xref: /openbmc/linux/kernel/bpf/hashtab.c (revision 6d2779ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17 #include <linux/bpf_mem_alloc.h>
18 
19 #define HTAB_CREATE_FLAG_MASK						\
20 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
21 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
22 
23 #define BATCH_OPS(_name)			\
24 	.map_lookup_batch =			\
25 	_name##_map_lookup_batch,		\
26 	.map_lookup_and_delete_batch =		\
27 	_name##_map_lookup_and_delete_batch,	\
28 	.map_update_batch =			\
29 	generic_map_update_batch,		\
30 	.map_delete_batch =			\
31 	generic_map_delete_batch
32 
33 /*
34  * The bucket lock has two protection scopes:
35  *
36  * 1) Serializing concurrent operations from BPF programs on different
37  *    CPUs
38  *
39  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
40  *
41  * BPF programs can execute in any context including perf, kprobes and
42  * tracing. As there are almost no limits where perf, kprobes and tracing
43  * can be invoked from the lock operations need to be protected against
44  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
45  * the lock held section when functions which acquire this lock are invoked
46  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
47  * variable bpf_prog_active, which prevents BPF programs attached to perf
48  * events, kprobes and tracing to be invoked before the prior invocation
49  * from one of these contexts completed. sys_bpf() uses the same mechanism
50  * by pinning the task to the current CPU and incrementing the recursion
51  * protection across the map operation.
52  *
53  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
54  * operations like memory allocations (even with GFP_ATOMIC) from atomic
55  * contexts. This is required because even with GFP_ATOMIC the memory
56  * allocator calls into code paths which acquire locks with long held lock
57  * sections. To ensure the deterministic behaviour these locks are regular
58  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
59  * true atomic contexts on an RT kernel are the low level hardware
60  * handling, scheduling, low level interrupt handling, NMIs etc. None of
61  * these contexts should ever do memory allocations.
62  *
63  * As regular device interrupt handlers and soft interrupts are forced into
64  * thread context, the existing code which does
65  *   spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
66  * just works.
67  *
68  * In theory the BPF locks could be converted to regular spinlocks as well,
69  * but the bucket locks and percpu_freelist locks can be taken from
70  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
71  * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
72  * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
73  * because there is no memory allocation within the lock held sections. However
74  * after hash map was fully converted to use bpf_mem_alloc, there will be
75  * non-synchronous memory allocation for non-preallocated hash map, so it is
76  * safe to always use raw spinlock for bucket lock.
77  */
78 struct bucket {
79 	struct hlist_nulls_head head;
80 	raw_spinlock_t raw_lock;
81 };
82 
83 #define HASHTAB_MAP_LOCK_COUNT 8
84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
85 
86 struct bpf_htab {
87 	struct bpf_map map;
88 	struct bpf_mem_alloc ma;
89 	struct bpf_mem_alloc pcpu_ma;
90 	struct bucket *buckets;
91 	void *elems;
92 	union {
93 		struct pcpu_freelist freelist;
94 		struct bpf_lru lru;
95 	};
96 	struct htab_elem *__percpu *extra_elems;
97 	/* number of elements in non-preallocated hashtable are kept
98 	 * in either pcount or count
99 	 */
100 	struct percpu_counter pcount;
101 	atomic_t count;
102 	bool use_percpu_counter;
103 	u32 n_buckets;	/* number of hash buckets */
104 	u32 elem_size;	/* size of each element in bytes */
105 	u32 hashrnd;
106 	struct lock_class_key lockdep_key;
107 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
108 };
109 
110 /* each htab element is struct htab_elem + key + value */
111 struct htab_elem {
112 	union {
113 		struct hlist_nulls_node hash_node;
114 		struct {
115 			void *padding;
116 			union {
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		/* pointer to per-cpu pointer */
124 		void *ptr_to_pptr;
125 		struct bpf_lru_node lru_node;
126 	};
127 	u32 hash;
128 	char key[] __aligned(8);
129 };
130 
131 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
132 {
133 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
134 }
135 
136 static void htab_init_buckets(struct bpf_htab *htab)
137 {
138 	unsigned int i;
139 
140 	for (i = 0; i < htab->n_buckets; i++) {
141 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
142 		raw_spin_lock_init(&htab->buckets[i].raw_lock);
143 		lockdep_set_class(&htab->buckets[i].raw_lock,
144 					  &htab->lockdep_key);
145 		cond_resched();
146 	}
147 }
148 
149 static inline int htab_lock_bucket(const struct bpf_htab *htab,
150 				   struct bucket *b, u32 hash,
151 				   unsigned long *pflags)
152 {
153 	unsigned long flags;
154 
155 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
156 
157 	preempt_disable();
158 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
159 		__this_cpu_dec(*(htab->map_locked[hash]));
160 		preempt_enable();
161 		return -EBUSY;
162 	}
163 
164 	raw_spin_lock_irqsave(&b->raw_lock, flags);
165 	*pflags = flags;
166 
167 	return 0;
168 }
169 
170 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
171 				      struct bucket *b, u32 hash,
172 				      unsigned long flags)
173 {
174 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
175 	raw_spin_unlock_irqrestore(&b->raw_lock, flags);
176 	__this_cpu_dec(*(htab->map_locked[hash]));
177 	preempt_enable();
178 }
179 
180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
181 
182 static bool htab_is_lru(const struct bpf_htab *htab)
183 {
184 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
185 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
186 }
187 
188 static bool htab_is_percpu(const struct bpf_htab *htab)
189 {
190 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
191 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
192 }
193 
194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
