem(map, key); 738 739 if (l) { 740 if (mark) 741 bpf_lru_node_set_ref(&l->lru_node); 742 return l->key + round_up(map->key_size, 8); 743 } 744 745 return NULL; 746 } 747 748 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 749 { 750 return __htab_lru_map_lookup_elem(map, key, true); 751 } 752 753 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 754 { 755 return __htab_lru_map_lookup_elem(map, key, false); 756 } 757 758 static int htab_lru_map_gen_lookup(struct bpf_map *map, 759 struct bpf_insn *insn_buf) 760 { 761 struct bpf_insn *insn = insn_buf; 762 const int ret = BPF_REG_0; 763 const int ref_reg = BPF_REG_1; 764 765 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 766 (void *(*)(struct bpf_map *map, void *key))NULL)); 767 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 768 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 769 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 770 offsetof(struct htab_elem, lru_node) + 771 offsetof(struct bpf_lru_node, ref)); 772 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 773 *insn++ = BPF_ST_MEM(BPF_B, ret, 774 offsetof(struct htab_elem, lru_node) + 775 offsetof(struct bpf_lru_node, ref), 776 1); 777 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 778 offsetof(struct htab_elem, key) + 779 round_up(map->key_size, 8)); 780 return insn - insn_buf; 781 } 782 783 static void check_and_free_fields(struct bpf_htab *htab, 784 struct htab_elem *elem) 785 { 786 if (htab_is_percpu(htab)) { 787 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 788 int cpu; 789 790 for_each_possible_cpu(cpu) 791 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 792 } else { 793 void *map_value = elem->key + round_up(htab->map.key_size, 8); 794 795 bpf_obj_free_fields(htab->map.record, map_value); 796 } 797 } 798 799 /* It is called from the bpf_lru_list when the LRU needs to delete 800 * older elements from the htab. 801 */ 802 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 803 { 804 struct bpf_htab *htab = arg; 805 struct htab_elem *l = NULL, *tgt_l; 806 struct hlist_nulls_head *head; 807 struct hlist_nulls_node *n; 808 unsigned long flags; 809 struct bucket *b; 810 int ret; 811 812 tgt_l = container_of(node, struct htab_elem, lru_node); 813 b = __select_bucket(htab, tgt_l->hash); 814 head = &b->head; 815 816 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 817 if (ret) 818 return false; 819 820 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 821 if (l == tgt_l) { 822 hlist_nulls_del_rcu(&l->hash_node); 823 check_and_free_fields(htab, l); 824 bpf_map_dec_elem_count(&htab->map); 825 break; 826 } 827 828 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 829 830 return l == tgt_l; 831 } 832 833 /* Called from syscall */ 834 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 835 { 836 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 837 struct hlist_nulls_head *head; 838 struct htab_elem *l, *next_l; 839 u32 hash, key_size; 840 int i = 0; 841 842 WARN_ON_ONCE(!rcu_read_lock_held()); 843 844 key_size = map->key_size; 845 846 if (!key) 847 goto find_first_elem; 848 849 hash = htab_map_hash(key, key_size, htab->hashrnd); 850 851 head = select_bucket(htab, hash); 852 853 /* lookup the key */ 854 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 855 856 if (!l) 857 goto find_first_elem; 858 859 /* key was found, get next key in the same bucket */ 860 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 861 struct htab_elem, hash_node); 862 863 if (next_l) { 864 /* if next elem in this hash list is non-zero, just return it */ 865 memcpy(next_key, next_l->key, key_size); 866 return 0; 867 } 868 869 /* no more elements in this hash list, go to the next bucket */ 870 i = hash & (htab->n_buckets - 1); 871 i++; 872 873 find_first_elem: 874 /* iterate over buckets */ 875 for (; i < htab->n_buckets; i++) { 876 head = select_bucket(htab, i); 877 878 /* pick first element in the bucket */ 879 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 880 struct htab_elem, hash_node); 881 if (next_l) { 882 /* if it's not empty, just return it */ 883 memcpy(next_key, next_l->key, key_size); 884 return 0; 885 } 886 } 887 888 /* iterated over all buckets and all elements */ 889 return -ENOENT; 890 } 891 892 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 893 { 894 check_and_free_fields(htab, l); 895 896 migrate_disable(); 897 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 898 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 899 bpf_mem_cache_free(&htab->ma, l); 900 migrate_enable(); 901 } 902 903 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 904 { 905 struct bpf_map *map = &htab->map; 906 void *ptr; 907 908 if (map->ops->map_fd_put_ptr) { 909 ptr = fd_htab_map_get_ptr(map, l); 910 map->ops->map_fd_put_ptr(map, ptr, true); 911 } 912 } 913 914 static bool is_map_full(struct bpf_htab *htab) 915 { 916 if (htab->use_percpu_counter) 917 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 918 PERCPU_COUNTER_BATCH) >= 0; 919 return atomic_read(&htab->count) >= htab->map.max_entries; 920 } 921 922 static void inc_elem_count(struct bpf_htab *htab) 923 { 924 bpf_map_inc_elem_count(&htab->map); 925 926 if (htab->use_percpu_counter) 927 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 928 else 929 atomic_inc(&htab->count); 930 } 931 932 static void dec_elem_count(struct bpf_htab *htab) 933 { 934 bpf_map_dec_elem_count(&htab->map); 935 936 if (htab->use_percpu_counter) 937 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 938 else 939 atomic_dec(&htab->count); 940 } 941 942 943 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 944 { 945 htab_put_fd_value(htab, l); 946 947 if (htab_is_prealloc(htab)) { 948 bpf_map_dec_elem_count(&htab->map); 949 check_and_free_fields(htab, l); 950 pcpu_freelist_push(&htab->freelist, &l->fnode); 951 } else { 952 dec_elem_count(htab); 953 htab_elem_free(htab, l); 954 } 955 } 956 957 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 958 void *value, bool onallcpus) 959 { 960 if (!onallcpus) { 961 /* copy true value_size bytes */ 962 copy_map_value(&htab->map, this_cpu_ptr(pptr), value); 963 } else { 964 u32 size = round_up(htab->map.value_size, 8); 965 int off = 0, cpu; 966 967 for_each_possible_cpu(cpu) { 968 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); 969 off += size; 970 } 971 } 972 } 973 974 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 975 void *value, bool onallcpus) 976 { 977 /* When not setting the initial value on all cpus, zero-fill element 978 * values for other cpus. Otherwise, bpf program has no way to ensure 979 * known initial values for cpus other than current one 980 * (onallcpus=false always when coming from bpf prog). 