195 				     void __percpu *pptr)
196 {
197 	*(void __percpu **)(l->key + key_size) = pptr;
198 }
199 
200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
201 {
202 	return *(void __percpu **)(l->key + key_size);
203 }
204 
205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
206 {
207 	return *(void **)(l->key + roundup(map->key_size, 8));
208 }
209 
210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
211 {
212 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
213 }
214 
215 static bool htab_has_extra_elems(struct bpf_htab *htab)
216 {
217 	return !htab_is_percpu(htab) && !htab_is_lru(htab);
218 }
219 
220 static void htab_free_prealloced_timers(struct bpf_htab *htab)
221 {
222 	u32 num_entries = htab->map.max_entries;
223 	int i;
224 
225 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
226 		return;
227 	if (htab_has_extra_elems(htab))
228 		num_entries += num_possible_cpus();
229 
230 	for (i = 0; i < num_entries; i++) {
231 		struct htab_elem *elem;
232 
233 		elem = get_htab_elem(htab, i);
234 		bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
235 		cond_resched();
236 	}
237 }
238 
239 static void htab_free_prealloced_fields(struct bpf_htab *htab)
240 {
241 	u32 num_entries = htab->map.max_entries;
242 	int i;
243 
244 	if (IS_ERR_OR_NULL(htab->map.record))
245 		return;
246 	if (htab_has_extra_elems(htab))
247 		num_entries += num_possible_cpus();
248 	for (i = 0; i < num_entries; i++) {
249 		struct htab_elem *elem;
250 
251 		elem = get_htab_elem(htab, i);
252 		if (htab_is_percpu(htab)) {
253 			void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
254 			int cpu;
255 
256 			for_each_possible_cpu(cpu) {
257 				bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
258 				cond_resched();
259 			}
260 		} else {
261 			bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
262 			cond_resched();
263 		}
264 		cond_resched();
265 	}
266 }
267 
268 static void htab_free_elems(struct bpf_htab *htab)
269 {
270 	int i;
271 
272 	if (!htab_is_percpu(htab))
273 		goto free_elems;
274 
275 	for (i = 0; i < htab->map.max_entries; i++) {
276 		void __percpu *pptr;
277 
278 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
279 					 htab->map.key_size);
280 		free_percpu(pptr);
281 		cond_resched();
282 	}
283 free_elems:
284 	bpf_map_area_free(htab->elems);
285 }
286 
287 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
288  * (bucket_lock). If both locks need to be acquired together, the lock
289  * order is always lru_lock -> bucket_lock and this only happens in
290  * bpf_lru_list.c logic. For example, certain code path of
291  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
292  * will acquire lru_lock first followed by acquiring bucket_lock.
293  *
294  * In hashtab.c, to avoid deadlock, lock acquisition of
295  * bucket_lock followed by lru_lock is not allowed. In such cases,
296  * bucket_lock needs to be released first before acquiring lru_lock.
297  */
298 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
299 					  u32 hash)
300 {
301 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
302 	struct htab_elem *l;
303 
304 	if (node) {
305 		bpf_map_inc_elem_count(&htab->map);
306 		l = container_of(node, struct htab_elem, lru_node);
307 		memcpy(l->key, key, htab->map.key_size);
308 		return l;
309 	}
310 
311 	return NULL;
312 }
313 
314 static int prealloc_init(struct bpf_htab *htab)
315 {
316 	u32 num_entries = htab->map.max_entries;
317 	int err = -ENOMEM, i;
318 
319 	if (htab_has_extra_elems(htab))
320 		num_entries += num_possible_cpus();
321 
322 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
323 					 htab->map.numa_node);
324 	if (!htab->elems)
325 		return -ENOMEM;
326 
327 	if (!htab_is_percpu(htab))
328 		goto skip_percpu_elems;
329 
330 	for (i = 0; i < num_entries; i++) {
331 		u32 size = round_up(htab->map.value_size, 8);
332 		void __percpu *pptr;
333 
334 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
335 					    GFP_USER | __GFP_NOWARN);
336 		if (!pptr)
337 			goto free_elems;
338 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
339 				  pptr);
340 		cond_resched();
341 	}
342 
343 skip_percpu_elems:
344 	if (htab_is_lru(htab))
345 		err = bpf_lru_init(&htab->lru,
346 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
347 				   offsetof(struct htab_elem, hash) -
348 				   offsetof(struct htab_elem, lru_node),
349 				   htab_lru_map_delete_node,
350 				   htab);
351 	else
352 		err = pcpu_freelist_init(&htab->freelist);
353 
354 	if (err)
355 		goto free_elems;
356 
357 	if (htab_is_lru(htab))
358 		bpf_lru_populate(&htab->lru, htab->elems,
359 				 offsetof(struct htab_elem, lru_node),
360 				 htab->elem_size, num_entries);
361 	else
362 		pcpu_freelist_populate(&htab->freelist,
363 				       htab->elems + offsetof(struct htab_elem, fnode),
364 				       htab->elem_size, num_entries);
365 
366 	return 0;
367 
368 free_elems:
369 	htab_free_elems(htab);
370 	return err;
371 }
372 
373 static void prealloc_destroy(struct bpf_htab *htab)
374 {
375 	htab_free_elems(htab);
376 
377 	if (htab_is_lru(htab))
378 		bpf_lru_destroy(&htab->lru);
379 	else
380 		pcpu_freelist_destroy(&htab->freelist);
381 }
382 
383 static int alloc_extra_elems(struct bpf_htab *htab)
384 {
385 	struct htab_elem *__percpu *pptr, *l_new;
386 	struct pcpu_freelist_node *l;
387 	int cpu;
388 
389 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
390 				    GFP_USER | __GFP_NOWARN);
391 	if (!pptr)
392 		return -ENOMEM;
393 
394 	for_each_possible_cpu(cpu) {
395 		l = pcpu_freelist_pop(&htab->freelist);
396 		/* pop will succeed, since prealloc_init()
397 		 * preallocated extra num_possible_cpus elements
398 		 */
399 		l_new = container_of(l, struct htab_elem, fnode);
400 		*per_cpu_ptr(pptr, cpu) = l_new;
401 	}
402 	htab->extra_elems = pptr;
403 	return 0;
404 }
405 
406 /* Called from syscall */
407 static int htab_map_alloc_check(union bpf_attr *attr)
408 {
409 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
410 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
411 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
412 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
413 	/* percpu_lru means each cpu has its own LRU list.
414 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
415 	 * the map's value itself is percpu.  percpu_lru has
416 	 * nothing to do with the map's value.
417 	 */
418 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
419 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
420 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
421 	int numa_node = bpf_map_attr_numa_node(attr);
422 
423 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
424 		     offsetof(struct htab_elem, hash_node.pprev));
425 
426 	if (zero_seed && !capable(CAP_SYS_ADMIN))
427 		/* Guard against local DoS, and discourage production use. */
428 		return -EPERM;
429 
430 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
431 	    !bpf_map_flags_access_ok(attr->map_flags))
432 		return -EINVAL;
433 
434 	if (!lru && percpu_lru)
435 		return -EINVAL;
436 
437 	if (lru && !prealloc)
438 		return -ENOTSUPP;
439 
440 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
441 		return -EINVAL;
442 
443 	/* check sanity of attributes.
444 	 * value_size == 0 may be allowed in the future to use map as a set
445 	 */
446 	if (attr->max_entries == 0 || attr->key_size == 0 ||
447 	    attr->value_size == 0)
448 		return -EINVAL;
449 
450 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
451 	   sizeof(struct htab_elem))
452 		/* if key_size + value_size is bigger, the user space won't be
453 		 * able to access the elements via bpf syscall. This check
454 		 * also makes sure that the elem_size doesn't overflow and it's
455 		 * kmalloc-able later in htab_map_update_elem()
456 		 */
457 		return -E2BIG;
458 
459 	return 0;
460 }
461 
462 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
463 {
464 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
465 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
466 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
467 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
468 	/* percpu_lru means each cpu has its own LRU list.
469 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
470 	 * the map's value itself is percpu.  percpu_lru has
471 	 * nothing to do with the map's value.
472 	 */
473 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
474 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
475 	struct bpf_htab *htab;
476 	int err, i;
477 
478 	htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
479 	if (!htab)
480 		return ERR_PTR(-ENOMEM);
481 
482 	lockdep_register_key(&htab->lockdep_key);
483 
484 	bpf_map_init_from_attr(&htab->map, attr);
485 
486 	if (percpu_lru) {
487 		/* ensure each CPU's lru list has >=1 elements.
488 		 * since we are at it, make each lru list has the same
489 		 * number of elements.
490 		 */
491 		htab->map.max_entries = roundup(attr->max_entries,
492 						num_possible_cpus());
493 		if (htab->map.max_entries < attr->max_entries)
494 			htab->map.max_entries = rounddown(attr->max_entries,
495 							  num_possible_cpus());
496 	}
497 
498 	/* hash table size must be power of 2 */
499 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
500 
501 	htab->elem_size = sizeof(struct htab_elem) +
502 			  round_up(htab->map.key_size, 8);
503 	if (percpu)
504 		htab->elem_size += sizeof(void *);
505 	else
506 		htab->elem_size += round_up(htab->map.value_size, 8);
507 
508 	err = -E2BIG;
509 	/* prevent zero size kmalloc and check for u32 overflow */
510 	if (htab->n_buckets == 0 ||
511 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
512 		goto free_htab;
513 
514 	err = bpf_map_init_elem_count(&htab->map);
515 	if (err)
516 		goto free_htab;
517 
518 	err = -ENOMEM;
519 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
520 					   sizeof(struct bucket),
521 					   htab->map.numa_node);
522 	if (!htab->buckets)
523 		goto free_elem_count;
524 
525 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
526 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
527 							   sizeof(int),
528 							   sizeof(int),
529 							   GFP_USER);
530 		if (!htab->map_locked[i])
531 			goto free_map_locked;
532 	}
533 
534 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
535 		htab->hashrnd = 0;
536 	else
537 		htab->hashrnd = get_random_u32();
538 
539 	htab_init_buckets(htab);
540 
541 /* compute_batch_value() computes batch value as num_online_cpus() * 2
542  * and __percpu_counter_compare() needs
543  * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
544  * for percpu_counter to be faster than atomic_t. In practice the average bpf
545  * hash map size is 10k, which means that a system with 64 cpus will fill
546  * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
547  * define our own batch count as 32 then 10k hash map can be filled up to 80%:
548  * 10k - 8k > 32 _batch_ * 64 _cpus_
549  * and __percpu_counter_compare() will still be fast. At that point hash map
550  * collisions will dominate its performance anyway. Assume that hash map filled
551  * to 50+% isn't going to be O(1) and use the following formula to choose
552  * between percpu_counter and atomic_t.
553  */
554 #define PERCPU_COUNTER_BATCH 32
555 	if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
556 		htab->use_percpu_counter = true;
557 
558 	if (htab->use_percpu_counter) {
559 		err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
560 		if (err)
561 			goto free_map_locked;
562 	}
563 
564 	if (prealloc) {
565 		err = prealloc_init(htab);
566 		if (err)
567 			goto free_map_locked;
568 
569 		if (!percpu && !lru) {
570 			/* lru itself can remove the least used element, so
571 			 * there is no need for an extra elem during map_update.