981 */ 982 if (!onallcpus) { 983 int current_cpu = raw_smp_processor_id(); 984 int cpu; 985 986 for_each_possible_cpu(cpu) { 987 if (cpu == current_cpu) 988 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); 989 else /* Since elem is preallocated, we cannot touch special fields */ 990 zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); 991 } 992 } else { 993 pcpu_copy_value(htab, pptr, value, onallcpus); 994 } 995 } 996 997 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 998 { 999 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 1000 BITS_PER_LONG == 64; 1001 } 1002 1003 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 1004 void *value, u32 key_size, u32 hash, 1005 bool percpu, bool onallcpus, 1006 struct htab_elem *old_elem) 1007 { 1008 u32 size = htab->map.value_size; 1009 bool prealloc = htab_is_prealloc(htab); 1010 struct htab_elem *l_new, **pl_new; 1011 void __percpu *pptr; 1012 1013 if (prealloc) { 1014 if (old_elem) { 1015 /* if we're updating the existing element, 1016 * use per-cpu extra elems to avoid freelist_pop/push 1017 */ 1018 pl_new = this_cpu_ptr(htab->extra_elems); 1019 l_new = *pl_new; 1020 *pl_new = old_elem; 1021 } else { 1022 struct pcpu_freelist_node *l; 1023 1024 l = __pcpu_freelist_pop(&htab->freelist); 1025 if (!l) 1026 return ERR_PTR(-E2BIG); 1027 l_new = container_of(l, struct htab_elem, fnode); 1028 bpf_map_inc_elem_count(&htab->map); 1029 } 1030 } else { 1031 if (is_map_full(htab)) 1032 if (!old_elem) 1033 /* when map is full and update() is replacing 1034 * old element, it's ok to allocate, since 1035 * old element will be freed immediately. 1036 * Otherwise return an error 1037 */ 1038 return ERR_PTR(-E2BIG); 1039 inc_elem_count(htab); 1040 l_new = bpf_mem_cache_alloc(&htab->ma); 1041 if (!l_new) { 1042 l_new = ERR_PTR(-ENOMEM); 1043 goto dec_count; 1044 } 1045 } 1046 1047 memcpy(l_new->key, key, key_size); 1048 if (percpu) { 1049 if (prealloc) { 1050 pptr = htab_elem_get_ptr(l_new, key_size); 1051 } else { 1052 /* alloc_percpu zero-fills */ 1053 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1054 if (!pptr) { 1055 bpf_mem_cache_free(&htab->ma, l_new); 1056 l_new = ERR_PTR(-ENOMEM); 1057 goto dec_count; 1058 } 1059 l_new->ptr_to_pptr = pptr; 1060 pptr = *(void **)pptr; 1061 } 1062 1063 pcpu_init_value(htab, pptr, value, onallcpus); 1064 1065 if (!prealloc) 1066 htab_elem_set_ptr(l_new, key_size, pptr); 1067 } else if (fd_htab_map_needs_adjust(htab)) { 1068 size = round_up(size, 8); 1069 memcpy(l_new->key + round_up(key_size, 8), value, size); 1070 } else { 1071 copy_map_value(&htab->map, 1072 l_new->key + round_up(key_size, 8), 1073 value); 1074 } 1075 1076 l_new->hash = hash; 1077 return l_new; 1078 dec_count: 1079 dec_elem_count(htab); 1080 return l_new; 1081 } 1082 1083 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1084 u64 map_flags) 1085 { 1086 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1087 /* elem already exists */ 1088 return -EEXIST; 1089 1090 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1091 /* elem doesn't exist, cannot update it */ 1092 return -ENOENT; 1093 1094 return 0; 1095 } 1096 1097 /* Called from syscall or from eBPF program */ 1098 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1099 u64 map_flags) 1100 { 1101 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1102 struct htab_elem *l_new = NULL, *l_old; 1103 struct hlist_nulls_head *head; 1104 unsigned long flags; 1105 void *old_map_ptr; 1106 struct bucket *b; 1107 u32 key_size, hash; 1108 int ret; 1109 1110 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1111 /* unknown flags */ 1112 return -EINVAL; 1113 1114 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1115 !rcu_read_lock_bh_held()); 1116 1117 key_size = map->key_size; 1118 1119 hash = htab_map_hash(key, key_size, htab->hashrnd); 1120 1121 b = __select_bucket(htab, hash); 1122 head = &b->head; 1123 1124 if (unlikely(map_flags & BPF_F_LOCK)) { 1125 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1126 return -EINVAL; 1127 /* find an element without taking the bucket lock */ 1128 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1129 htab->n_buckets); 1130 ret = check_flags(htab, l_old, map_flags); 1131 if (ret) 1132 return ret; 1133 if (l_old) { 1134 /* grab the element lock and update value in place */ 1135 copy_map_value_locked(map, 1136 l_old->key + round_up(key_size, 8), 1137 value, false); 1138 return 0; 1139 } 1140 /* fall through, grab the bucket lock and lookup again. 1141 * 99.9% chance that the element won't be found, 1142 * but second lookup under lock has to be done. 1143 */ 1144 } 1145 1146 ret = htab_lock_bucket(htab, b, hash, &flags); 1147 if (ret) 1148 return ret; 1149 1150 l_old = lookup_elem_raw(head, hash, key, key_size); 1151 1152 ret = check_flags(htab, l_old, map_flags); 1153 if (ret) 1154 goto err; 1155 1156 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1157 /* first lookup without the bucket lock didn't find the element, 1158 * but second lookup with the bucket lock found it. 1159 * This case is highly unlikely, but has to be dealt with: 1160 * grab the element lock in addition to the bucket lock 1161 * and update element in place 1162 */ 1163 copy_map_value_locked(map, 1164 l_old->key + round_up(key_size, 8), 1165 value, false); 1166 ret = 0; 1167 goto err; 1168 } 1169 1170 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1171 l_old); 1172 if (IS_ERR(l_new)) { 1173 /* all pre-allocated elements are in use or memory exhausted */ 1174 ret = PTR_ERR(l_new); 1175 goto err; 1176 } 1177 1178 /* add new element to the head of the list, so that 1179 * concurrent search will find it before old elem 1180 */ 1181 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1182 if (l_old) { 1183 hlist_nulls_del_rcu(&l_old->hash_node); 1184 1185 /* l_old has already been stashed in htab->extra_elems, free 1186 * its special fields before it is available for reuse. Also 1187 * save the old map pointer in htab of maps before unlock 1188 * and release it after unlock. 