572 			 */
573 			err = alloc_extra_elems(htab);
574 			if (err)
575 				goto free_prealloc;
576 		}
577 	} else {
578 		err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
579 		if (err)
580 			goto free_map_locked;
581 		if (percpu) {
582 			err = bpf_mem_alloc_init(&htab->pcpu_ma,
583 						 round_up(htab->map.value_size, 8), true);
584 			if (err)
585 				goto free_map_locked;
586 		}
587 	}
588 
589 	return &htab->map;
590 
591 free_prealloc:
592 	prealloc_destroy(htab);
593 free_map_locked:
594 	if (htab->use_percpu_counter)
595 		percpu_counter_destroy(&htab->pcount);
596 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
597 		free_percpu(htab->map_locked[i]);
598 	bpf_map_area_free(htab->buckets);
599 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
600 	bpf_mem_alloc_destroy(&htab->ma);
601 free_elem_count:
602 	bpf_map_free_elem_count(&htab->map);
603 free_htab:
604 	lockdep_unregister_key(&htab->lockdep_key);
605 	bpf_map_area_free(htab);
606 	return ERR_PTR(err);
607 }
608 
609 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
610 {
611 	if (likely(key_len % 4 == 0))
612 		return jhash2(key, key_len / 4, hashrnd);
613 	return jhash(key, key_len, hashrnd);
614 }
615 
616 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
617 {
618 	return &htab->buckets[hash & (htab->n_buckets - 1)];
619 }
620 
621 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
622 {
623 	return &__select_bucket(htab, hash)->head;
624 }
625 
626 /* this lookup function can only be called with bucket lock taken */
627 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
628 					 void *key, u32 key_size)
629 {
630 	struct hlist_nulls_node *n;
631 	struct htab_elem *l;
632 
633 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
634 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
635 			return l;
636 
637 	return NULL;
638 }
639 
640 /* can be called without bucket lock. it will repeat the loop in
641  * the unlikely event when elements moved from one bucket into another
642  * while link list is being walked
643  */
644 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
645 					       u32 hash, void *key,
646 					       u32 key_size, u32 n_buckets)
647 {
648 	struct hlist_nulls_node *n;
649 	struct htab_elem *l;
650 
651 again:
652 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
653 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
654 			return l;
655 
656 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
657 		goto again;
658 
659 	return NULL;
660 }
661 
662 /* Called from syscall or from eBPF program directly, so
663  * arguments have to match bpf_map_lookup_elem() exactly.
664  * The return value is adjusted by BPF instructions
665  * in htab_map_gen_lookup().
666  */
667 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
668 {
669 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
670 	struct hlist_nulls_head *head;
671 	struct htab_elem *l;
672 	u32 hash, key_size;
673 
674 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
675 		     !rcu_read_lock_bh_held());
676 
677 	key_size = map->key_size;
678 
679 	hash = htab_map_hash(key, key_size, htab->hashrnd);
680 
681 	head = select_bucket(htab, hash);
682 
683 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
684 
685 	return l;
686 }
687 
688 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
689 {
690 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
691 
692 	if (l)
693 		return l->key + round_up(map->key_size, 8);
694 
695 	return NULL;
696 }
697 
698 /* inline bpf_map_lookup_elem() call.
699  * Instead of:
700  * bpf_prog
701  *   bpf_map_lookup_elem
702  *     map->ops->map_lookup_elem
703  *       htab_map_lookup_elem
704  *         __htab_map_lookup_elem
705  * do:
706  * bpf_prog
707  *   __htab_map_lookup_elem
708  */
709 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
710 {
711 	struct bpf_insn *insn = insn_buf;
712 	const int ret = BPF_REG_0;
713 
714 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
715 		     (void *(*)(struct bpf_map *map, void *key))NULL));
716 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
717 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
718 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
719 				offsetof(struct htab_elem, key) +
720 				round_up(map->key_size, 8));
721 	return insn - insn_buf;
722 }
723 
724 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
725 							void *key, const bool mark)
726 {
727 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
728 
729 	if (l) {
730 		if (mark)
731 			bpf_lru_node_set_ref(&l->lru_node);
732 		return l->key + round_up(map->key_size, 8);
733 	}
734 
735 	return NULL;
736 }
737 
738 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
739 {
740 	return __htab_lru_map_lookup_elem(map, key, true);
741 }
742 
743 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
744 {
745 	return __htab_lru_map_lookup_elem(map, key, false);
746 }
747 
748 static int htab_lru_map_gen_lookup(struct bpf_map *map,
749 				   struct bpf_insn *insn_buf)
750 {
751 	struct bpf_insn *insn = insn_buf;
752 	const int ret = BPF_REG_0;
753 	const int ref_reg = BPF_REG_1;
754 
755 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
756 		     (void *(*)(struct bpf_map *map, void *key))NULL));
757 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
758 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
759 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
760 			      offsetof(struct htab_elem, lru_node) +
761 			      offsetof(struct bpf_lru_node, ref));
762 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
763 	*insn++ = BPF_ST_MEM(BPF_B, ret,
764 			     offsetof(struct htab_elem, lru_node) +
765 			     offsetof(struct bpf_lru_node, ref),
766 			     1);
767 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
768 				offsetof(struct htab_elem, key) +
769 				round_up(map->key_size, 8));
770 	return insn - insn_buf;
771 }
772 
773 static void check_and_free_fields(struct bpf_htab *htab,
774 				  struct htab_elem *elem)
775 {
776 	if (htab_is_percpu(htab)) {
777 		void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
778 		int cpu;
779 
780 		for_each_possible_cpu(cpu)
781 			bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
782 	} else {
783 		void *map_value = elem->key + round_up(htab->map.key_size, 8);
784 
785 		bpf_obj_free_fields(htab->map.record, map_value);
786 	}
787 }
788 
789 /* It is called from the bpf_lru_list when the LRU needs to delete
790  * older elements from the htab.
791  */
792 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
793 {
794 	struct bpf_htab *htab = arg;
795 	struct htab_elem *l = NULL, *tgt_l;
796 	struct hlist_nulls_head *head;
797 	struct hlist_nulls_node *n;
798 	unsigned long flags;
799 	struct bucket *b;
800 	int ret;
801 
802 	tgt_l = container_of(node, struct htab_elem, lru_node);
803 	b = __select_bucket(htab, tgt_l->hash);
804 	head = &b->head;
805 
806 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
807 	if (ret)
808 		return false;
809 
810 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
811 		if (l == tgt_l) {
812 			hlist_nulls_del_rcu(&l->hash_node);
813 			check_and_free_fields(htab, l);
814 			bpf_map_dec_elem_count(&htab->map);
815 			break;
816 		}
817 
818 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
819 
820 	return l == tgt_l;
821 }
822 
823 /* Called from syscall */
824 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
825 {
826 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
827 	struct hlist_nulls_head *head;
828 	struct htab_elem *l, *next_l;
829 	u32 hash, key_size;
830 	int i = 0;
831 
832 	WARN_ON_ONCE(!rcu_read_lock_held());
833 
834 	key_size = map->key_size;
835 
836 	if (!key)
837 		goto find_first_elem;
838 
839 	hash = htab_map_hash(key, key_size, htab->hashrnd);
840 
841 	head = select_bucket(htab, hash);
842 
843 	/* lookup the key */
844 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
845 
846 	if (!l)
847 		goto find_first_elem;
848 
849 	/* key was found, get next key in the same bucket */
850 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
851 				  struct htab_elem, hash_node);
852 
853 	if (next_l) {
854 		/* if next elem in this hash list is non-zero, just return it */
855 		memcpy(next_key, next_l->key, key_size);
856 		return 0;
857 	}
858 
859 	/* no more elements in this hash list, go to the next bucket */
860 	i = hash & (htab->n_buckets - 1);
861 	i++;
862 
863 find_first_elem:
864 	/* iterate over buckets */
865 	for (; i < htab->n_buckets; i++) {
866 		head = select_bucket(htab, i);
867 
868 		/* pick first element in the bucket */
869 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
870 					  struct htab_elem, hash_node);
871 		if (next_l) {
872 			/* if it's not empty, just return it */
873 			memcpy(next_key, next_l->key, key_size);
874 			return 0;
875 		}
876 	}
877 
878 	/* iterated over all buckets and all elements */
879 	return -ENOENT;
880 }
881 
882 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
883 {
884 	check_and_free_fields(htab, l);
885 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
886 		bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
887 	bpf_mem_cache_free(&htab->ma, l);
888 }
889 
890 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
891 {
892 	struct bpf_map *map = &htab->map;
893 	void *ptr;
894 
895 	if (map->ops->map_fd_put_ptr) {
896 		ptr = fd_htab_map_get_ptr(map, l);
897 		map->ops->map_fd_put_ptr(ptr);
898 	}
899 }
900 
901 static bool is_map_full(struct bpf_htab *htab)
902 {
903 	if (htab->use_percpu_counter)
904 		return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
905 						PERCPU_COUNTER_BATCH) >= 0;
906 	return atomic_read(&htab->count) >= htab->map.max_entries;
907 }
908 
909 static void inc_elem_count(struct bpf_htab *htab)
910 {
911 	bpf_map_inc_elem_count(&htab->map);
912 
913 	if (htab->use_percpu_counter)
914 		percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
915 	else
916 		atomic_inc(&htab->count);
917 }
918 
919 static void dec_elem_count(struct bpf_htab *htab)
920 {
921 	bpf_map_dec_elem_count(&htab->map);
922 
923 	if (htab->use_percpu_counter)
924 		percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
925 	else
926 		atomic_dec(&htab->count);
927 }
928 
929 
930 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
931 {
932 	htab_put_fd_value(htab, l);
933 
934 	if (htab_is_prealloc(htab)) {
935 		bpf_map_dec_elem_count(&htab->map);
936 		check_and_free_fields(htab, l);
937 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
938 	} else {
939 		dec_elem_count(htab);
940 		htab_elem_free(htab, l);
941 	}
942 }
943 
944 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
945 			    void *value, bool onallcpus)
946 {
947 	if (!onallcpus) {
948 		/* copy true value_size bytes */
949 		copy_map_value(&htab->map, this_cpu_ptr(pptr), value);
950 	} else {
951 		u32 size = round_up(htab->map.value_size, 8);
952 		int off = 0, cpu;
953 
954 		for_each_possible_cpu(cpu) {
955 			copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off);
956 			off += size;
957 		}
958 	}
959 }
960 
961 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
962 			    void *value, bool onallcpus)
963 {
964 	/* When not setting the initial value on all cpus, zero-fill element
965 	 * values for other cpus. Otherwise, bpf program has no way to ensure
966 	 * known initial values for cpus other than current one
967 	 * (onallcpus=false always when coming from bpf prog).
968 	 */
969 	if (!onallcpus) {
970 		int current_cpu = raw_smp_processor_id();
971 		int cpu;
972 
973 		for_each_possible_cpu(cpu) {
974 			if (cpu == current_cpu)
975 				copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value);
976 			else /* Since elem is preallocated, we cannot touch special fields */
977 				zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu));
978 		}
979 	} else {
980 		pcpu_copy_value(htab, pptr, value, onallcpus);
981 	}
982 }
983 
984 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
985 {
986 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
987 	       BITS_PER_LONG == 64;
988 }
989 
990 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
991 					 void *value, u32 key_size, u32 hash,
992 					 bool percpu, bool onallcpus,
993 					 struct htab_elem *old_elem)
994 {
995 	u32 size = htab->map.value_size;
996 	bool prealloc = htab_is_prealloc(htab);
997 	struct htab_elem *l_new, **pl_new;
998 	void __percpu *pptr;
999 
1000 	if (prealloc) {
1001 		if (old_elem) {
1002 			/* if we're updating the existing element,
1003 			 * use per-cpu extra elems to avoid freelist_pop/push
1004 			 */
1005 			pl_new = this_cpu_ptr(htab->extra_elems);
1006 			l_new = *pl_new;
1007 			htab_put_fd_value(htab, old_elem);
1008 			*pl_new = old_elem;
1009 		} else {
1010 			struct pcpu_freelist_node *l;
1011 
1012 			l = __pcpu_freelist_pop(&htab->freelist);
1013 			if (!l)
1014 				return ERR_PTR(-E2BIG);
1015 			l_new = container_of(l, struct htab_elem, fnode);
1016 			bpf_map_inc_elem_count(&htab->map);
1017 		}
1018 	} else {
1019 		if (is_map_full(htab))
1020 			if (!old_elem)
1021 				/* when map is full and update() is replacing
1022 				 * old element, it's ok to allocate, since
1023 				 * old element will be freed immediately.