1189 */ 1190 old_map_ptr = NULL; 1191 if (htab_is_prealloc(htab)) { 1192 if (map->ops->map_fd_put_ptr) 1193 old_map_ptr = fd_htab_map_get_ptr(map, l_old); 1194 check_and_free_fields(htab, l_old); 1195 } 1196 } 1197 htab_unlock_bucket(htab, b, hash, flags); 1198 if (l_old) { 1199 if (old_map_ptr) 1200 map->ops->map_fd_put_ptr(map, old_map_ptr, true); 1201 if (!htab_is_prealloc(htab)) 1202 free_htab_elem(htab, l_old); 1203 } 1204 return 0; 1205 err: 1206 htab_unlock_bucket(htab, b, hash, flags); 1207 return ret; 1208 } 1209 1210 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1211 { 1212 check_and_free_fields(htab, elem); 1213 bpf_map_dec_elem_count(&htab->map); 1214 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1215 } 1216 1217 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1218 u64 map_flags) 1219 { 1220 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1221 struct htab_elem *l_new, *l_old = NULL; 1222 struct hlist_nulls_head *head; 1223 unsigned long flags; 1224 struct bucket *b; 1225 u32 key_size, hash; 1226 int ret; 1227 1228 if (unlikely(map_flags > BPF_EXIST)) 1229 /* unknown flags */ 1230 return -EINVAL; 1231 1232 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1233 !rcu_read_lock_bh_held()); 1234 1235 key_size = map->key_size; 1236 1237 hash = htab_map_hash(key, key_size, htab->hashrnd); 1238 1239 b = __select_bucket(htab, hash); 1240 head = &b->head; 1241 1242 /* For LRU, we need to alloc before taking bucket's 1243 * spinlock because getting free nodes from LRU may need 1244 * to remove older elements from htab and this removal 1245 * operation will need a bucket lock. 1246 */ 1247 l_new = prealloc_lru_pop(htab, key, hash); 1248 if (!l_new) 1249 return -ENOMEM; 1250 copy_map_value(&htab->map, 1251 l_new->key + round_up(map->key_size, 8), value); 1252 1253 ret = htab_lock_bucket(htab, b, hash, &flags); 1254 if (ret) 1255 goto err_lock_bucket; 1256 1257 l_old = lookup_elem_raw(head, hash, key, key_size); 1258 1259 ret = check_flags(htab, l_old, map_flags); 1260 if (ret) 1261 goto err; 1262 1263 /* add new element to the head of the list, so that 1264 * concurrent search will find it before old elem 1265 */ 1266 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1267 if (l_old) { 1268 bpf_lru_node_set_ref(&l_new->lru_node); 1269 hlist_nulls_del_rcu(&l_old->hash_node); 1270 } 1271 ret = 0; 1272 1273 err: 1274 htab_unlock_bucket(htab, b, hash, flags); 1275 1276 err_lock_bucket: 1277 if (ret) 1278 htab_lru_push_free(htab, l_new); 1279 else if (l_old) 1280 htab_lru_push_free(htab, l_old); 1281 1282 return ret; 1283 } 1284 1285 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1286 void *value, u64 map_flags, 1287 bool onallcpus) 1288 { 1289 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1290 struct htab_elem *l_new = NULL, *l_old; 1291 struct hlist_nulls_head *head; 1292 unsigned long flags; 1293 struct bucket *b; 1294 u32 key_size, hash; 1295 int ret; 1296 1297 if (unlikely(map_flags > BPF_EXIST)) 1298 /* unknown flags */ 1299 return -EINVAL; 1300 1301 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1302 !rcu_read_lock_bh_held()); 1303 1304 key_size = map->key_size; 1305 1306 hash = htab_map_hash(key, key_size, htab->hashrnd); 1307 1308 b = __select_bucket(htab, hash); 1309 head = &b->head; 1310 1311 ret = htab_lock_bucket(htab, b, hash, &flags); 1312 if (ret) 1313 return ret; 1314 1315 l_old = lookup_elem_raw(head, hash, key, key_size); 1316 1317 ret = check_flags(htab, l_old, map_flags); 1318 if (ret) 1319 goto err; 1320 1321 if (l_old) { 1322 /* per-cpu hash map can update value in-place */ 1323 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1324 value, onallcpus); 1325 } else { 1326 l_new = alloc_htab_elem(htab, key, value, key_size, 1327 hash, true, onallcpus, NULL); 1328 if (IS_ERR(l_new)) { 1329 ret = PTR_ERR(l_new); 1330 goto err; 1331 } 1332 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1333 } 1334 ret = 0; 1335 err: 1336 htab_unlock_bucket(htab, b, hash, flags); 1337 return ret; 1338 } 1339 1340 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1341 void *value, u64 map_flags, 1342 bool onallcpus) 1343 { 1344 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1345 struct htab_elem *l_new = NULL, *l_old; 1346 struct hlist_nulls_head *head; 1347 unsigned long flags; 1348 struct bucket *b; 1349 u32 key_size, hash; 1350 int ret; 1351 1352 if (unlikely(map_flags > BPF_EXIST)) 1353 /* unknown flags */ 1354 return -EINVAL; 1355 1356 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1357 !rcu_read_lock_bh_held()); 1358 1359 key_size = map->key_size; 1360 1361 hash = htab_map_hash(key, key_size, htab->hashrnd); 1362 1363 b = __select_bucket(htab, hash); 1364 head = &b->head; 1365 1366 /* For LRU, we need to alloc before taking bucket's 1367 * spinlock because LRU's elem alloc may need 1368 * to remove older elem from htab and this removal 1369 * operation will need a bucket lock. 1370 */ 1371 if (map_flags != BPF_EXIST) { 1372 l_new = prealloc_lru_pop(htab, key, hash); 1373 if (!l_new) 1374 return -ENOMEM; 1375 } 1376 1377 ret = htab_lock_bucket(htab, b, hash, &flags); 1378 if (ret) 1379 goto err_lock_bucket; 1380 1381 l_old = lookup_elem_raw(head, hash, key, key_size); 1382 1383 ret = check_flags(htab, l_old, map_flags); 1384 if (ret) 1385 goto err; 1386 1387 if (l_old) { 1388 bpf_lru_node_set_ref(&l_old->lru_node); 1389 1390 /* per-cpu hash map can update value in-place */ 1391 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1392 value, onallcpus); 1393 } else { 1394 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1395 value, onallcpus); 1396 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1397 l_new = NULL; 1398 } 1399 ret = 0; 1400 err: 1401 htab_unlock_bucket(htab, b, hash, flags); 1402 err_lock_bucket: 1403 if (l_new) { 1404 bpf_map_dec_elem_count(&htab->map); 1405 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1406 } 1407 return ret; 1408 } 1409 1410 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1411 void *value, u64 map_flags) 1412 { 1413 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1414 } 1415 1416 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1417 void *value, u64 map_flags) 1418 { 1419 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1420 false); 1421 } 1422 1423 /* Called from syscall or from eBPF program */ 1424 static long htab_map_delete_elem(struct bpf_map *map, void *key) 1425 { 1426 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1427 struct hlist_nulls_head *head; 1428 struct bucket *b; 1429 struct htab_elem *l; 1430 unsigned long flags; 1431 u32 hash, key_size; 1432 int ret; 1433 1434 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1435 !rcu_read_lock_bh_held()); 1436 1437 key_size = map->key_size; 1438 1439 hash = htab_map_hash(key, key_size, htab->hashrnd); 1440 b = __select_bucket(htab, hash); 1441 head = &b->head; 1442 1443 ret = htab_lock_bucket(htab, b, hash, &flags); 1444 if (ret) 1445 return ret; 1446 1447 l = lookup_elem_raw(head, hash, key, key_size); 1448 if (l) 1449 hlist_nulls_del_rcu(&l->hash_node); 1450 else 1451 ret = -ENOENT; 1452 1453 htab_unlock_bucket(htab, b, hash, flags); 1454 1455 if (l) 1456 free_htab_elem(htab, l); 1457 return ret; 1458 } 1459 1460 