1024 				 * Otherwise return an error
1025 				 */
1026 				return ERR_PTR(-E2BIG);
1027 		inc_elem_count(htab);
1028 		l_new = bpf_mem_cache_alloc(&htab->ma);
1029 		if (!l_new) {
1030 			l_new = ERR_PTR(-ENOMEM);
1031 			goto dec_count;
1032 		}
1033 	}
1034 
1035 	memcpy(l_new->key, key, key_size);
1036 	if (percpu) {
1037 		if (prealloc) {
1038 			pptr = htab_elem_get_ptr(l_new, key_size);
1039 		} else {
1040 			/* alloc_percpu zero-fills */
1041 			pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
1042 			if (!pptr) {
1043 				bpf_mem_cache_free(&htab->ma, l_new);
1044 				l_new = ERR_PTR(-ENOMEM);
1045 				goto dec_count;
1046 			}
1047 			l_new->ptr_to_pptr = pptr;
1048 			pptr = *(void **)pptr;
1049 		}
1050 
1051 		pcpu_init_value(htab, pptr, value, onallcpus);
1052 
1053 		if (!prealloc)
1054 			htab_elem_set_ptr(l_new, key_size, pptr);
1055 	} else if (fd_htab_map_needs_adjust(htab)) {
1056 		size = round_up(size, 8);
1057 		memcpy(l_new->key + round_up(key_size, 8), value, size);
1058 	} else {
1059 		copy_map_value(&htab->map,
1060 			       l_new->key + round_up(key_size, 8),
1061 			       value);
1062 	}
1063 
1064 	l_new->hash = hash;
1065 	return l_new;
1066 dec_count:
1067 	dec_elem_count(htab);
1068 	return l_new;
1069 }
1070 
1071 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1072 		       u64 map_flags)
1073 {
1074 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1075 		/* elem already exists */
1076 		return -EEXIST;
1077 
1078 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1079 		/* elem doesn't exist, cannot update it */
1080 		return -ENOENT;
1081 
1082 	return 0;
1083 }
1084 
1085 /* Called from syscall or from eBPF program */
1086 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1087 				 u64 map_flags)
1088 {
1089 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1090 	struct htab_elem *l_new = NULL, *l_old;
1091 	struct hlist_nulls_head *head;
1092 	unsigned long flags;
1093 	struct bucket *b;
1094 	u32 key_size, hash;
1095 	int ret;
1096 
1097 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1098 		/* unknown flags */
1099 		return -EINVAL;
1100 
1101 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1102 		     !rcu_read_lock_bh_held());
1103 
1104 	key_size = map->key_size;
1105 
1106 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1107 
1108 	b = __select_bucket(htab, hash);
1109 	head = &b->head;
1110 
1111 	if (unlikely(map_flags & BPF_F_LOCK)) {
1112 		if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1113 			return -EINVAL;
1114 		/* find an element without taking the bucket lock */
1115 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1116 					      htab->n_buckets);
1117 		ret = check_flags(htab, l_old, map_flags);
1118 		if (ret)
1119 			return ret;
1120 		if (l_old) {
1121 			/* grab the element lock and update value in place */
1122 			copy_map_value_locked(map,
1123 					      l_old->key + round_up(key_size, 8),
1124 					      value, false);
1125 			return 0;
1126 		}
1127 		/* fall through, grab the bucket lock and lookup again.
1128 		 * 99.9% chance that the element won't be found,
1129 		 * but second lookup under lock has to be done.
1130 		 */
1131 	}
1132 
1133 	ret = htab_lock_bucket(htab, b, hash, &flags);
1134 	if (ret)
1135 		return ret;
1136 
1137 	l_old = lookup_elem_raw(head, hash, key, key_size);
1138 
1139 	ret = check_flags(htab, l_old, map_flags);
1140 	if (ret)
1141 		goto err;
1142 
1143 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1144 		/* first lookup without the bucket lock didn't find the element,
1145 		 * but second lookup with the bucket lock found it.
1146 		 * This case is highly unlikely, but has to be dealt with:
1147 		 * grab the element lock in addition to the bucket lock
1148 		 * and update element in place
1149 		 */
1150 		copy_map_value_locked(map,
1151 				      l_old->key + round_up(key_size, 8),
1152 				      value, false);
1153 		ret = 0;
1154 		goto err;
1155 	}
1156 
1157 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1158 				l_old);
1159 	if (IS_ERR(l_new)) {
1160 		/* all pre-allocated elements are in use or memory exhausted */
1161 		ret = PTR_ERR(l_new);
1162 		goto err;
1163 	}
1164 
1165 	/* add new element to the head of the list, so that
1166 	 * concurrent search will find it before old elem
1167 	 */
1168 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1169 	if (l_old) {
1170 		hlist_nulls_del_rcu(&l_old->hash_node);
1171 		if (!htab_is_prealloc(htab))
1172 			free_htab_elem(htab, l_old);
1173 		else
1174 			check_and_free_fields(htab, l_old);
1175 	}
1176 	ret = 0;
1177 err:
1178 	htab_unlock_bucket(htab, b, hash, flags);
1179 	return ret;
1180 }
1181 
1182 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1183 {
1184 	check_and_free_fields(htab, elem);
1185 	bpf_map_dec_elem_count(&htab->map);
1186 	bpf_lru_push_free(&htab->lru, &elem->lru_node);
1187 }
1188 
1189 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1190 				     u64 map_flags)
1191 {
1192 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1193 	struct htab_elem *l_new, *l_old = NULL;
1194 	struct hlist_nulls_head *head;
1195 	unsigned long flags;
1196 	struct bucket *b;
1197 	u32 key_size, hash;
1198 	int ret;
1199 
1200 	if (unlikely(map_flags > BPF_EXIST))
1201 		/* unknown flags */
1202 		return -EINVAL;
1203 
1204 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1205 		     !rcu_read_lock_bh_held());
1206 
1207 	key_size = map->key_size;
1208 
1209 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1210 
1211 	b = __select_bucket(htab, hash);
1212 	head = &b->head;
1213 
1214 	/* For LRU, we need to alloc before taking bucket's
1215 	 * spinlock because getting free nodes from LRU may need
1216 	 * to remove older elements from htab and this removal
1217 	 * operation will need a bucket lock.