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1461 { 1462 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1463 struct hlist_nulls_head *head; 1464 struct bucket *b; 1465 struct htab_elem *l; 1466 unsigned long flags; 1467 u32 hash, key_size; 1468 int ret; 1469 1470 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1471 !rcu_read_lock_bh_held()); 1472 1473 key_size = map->key_size; 1474 1475 hash = htab_map_hash(key, key_size, htab->hashrnd); 1476 b = __select_bucket(htab, hash); 1477 head = &b->head; 1478 1479 ret = htab_lock_bucket(htab, b, hash, &flags); 1480 if (ret) 1481 return ret; 1482 1483 l = lookup_elem_raw(head, hash, key, key_size); 1484 1485 if (l) 1486 hlist_nulls_del_rcu(&l->hash_node); 1487 else 1488 ret = -ENOENT; 1489 1490 htab_unlock_bucket(htab, b, hash, flags); 1491 if (l) 1492 htab_lru_push_free(htab, l); 1493 return ret; 1494 } 1495 1496 static void delete_all_elements(struct bpf_htab *htab) 1497 { 1498 int i; 1499 1500 /* It's called from a worker thread, so disable migration here, 1501 * since bpf_mem_cache_free() relies on that. 1502 */ 1503 migrate_disable(); 1504 for (i = 0; i < htab->n_buckets; i++) { 1505 struct hlist_nulls_head *head = select_bucket(htab, i); 1506 struct hlist_nulls_node *n; 1507 struct htab_elem *l; 1508 1509 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1510 hlist_nulls_del_rcu(&l->hash_node); 1511 htab_elem_free(htab, l); 1512 } 1513 } 1514 migrate_enable(); 1515 } 1516 1517 static void htab_free_malloced_timers(struct bpf_htab *htab) 1518 { 1519 int i; 1520 1521 rcu_read_lock(); 1522 for (i = 0; i < htab->n_buckets; i++) { 1523 struct hlist_nulls_head *head = select_bucket(htab, i); 1524 struct hlist_nulls_node *n; 1525 struct htab_elem *l; 1526 1527 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1528 /* We only free timer on uref dropping to zero */ 1529 bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8)); 1530 } 1531 cond_resched_rcu(); 1532 } 1533 rcu_read_unlock(); 1534 } 1535 1536 static void htab_map_free_timers(struct bpf_map *map) 1537 { 1538 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1539 1540 /* We only free timer on uref dropping to zero */ 1541 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 1542 return; 1543 if (!htab_is_prealloc(htab)) 1544 htab_free_malloced_timers(htab); 1545 else 1546 htab_free_prealloced_timers(htab); 1547 } 1548 1549 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1550 static void htab_map_free(struct bpf_map *map) 1551 { 1552 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1553 int i; 1554 1555 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1556 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1557 * There is no need to synchronize_rcu() here to protect map elements. 1558 */ 1559 1560 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1561 * underneath and is reponsible for waiting for callbacks to finish 1562 * during bpf_mem_alloc_destroy(). 1563 */ 1564 if (!htab_is_prealloc(htab)) { 1565 delete_all_elements(htab); 1566 } else { 1567 htab_free_prealloced_fields(htab); 1568 prealloc_destroy(htab); 1569 } 1570 1571 bpf_map_free_elem_count(map); 1572 free_percpu(htab->extra_elems); 1573 bpf_map_area_free(htab->buckets); 1574 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1575 bpf_mem_alloc_destroy(&htab->ma); 1576 if (htab->use_percpu_counter) 1577 percpu_counter_destroy(&htab->pcount); 1578 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1579 free_percpu(htab->map_locked[i]); 1580 lockdep_unregister_key(&htab->lockdep_key); 1581 bpf_map_area_free(htab); 1582 } 1583 1584 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1585 struct seq_file *m) 1586 { 1587 void *value; 1588 1589 rcu_read_lock(); 1590 1591 value = htab_map_lookup_elem(map, key); 1592 if (!value) { 1593 rcu_read_unlock(); 1594 return; 1595 } 1596 1597 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1598 seq_puts(m, ": "); 1599 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1600 seq_puts(m, "\n"); 1601 1602 rcu_read_unlock(); 1603 } 1604 1605 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1606 void *value, bool is_lru_map, 1607 bool is_percpu, u64 flags) 1608 { 1609 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1610 struct hlist_nulls_head *head; 1611 unsigned long bflags; 1612 struct htab_elem *l; 1613 u32 hash, key_size; 1614 struct bucket *b; 1615 int ret; 1616 1617 key_size = map->key_size; 1618 1619 hash = htab_map_hash(key, key_size, htab->hashrnd); 1620 b = __select_bucket(htab, hash); 1621 head = &b->head; 1622 1623 ret = htab_lock_bucket(htab, b, hash, &bflags); 1624 if (ret) 1625 return ret; 1626 1627 l = lookup_elem_raw(head, hash, key, key_size); 1628 if (!l) { 1629 ret = -ENOENT; 1630 } else { 1631 if (is_percpu) { 1632 u32 roundup_value_size = round_up(map->value_size, 8); 1633 void __percpu *pptr; 1634 int off = 0, cpu; 1635 1636 pptr = htab_elem_get_ptr(l, key_size); 1637 for_each_possible_cpu(cpu) { 1638 copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); 1639 check_and_init_map_value(&htab->map, value + off); 1640 off += roundup_value_size; 1641 } 1642 } else { 1643 u32 roundup_key_size = round_up(map->key_size, 8); 1644 1645 if (flags & BPF_F_LOCK) 1646 copy_map_value_locked(map, value, l->key + 1647 roundup_key_size, 1648 true); 1649 else 1650 copy_map_value(map, value, l->key + 1651 roundup_key_size); 1652 /* Zeroing special fields in the temp buffer */ 1653 check_and_init_map_value(map, value); 1654 } 1655 1656 hlist_nulls_del_rcu(&l->hash_node); 1657 if (!is_lru_map) 1658 free_htab_elem(htab, l); 1659 } 1660 1661 htab_unlock_bucket(htab, b, hash, bflags); 1662 1663 if (is_lru_map && l) 1664 htab_lru_push_free(htab, l); 1665 1666 return ret; 1667 } 1668 1669 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1670 void *value, u64 flags) 1671 { 1672 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1673 flags); 1674 } 1675 1676 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1677 void *key, void *value, 1678 u64 flags) 1679 { 1680 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1681 flags); 1682 } 1683 1684 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1685 void *value, u64 flags) 1686 { 1687 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1688 flags); 1689 } 1690 1691 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1692 void *key, void *value, 1693 u64 flags) 1694 { 1695 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1696 flags); 1697 } 1698 1699 static int 1700 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1701 const union bpf_attr *attr, 1702 union bpf_attr __user *uattr, 1703 bool do_delete, bool is_lru_map, 1704 bool is_percpu) 1705 { 1706 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1707 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1708 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1709 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1710 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1711 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1712 u32 batch, max_count, size, bucket_size, map_id; 1713 struct htab_elem *node_to_free = NULL; 1714 u64 elem_map_flags, map_flags; 1715 struct hlist_nulls_head *head; 1716 struct hlist_nulls_node *n; 1717 unsigned long flags = 0; 1718 bool locked = false; 1719 struct htab_elem *l; 1720 struct bucket *b; 1721 int ret = 0; 1722 1723 elem_map_flags = attr->batch.elem_flags; 1724 if ((elem_map_flags & ~BPF_F_LOCK) || 1725 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1726 return -EINVAL; 1727 1728 map_flags = attr->batch.flags; 1729 if (map_flags) 1730 return -EINVAL; 1731 1732 max_count = attr->batch.count; 1733 if (!max_count) 1734 return 0; 1735 1736 if (put_user(0, &uattr->batch.count)) 1737 return -EFAULT; 1738 1739 batch = 0; 1740 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1741 return -EFAULT; 1742 1743 if (batch >= htab->n_buckets) 1744 return -ENOENT; 1745 1746 key_size = htab->map.key_size; 1747 roundup_key_size = round_up(htab->map.key_size, 8); 1748 value_size = htab->map.value_size; 1749 size = round_up(value_size, 8); 1750 if (is_percpu) 1751 value_size = size * num_possible_cpus(); 1752 total = 0; 1753 /* while experimenting with hash tables with sizes ranging from 10 to 1754 * 1000, it was observed that a bucket can have up to 5 entries. 1755 */ 1756 bucket_size = 5; 1757 1758 alloc: 1759 /* We cannot do copy_from_user or copy_to_user inside 1760 * the rcu_read_lock. Allocate enough space here. 1761 */ 1762 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1763 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1764 if (!keys || !values) { 1765 ret = -ENOMEM; 1766 goto after_loop; 1767 } 1768 1769 again: 1770 bpf_disable_instrumentation(); 1771 rcu_read_lock(); 1772 again_nocopy: 1773 dst_key = keys; 1774 dst_val = values; 1775 b = &htab->buckets[batch]; 1776 head = &b->head; 1777 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1778 if (locked) { 1779 ret = htab_lock_bucket(htab, b, batch, &flags); 1780 if (ret) { 1781 rcu_read_unlock(); 1782 bpf_enable_instrumentation(); 1783 goto after_loop; 1784 } 1785 } 1786 1787 bucket_cnt = 0; 1788 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1789 bucket_cnt++; 1790 1791 if (bucket_cnt && !locked) { 1792 locked = true; 1793 goto again_nocopy; 1794 } 1795 1796 if (bucket_cnt > (max_count - total)) { 1797 if (total == 0) 1798 ret = -ENOSPC; 1799 /* Note that since bucket_cnt > 0 here, it is implicit 1800 * that the locked was grabbed, so release it. 1801 */ 1802 htab_unlock_bucket(htab, b, batch, flags); 1803 rcu_read_unlock(); 1804 bpf_enable_instrumentation(); 1805 goto after_loop; 1806 } 1807 1808 if (bucket_cnt > bucket_size) { 1809 bucket_size = bucket_cnt; 1810 /* Note that since bucket_cnt > 0 here, it is implicit 1811 * that the locked was grabbed, so release it. 1812 */ 1813 htab_unlock_bucket(htab, b, batch, flags); 1814 rcu_read_unlock(); 1815 bpf_enable_instrumentation(); 1816 kvfree(keys); 1817 kvfree(values); 1818 goto alloc; 1819 } 1820 1821 /* Next block is only safe to run if you have grabbed the lock */ 1822 if (!locked) 1823 goto next_batch; 1824 1825 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1826 memcpy(dst_key, l->key, key_size); 1827 1828 if (is_percpu) { 1829 int off = 0, cpu; 1830 void __percpu *pptr; 1831 1832 pptr = htab_elem_get_ptr(l, map->key_size); 1833 for_each_possible_cpu(cpu) { 1834 copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); 1835 check_and_init_map_value(&htab->map, dst_val + off); 1836 off += size; 1837 } 1838 } else { 1839 value = l->key + roundup_key_size; 1840 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1841 struct bpf_map **inner_map = value; 1842 1843 /* Actual value is the id of the inner map */ 1844 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1845 value = &map_id; 1846 } 1847 1848 if (elem_map_flags & BPF_F_LOCK) 1849 copy_map_value_locked(map, dst_val, value, 1850 true); 1851 else 1852 copy_map_value(map, dst_val, value); 1853 /* Zeroing special fields in the temp buffer */ 1854 check_and_init_map_value(map, dst_val); 1855 } 1856 if (do_delete) { 1857 hlist_nulls_del_rcu(&l->hash_node); 1858 1859 /* bpf_lru_push_free() will acquire lru_lock, which 1860 * may cause deadlock. See comments in function 1861 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1862 * after releasing the bucket lock. 1863 * 1864 * For htab of maps, htab_put_fd_value() in 1865 * free_htab_elem() may acquire a spinlock with bucket 1866 * lock being held and it violates the lock rule, so 1867 * invoke free_htab_elem() after unlock as well. 1868 */ 1869 l->batch_flink = node_to_free; 1870 node_to_free = l; 1871 } 1872 dst_key += key_size; 1873 dst_val += value_size; 1874 } 1875 1876 htab_unlock_bucket(htab, b, batch, flags); 1877 locked = false; 1878 1879 while (node_to_free) { 1880 l = node_to_free; 1881 node_to_free = node_to_free->batch_flink; 1882 if (is_lru_map) 1883 htab_lru_push_free(htab, l); 1884 else 1885 free_htab_elem(htab, l); 1886 } 1887 1888 next_batch: 1889 /* If we are not copying data, we can go to next bucket and avoid 1890 * unlocking the rcu. 1891 */ 1892 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1893 batch++; 1894 goto again_nocopy; 1895 } 1896 1897 rcu_read_unlock(); 1898 bpf_enable_instrumentation(); 1899 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1900 key_size * bucket_cnt) || 1901 copy_to_user(uvalues + total * value_size, values, 1902 value_size * bucket_cnt))) { 1903 ret = -EFAULT; 1904 goto after_loop; 1905 } 1906 1907 total += bucket_cnt; 1908 batch++; 1909 if (batch >= htab->n_buckets) { 1910 ret = -ENOENT; 1911 goto after_loop; 1912 } 1913 goto again; 1914 1915 after_loop: 1916 if (ret == -EFAULT) 1917 goto out; 1918 1919 /* copy # of entries and next batch */ 1920 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1921 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1922 put_user(total, &uattr->batch.count)) 1923 ret = -EFAULT; 1924 1925 out: 1926 kvfree(keys); 1927 kvfree(values); 1928 return ret; 1929 } 1930 1931 static int 1932 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1933 union bpf_attr __user *uattr) 1934 { 1935 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1936 false, true); 1937 } 1938 1939 static int 1940 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1941 const union