1218 	 */
1219 	l_new = prealloc_lru_pop(htab, key, hash);
1220 	if (!l_new)
1221 		return -ENOMEM;
1222 	copy_map_value(&htab->map,
1223 		       l_new->key + round_up(map->key_size, 8), value);
1224 
1225 	ret = htab_lock_bucket(htab, b, hash, &flags);
1226 	if (ret)
1227 		goto err_lock_bucket;
1228 
1229 	l_old = lookup_elem_raw(head, hash, key, key_size);
1230 
1231 	ret = check_flags(htab, l_old, map_flags);
1232 	if (ret)
1233 		goto err;
1234 
1235 	/* add new element to the head of the list, so that
1236 	 * concurrent search will find it before old elem
1237 	 */
1238 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1239 	if (l_old) {
1240 		bpf_lru_node_set_ref(&l_new->lru_node);
1241 		hlist_nulls_del_rcu(&l_old->hash_node);
1242 	}
1243 	ret = 0;
1244 
1245 err:
1246 	htab_unlock_bucket(htab, b, hash, flags);
1247 
1248 err_lock_bucket:
1249 	if (ret)
1250 		htab_lru_push_free(htab, l_new);
1251 	else if (l_old)
1252 		htab_lru_push_free(htab, l_old);
1253 
1254 	return ret;
1255 }
1256 
1257 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1258 					  void *value, u64 map_flags,
1259 					  bool onallcpus)
1260 {
1261 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1262 	struct htab_elem *l_new = NULL, *l_old;
1263 	struct hlist_nulls_head *head;
1264 	unsigned long flags;
1265 	struct bucket *b;
1266 	u32 key_size, hash;
1267 	int ret;
1268 
1269 	if (unlikely(map_flags > BPF_EXIST))
1270 		/* unknown flags */
1271 		return -EINVAL;
1272 
1273 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1274 		     !rcu_read_lock_bh_held());
1275 
1276 	key_size = map->key_size;
1277 
1278 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1279 
1280 	b = __select_bucket(htab, hash);
1281 	head = &b->head;
1282 
1283 	ret = htab_lock_bucket(htab, b, hash, &flags);
1284 	if (ret)
1285 		return ret;
1286 
1287 	l_old = lookup_elem_raw(head, hash, key, key_size);
1288 
1289 	ret = check_flags(htab, l_old, map_flags);
1290 	if (ret)
1291 		goto err;
1292 
1293 	if (l_old) {
1294 		/* per-cpu hash map can update value in-place */
1295 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1296 				value, onallcpus);
1297 	} else {
1298 		l_new = alloc_htab_elem(htab, key, value, key_size,
1299 					hash, true, onallcpus, NULL);
1300 		if (IS_ERR(l_new)) {
1301 			ret = PTR_ERR(l_new);
1302 			goto err;
1303 		}
1304 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1305 	}
1306 	ret = 0;
1307 err:
1308 	htab_unlock_bucket(htab, b, hash, flags);
1309 	return ret;
1310 }
1311 
1312 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1313 					      void *value, u64 map_flags,
1314 					      bool onallcpus)
1315 {
1316 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1317 	struct htab_elem *l_new = NULL, *l_old;
1318 	struct hlist_nulls_head *head;
1319 	unsigned long flags;
1320 	struct bucket *b;
1321 	u32 key_size, hash;
1322 	int ret;
1323 
1324 	if (unlikely(map_flags > BPF_EXIST))
1325 		/* unknown flags */
1326 		return -EINVAL;
1327 
1328 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1329 		     !rcu_read_lock_bh_held());
1330 
1331 	key_size = map->key_size;
1332 
1333 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1334 
1335 	b = __select_bucket(htab, hash);
1336 	head = &b->head;
1337 
1338 	/* For LRU, we need to alloc before taking bucket's
1339 	 * spinlock because LRU's elem alloc may need
1340 	 * to remove older elem from htab and this removal
1341 	 * operation will need a bucket lock.