bpf_attr *attr, 1942 union bpf_attr __user *uattr) 1943 { 1944 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1945 false, true); 1946 } 1947 1948 static int 1949 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1950 union bpf_attr __user *uattr) 1951 { 1952 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1953 false, false); 1954 } 1955 1956 static int 1957 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1958 const union bpf_attr *attr, 1959 union bpf_attr __user *uattr) 1960 { 1961 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1962 false, false); 1963 } 1964 1965 static int 1966 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1967 const union bpf_attr *attr, 1968 union bpf_attr __user *uattr) 1969 { 1970 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1971 true, true); 1972 } 1973 1974 static int 1975 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1976 const union bpf_attr *attr, 1977 union bpf_attr __user *uattr) 1978 { 1979 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1980 true, true); 1981 } 1982 1983 static int 1984 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1985 union bpf_attr __user *uattr) 1986 { 1987 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1988 true, false); 1989 } 1990 1991 static int 1992 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1993 const union bpf_attr *attr, 1994 union bpf_attr __user *uattr) 1995 { 1996 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1997 true, false); 1998 } 1999 2000 struct bpf_iter_seq_hash_map_info { 2001 struct bpf_map *map; 2002 struct bpf_htab *htab; 2003 void *percpu_value_buf; // non-zero means percpu hash 2004 u32 bucket_id; 2005 u32 skip_elems; 2006 }; 2007 2008 static struct htab_elem * 2009 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 2010 struct htab_elem *prev_elem) 2011 { 2012 const struct bpf_htab *htab = info->htab; 2013 u32 skip_elems = info->skip_elems; 2014 u32 bucket_id = info->bucket_id; 2015 struct hlist_nulls_head *head; 2016 struct hlist_nulls_node *n; 2017 struct htab_elem *elem; 2018 struct bucket *b; 2019 u32 i, count; 2020 2021 if (bucket_id >= htab->n_buckets) 2022 return NULL; 2023 2024 /* try to find next elem in the same bucket */ 2025 if (prev_elem) { 2026 /* no update/deletion on this bucket, prev_elem should be still valid 2027 * and we won't skip elements. 2028 */ 2029 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 2030 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 2031 if (elem) 2032 return elem; 2033 2034 /* not found, unlock and go to the next bucket */ 2035 b = &htab->buckets[bucket_id++]; 2036 rcu_read_unlock(); 2037 skip_elems = 0; 2038 } 2039 2040 for (i = bucket_id; i < htab->n_buckets; i++) { 2041 b = &htab->buckets[i]; 2042 rcu_read_lock(); 2043 2044 count = 0; 2045 head = &b->head; 2046 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2047 if (count >= skip_elems) { 2048 info->bucket_id = i; 2049 info->skip_elems = count; 2050 return elem; 2051 } 2052 count++; 2053 } 2054 2055 rcu_read_unlock(); 2056 skip_elems = 0; 2057 } 2058 2059 info->bucket_id = i; 2060 info->skip_elems = 0; 2061 return NULL; 2062 } 2063 2064 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2065 { 2066 struct bpf_iter_seq_hash_map_info *info = seq->private; 2067 struct htab_elem *elem; 2068 2069 elem = bpf_hash_map_seq_find_next(info, NULL); 2070 if (!elem) 2071 return NULL; 2072 2073 if (*pos == 0) 2074 ++*pos; 2075 return elem; 2076 } 2077 2078 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2079 { 2080 struct bpf_iter_seq_hash_map_info *info = seq->private; 2081 2082 ++*pos; 2083 ++info->skip_elems; 2084 return bpf_hash_map_seq_find_next(info, v); 2085 } 2086 2087 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2088 { 2089 struct bpf_iter_seq_hash_map_info *info = seq->private; 2090 u32 roundup_key_size, roundup_value_size; 2091 struct bpf_iter__bpf_map_elem ctx = {}; 2092 struct bpf_map *map = info->map; 2093 struct bpf_iter_meta meta; 2094 int ret = 0, off = 0, cpu; 2095 struct bpf_prog *prog; 2096 void __percpu *pptr; 2097 2098 meta.seq = seq; 2099 prog = bpf_iter_get_info(&meta, elem == NULL); 2100 if (prog) { 2101 ctx.meta = &meta; 2102 ctx.map = info->map; 2103 if (elem) { 2104 roundup_key_size = round_up(map->key_size, 8); 2105 ctx.key = elem->key; 2106 if (!info->percpu_value_buf) { 2107 ctx.value = elem->key + roundup_key_size; 2108 } else { 2109 roundup_value_size = round_up(map->value_size, 8); 2110 pptr = htab_elem_get_ptr(elem, map->key_size); 2111 for_each_possible_cpu(cpu) { 2112 copy_map_value_long(map, info->percpu_value_buf + off, 2113 per_cpu_ptr(pptr, cpu)); 2114 check_and_init_map_value(map, info->percpu_value_buf + off); 2115 off += roundup_value_size; 2116 } 2117 ctx.value = info->percpu_value_buf; 2118 } 2119 } 2120 ret = bpf_iter_run_prog(prog, &ctx); 2121 } 2122 2123 return ret; 2124 } 2125 2126 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2127 { 2128 return __bpf_hash_map_seq_show(seq, v); 2129 } 2130 2131 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2132 { 2133 if (!v) 2134 (void)__bpf_hash_map_seq_show(seq, NULL); 2135 else 2136 rcu_read_unlock(); 2137 } 2138 2139 static int bpf_iter_init_hash_map(void *priv_data, 2140 struct bpf_iter_aux_info *aux) 2141 { 2142 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2143 struct bpf_map *map = aux->map; 2144 void *value_buf; 2145 u32 buf_size; 2146 2147 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2148 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2149 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2150 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2151 if (!value_buf) 2152 return -ENOMEM; 2153 2154 seq_info->percpu_value_buf = value_buf; 2155 } 2156 2157 bpf_map_inc_with_uref(map); 2158 seq_info->map = map; 2159 seq_info->htab = container_of(map, struct bpf_htab, map); 2160 return 0; 2161 } 2162 2163 static void bpf_iter_fini_hash_map(void *priv_data) 2164 { 2165 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2166 2167 bpf_map_put_with_uref(seq_info->map); 2168 kfree(seq_info->percpu_value_buf); 2169 } 2170 2171 static const struct seq_operations bpf_hash_map_seq_ops = { 2172 .start = bpf_hash_map_seq_start, 2173 .next = bpf_hash_map_seq_next, 2174 .stop = bpf_hash_map_seq_stop, 2175 .show = bpf_hash_map_seq_show, 2176 }; 2177 2178 static const struct bpf_iter_seq_info iter_seq_info = { 2179 .seq_ops = &bpf_hash_map_seq_ops, 2180 .init_seq_private = bpf_iter_init_hash_map, 2181 .fini_seq_private = bpf_iter_fini_hash_map, 2182 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2183 }; 2184 2185 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2186 void *callback_ctx, u64 flags) 2187 { 2188 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2189 struct hlist_nulls_head *head; 2190 struct hlist_nulls_node *n; 2191 struct htab_elem *elem; 2192 u32 roundup_key_size; 2193 int i, num_elems = 0; 2194 void __percpu *pptr; 2195 struct bucket *b; 2196 void *key, *val; 2197 bool is_percpu; 2198 u64 ret = 0; 2199 2200 if (flags != 0) 2201 return -EINVAL; 2202 2203 is_percpu = htab_is_percpu(htab); 2204 2205 roundup_key_size = round_up(map->key_size, 8); 2206 /* disable migration so percpu value prepared here will be the 2207 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2208 */ 2209 if (is_percpu) 2210 migrate_disable(); 2211 for (i = 0; i < htab->n_buckets; i++) { 2212 b = &htab->buckets[i]; 2213 rcu_read_lock(); 2214 head = &b->head; 2215 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2216 key = elem->key; 2217 if (is_percpu) { 2218 /* current cpu value for percpu map */ 2219 pptr = htab_elem_get_ptr(elem, map->key_size); 2220 val = this_cpu_ptr(pptr); 2221 } else { 2222 val = elem->key + roundup_key_size; 2223 } 2224 num_elems++; 2225 ret = callback_fn((u64)(long)map, (u64)(long)key, 2226 (u64)(long)val, (u64)(long)callback_ctx, 0); 2227 /* return value: 0 - continue, 1 - stop and return */ 2228 if (ret) { 2229 rcu_read_unlock(); 2230 goto out; 2231 } 2232 } 2233 rcu_read_unlock(); 2234 } 2235 out: 2236 if (is_percpu) 2237 migrate_enable(); 2238 return num_elems; 2239 } 2240 2241 static u64 htab_map_mem_usage(const struct bpf_map *map) 2242 { 2243 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2244 u32 value_size = round_up(htab->map.value_size, 8); 2245 bool prealloc = htab_is_prealloc(htab); 2246 bool percpu = htab_is_percpu(htab); 2247 bool lru = htab_is_lru(htab); 2248 u64 num_entries; 2249 u64 usage = sizeof(struct bpf_htab); 2250 2251 usage += sizeof(struct bucket) * htab->n_buckets; 2252 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; 2253 if (prealloc) { 2254 num_entries = map->max_entries; 2255 if (htab_has_extra_elems(htab)) 2256 num_entries += num_possible_cpus(); 2257 2258 usage += htab->elem_size * num_entries; 2259 2260 if (percpu) 2261 usage += value_size * num_possible_cpus() * num_entries; 2262 else if (!lru) 2263 usage += sizeof(struct htab_elem *) * num_possible_cpus(); 2264 } else { 2265 #define LLIST_NODE_SZ sizeof(struct llist_node) 2266 2267 num_entries = htab->use_percpu_counter ? 2268 percpu_counter_sum(&htab->pcount) : 2269 atomic_read(&htab->count); 2270 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; 2271 if (percpu) { 2272 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; 2273 usage += value_size * num_possible_cpus() * num_entries; 2274 } 2275 } 2276 return usage; 2277 } 2278 2279 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2280 const struct bpf_map_ops htab_map_ops = { 2281 .map_meta_equal = bpf_map_meta_equal, 2282 .map_alloc_check = htab_map_alloc_check, 2283 .map_alloc = htab_map_alloc, 2284 .map_free = htab_map_free, 2285 .map_get_next_key = htab_map_get_next_key, 2286 .map_release_uref = htab_map_free_timers, 2287 .map_lookup_elem = htab_map_lookup_elem, 2288 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2289 .map_update_elem = htab_map_update_elem, 2290 .map_delete_elem = htab_map_delete_elem, 2291 .map_gen_lookup = htab_map_gen_lookup, 2292 .map_seq_show_elem = htab_map_seq_show_elem, 2293 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2294 .map_for_each_callback = bpf_for_each_hash_elem, 2295 .map_mem_usage = htab_map_mem_usage, 2296 BATCH_OPS(htab), 2297 .map_btf_id = &htab_map_btf_ids[0], 2298 .iter_seq_info = &iter_seq_info, 2299 }; 2300 2301 const struct bpf_map_ops htab_lru_map_ops = { 2302 .map_meta_equal = bpf_map_meta_equal, 2303 .map_alloc_check = htab_map_alloc_check, 2304 .map_alloc = htab_map_alloc, 2305 .map_free = htab_map_free, 2306 .map_get_next_key = htab_map_get_next_key, 2307 .map_release_uref = htab_map_free_timers, 2308 .map_lookup_elem = htab_lru_map_lookup_elem, 2309 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2310 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2311 .map_update_elem = htab_lru_map_update_elem, 2312 .map_delete_elem = htab_lru_map_delete_elem, 2313 .map_gen_lookup = htab_lru_map_gen_lookup, 2314 .map_seq_show_elem = htab_map_seq_show_elem, 2315 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2316 .map_for_each_callback = bpf_for_each_hash_elem, 2317 .map_mem_usage = htab_map_mem_usage, 2318 BATCH_OPS(htab_lru), 2319 .map_btf_id = &htab_map_btf_ids[0], 2320 .iter_seq_info = &iter_seq_info, 2321 }; 2322 2323 /* Called from eBPF program */ 2324 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2325 { 2326 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2327 2328 if (l) 2329 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2330 else 2331 return NULL; 2332 } 2333 2334 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2335 { 2336 struct htab_elem *l; 2337 2338 if (cpu >= nr_cpu_ids) 2339 return NULL; 2340 2341 l = __htab_map_lookup_elem(map, key); 2342 if (l) 2343 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2344 else 2345 return NULL; 2346 } 2347 2348 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2349 { 2350 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2351 2352 if (l) { 2353 bpf_lru_node_set_ref(&l->lru_node); 2354 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2355 } 2356 2357 return NULL; 2358 } 2359 2360 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2361 { 2362 struct htab_elem *l; 2363 2364 if (cpu >= nr_cpu_ids) 2365 return NULL; 2366 2367 l = __htab_map_lookup_elem(map, key); 2368 if (l) { 2369 bpf_lru_node_set_ref(&l->lru_node); 2370 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2371 } 2372 2373 return NULL; 2374 } 2375 2376 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2377 { 2378 struct htab_elem *l; 2379 void __percpu *pptr; 2380 int ret = -ENOENT; 2381 int cpu, off = 0; 2382 u32 size; 2383 2384 /* per_cpu areas are zero-filled and bpf programs can only 2385 * access 'value_size' of them, so copying rounded areas 2386 * will not leak any kernel data 2387 */ 2388 size = round_up(map->value_size, 8); 2389 rcu_read_lock(); 2390 l = __htab_map_lookup_elem(map, key); 2391 if (!l) 2392 goto out; 2393 /* We do not mark LRU map element here in order to not mess up 2394 * eviction heuristics when user space does a map walk. 2395 */ 2396 pptr = htab_elem_get_ptr(l, map->key_size); 2397 for_each_possible_cpu(cpu) { 2398 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 2399 check_and_init_map_value(map, value + off); 2400 off += size; 2401 } 2402 ret = 0; 2403 out: 2404 rcu_read_unlock(); 2405 return ret; 2406 } 2407 2408 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2409 u64 map_flags) 2410 { 2411 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2412 int ret; 2413 2414 rcu_read_lock(); 2415 if (htab_is_lru(htab)) 2416 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2417 map_flags, true); 2418 else 2419 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2420 true); 2421 rcu_read_unlock(); 2422 2423 return ret; 2424 } 2425 2426 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2427 struct seq_file *m) 2428 { 2429 struct htab_elem *l; 2430 void __percpu *pptr; 2431 int cpu; 2432 2433 rcu_read_lock(); 2434 2435 l = __htab_map_lookup_elem(map, key); 2436 if (!l) { 2437 rcu_read_unlock(); 2438 return; 2439 } 2440 2441 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2442 seq_puts(m, ": {\n"); 2443 pptr = htab_elem_get_ptr(l, map->key_size); 2444 for_each_possible_cpu(cpu) { 2445 seq_printf(m, "\tcpu%d: ", cpu); 2446 btf_type_seq_show(map->btf, map->btf_value_type_id, 2447 per_cpu_ptr(pptr, cpu), m); 2448 seq_puts(m, "\n"); 2449 } 2450 seq_puts(m, "}\n"); 2451 2452 rcu_read_unlock(); 2453 } 2454 2455 const struct bpf_map_ops htab_percpu_map_ops = { 2456 .map_meta_equal = bpf_map_meta_equal, 2457 .map_alloc_check = htab_map_alloc_check, 2458 .map_alloc = htab_map_alloc, 2459 .map_free = htab_map_free, 2460 .map_get_next_key = htab_map_get_next_key, 2461 .map_lookup_elem = htab_percpu_map_lookup_elem, 2462 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2463 .map_update_elem = htab_percpu_map_update_elem, 2464 .map_delete_elem = htab_map_delete_elem, 2465 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2466 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2467 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2468 .map_for_each_callback = bpf_for_each_hash_elem, 2469 .map_mem_usage = htab_map_mem_usage, 2470 BATCH_OPS(htab_percpu), 2471 .map_btf_id = &htab_map_btf_ids[0], 2472 .iter_seq_info = &iter_seq_info, 2473 }; 2474 2475 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2476 .map_meta_equal = bpf_map_meta_equal, 2477 .map_alloc_check = htab_map_alloc_check, 2478 .map_alloc = htab_map_alloc, 2479 .map_free = htab_map_free, 2480 .map_get_next_key = htab_map_get_next_key, 2481 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2482 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2483 .map_update_elem = htab_lru_percpu_map_update_elem, 2484 .map_delete_elem = htab_lru_map_delete_elem, 2485 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2486 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2487 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2488 .map_for_each_callback = bpf_for_each_hash_elem, 2489 .map_mem_usage = htab_map_mem_usage, 2490 BATCH_OPS(htab_lru_percpu), 2491 .map_btf_id = &htab_map_btf_ids[0], 2492 .iter_seq_info = &iter_seq_info, 2493 }; 2494 2495 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2496 { 2497 if (attr->value_size != sizeof(u32)) 2498 return -EINVAL; 2499 return htab_map_alloc_check(attr); 2500 } 2501 2502 static void fd_htab_map_free(struct bpf_map *map) 2503 { 2504 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2505 struct hlist_nulls_node *n; 2506 struct hlist_nulls_head *head; 2507 struct htab_elem *l; 2508 int i; 2509 2510 for (i = 0; i < htab->n_buckets; i++) { 2511 head = select_bucket(htab, i); 2512 2513 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2514 void *ptr = fd_htab_map_get_ptr(map, l); 2515 2516 map->ops->map_fd_put_ptr(map, ptr, false); 2517 } 2518 } 2519 2520 htab_map_free(map); 2521 } 2522 2523 /* only called from syscall */ 2524 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2525 { 2526 void **ptr; 2527 int ret = 0; 2528 2529 if (!map->ops->map_fd_sys_lookup_elem) 2530 return -ENOTSUPP; 2531 2532 rcu_read_lock(); 2533 ptr = htab_map_lookup_elem(map, key); 2534 if (ptr) 2535 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2536 else 2537 ret = -ENOENT; 2538 rcu_read_unlock(); 2539 2540 return ret; 2541 } 2542 2543 /* only called from syscall */ 2544 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2545 void *key, void *value, u64 map_flags) 2546 { 2547 void *ptr; 2548 int ret; 2549 u32 ufd = *(u32 *)value; 2550 2551 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2552 if (IS_ERR(ptr)) 2553 return PTR_ERR(ptr); 2554 2555 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2556 if (ret) 2557 map->ops->map_fd_put_ptr(map, ptr, false); 2558 2559 return ret; 2560 } 2561 2562 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2563 { 2564 struct bpf_map *map, *inner_map_meta; 2565 2566 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2567 if (IS_ERR(inner_map_meta)) 2568 return inner_map_meta; 2569 2570 map = htab_map_alloc(attr); 2571 if (IS_ERR(map)) { 2572 bpf_map_meta_free(inner_map_meta); 2573 return map; 2574 } 2575 2576 map->inner_map_meta = inner_map_meta; 2577 2578 return map; 2579 } 2580 2581 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2582 { 2583 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2584 2585 if (!inner_map) 2586 return NULL; 2587 2588 return READ_ONCE(*inner_map); 2589 } 2590 2591 static int htab_of_map_gen_lookup(struct bpf_map *map, 2592 struct bpf_insn *insn_buf) 2593 { 2594 struct bpf_insn *insn = insn_buf; 2595 const int ret = BPF_REG_0; 2596 2597 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2598 (void *(*)(struct bpf_map *map, void *key))NULL)); 2599 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2600 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2601 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2602 offsetof(struct htab_elem, key) + 2603 round_up(map->key_size, 8)); 2604 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2605 2606 return insn - insn_buf; 2607 } 2608 2609 static void htab_of_map_free(struct bpf_map *map) 2610 { 2611 bpf_map_meta_free(map->inner_map_meta); 2612 fd_htab_map_free(map); 2613 } 2614 2615 const struct bpf_map_ops htab_of_maps_map_ops = { 2616 .map_alloc_check = fd_htab_map_alloc_check, 2617 .map_alloc = htab_of_map_alloc, 2618 .map_free = htab_of_map_free, 2619 .map_get_next_key = htab_map_get_next_key, 2620 .map_lookup_elem = htab_of_map_lookup_elem, 2621 .map_delete_elem = htab_map_delete_elem, 2622 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2623 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2624 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2625 .map_gen_lookup = htab_of_map_gen_lookup, 2626 .map_check_btf = map_check_no_btf, 2627 .map_mem_usage = htab_map_mem_usage, 2628 BATCH_OPS(htab), 2629 .map_btf_id = &htab_map_btf_ids[0], 2630 }; 2631