1342 	 */
1343 	if (map_flags != BPF_EXIST) {
1344 		l_new = prealloc_lru_pop(htab, key, hash);
1345 		if (!l_new)
1346 			return -ENOMEM;
1347 	}
1348 
1349 	ret = htab_lock_bucket(htab, b, hash, &flags);
1350 	if (ret)
1351 		goto err_lock_bucket;
1352 
1353 	l_old = lookup_elem_raw(head, hash, key, key_size);
1354 
1355 	ret = check_flags(htab, l_old, map_flags);
1356 	if (ret)
1357 		goto err;
1358 
1359 	if (l_old) {
1360 		bpf_lru_node_set_ref(&l_old->lru_node);
1361 
1362 		/* per-cpu hash map can update value in-place */
1363 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1364 				value, onallcpus);
1365 	} else {
1366 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1367 				value, onallcpus);
1368 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1369 		l_new = NULL;
1370 	}
1371 	ret = 0;
1372 err:
1373 	htab_unlock_bucket(htab, b, hash, flags);
1374 err_lock_bucket:
1375 	if (l_new) {
1376 		bpf_map_dec_elem_count(&htab->map);
1377 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1378 	}
1379 	return ret;
1380 }
1381 
1382 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1383 					void *value, u64 map_flags)
1384 {
1385 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1386 }
1387 
1388 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1389 					    void *value, u64 map_flags)
1390 {
1391 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1392 						 false);
1393 }
1394 
1395 /* Called from syscall or from eBPF program */
1396 static long htab_map_delete_elem(struct bpf_map *map, void *key)
1397 {
1398 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1399 	struct hlist_nulls_head *head;
1400 	struct bucket *b;
1401 	struct htab_elem *l;
1402 	unsigned long flags;
1403 	u32 hash, key_size;
1404 	int ret;
1405 
1406 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1407 		     !rcu_read_lock_bh_held());
1408 
1409 	key_size = map->key_size;
1410 
1411 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1412 	b = __select_bucket(htab, hash);
1413 	head = &b->head;
1414 
1415 	ret = htab_lock_bucket(htab, b, hash, &flags);
1416 	if (ret)
1417 		return ret;
1418 
1419 	l = lookup_elem_raw(head, hash, key, key_size);
1420 
1421 	if (l) {
1422 		hlist_nulls_del_rcu(&l->hash_node);
1423 		free_htab_elem(htab, l);
1424 	} else {
1425 		ret = -ENOENT;
1426 	}
1427 
1428 	htab_unlock_bucket(htab, b, hash, flags);
1429 	return ret;
1430 }
1431 
1432 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1433 {
1434 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1435 	struct hlist_nulls_head *head;
1436 	struct bucket *b;
1437 	struct htab_elem *l;
1438 	unsigned long flags;
1439 	u32 hash, key_size;
1440 	int ret;
1441 
1442 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1443 		     !rcu_read_lock_bh_held());
1444 
1445 	key_size = map->key_size;
1446 
1447 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1448 	b = __select_bucket(htab, hash);
1449 	head = &b->head;
1450 
1451 	ret = htab_lock_bucket(htab, b, hash, &flags);
1452 	if (ret)
1453 		return ret;
1454 
1455 	l = lookup_elem_raw(head, hash, key, key_size);
1456 
1457 	if (l)
1458 		hlist_nulls_del_rcu(&l->hash_node);
1459 	else
1460 		ret = -ENOENT;
1461 
1462 	htab_unlock_bucket(htab, b, hash, flags);
1463 	if (l)
1464 		htab_lru_push_free(htab, l);
1465 	return ret;
1466 }
1467 
1468 static void delete_all_elements(struct bpf_htab *htab)
1469 {
1470 	int i;
1471 
1472 	/* It's called from a worker thread, so disable migration here,
1473 	 * since bpf_mem_cache_free() relies on that.
1474 	 */
1475 	migrate_disable();
1476 	for (i = 0; i < htab->n_buckets; i++) {
1477 		struct hlist_nulls_head *head = select_bucket(htab, i);
1478 		struct hlist_nulls_node *n;
1479 		struct htab_elem *l;
1480 
1481 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1482 			hlist_nulls_del_rcu(&l->hash_node);
1483 			htab_elem_free(htab, l);
1484 		}
1485 	}
1486 	migrate_enable();
1487 }
1488 
1489 static void htab_free_malloced_timers(struct bpf_htab *htab)
1490 {
1491 	int i;
1492 
1493 	rcu_read_lock();
1494 	for (i = 0; i < htab->n_buckets; i++) {
1495 		struct hlist_nulls_head *head = select_bucket(htab, i);
1496 		struct hlist_nulls_node *n;
1497 		struct htab_elem *l;
1498 
1499 		hlist_nulls_for_each_entry(l, n, head, hash_node) {
1500 			/* We only free timer on uref dropping to zero */
1501 			bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
1502 		}
1503 		cond_resched_rcu();
1504 	}
1505 	rcu_read_unlock();
1506 }
1507 
1508 static void htab_map_free_timers(struct bpf_map *map)
1509 {
1510 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1511 
1512 	/* We only free timer on uref dropping to zero */
1513 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
1514 		return;
1515 	if (!htab_is_prealloc(htab))
1516 		htab_free_malloced_timers(htab);
1517 	else
1518 		htab_free_prealloced_timers(htab);
1519 }
1520 
1521 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1522 static void htab_map_free(struct bpf_map *map)
1523 {
1524 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1525 	int i;
1526 
1527 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1528 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1529 	 * There is no need to synchronize_rcu() here to protect map elements.
1530 	 */
1531 
1532 	/* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
1533 	 * underneath and is reponsible for waiting for callbacks to finish
1534 	 * during bpf_mem_alloc_destroy().
1535 	 */
1536 	if (!htab_is_prealloc(htab)) {
1537 		delete_all_elements(htab);
1538 	} else {
1539 		htab_free_prealloced_fields(htab);
1540 		prealloc_destroy(htab);
1541 	}
1542 
1543 	bpf_map_free_elem_count(map);
1544 	free_percpu(htab->extra_elems);
1545 	bpf_map_area_free(htab->buckets);
1546 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
1547 	bpf_mem_alloc_destroy(&htab->ma);
1548 	if (htab->use_percpu_counter)
1549 		percpu_counter_destroy(&htab->pcount);
1550 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1551 		free_percpu(htab->map_locked[i]);
1552 	lockdep_unregister_key(&htab->lockdep_key);
1553 	bpf_map_area_free(htab);
1554 }
1555 
1556 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1557 				   struct seq_file *m)
1558 {
1559 	void *value;
1560 
1561 	rcu_read_lock();
1562 
1563 	value = htab_map_lookup_elem(map, key);
1564 	if (!value) {
1565 		rcu_read_unlock();
1566 		return;
1567 	}
1568 
1569 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1570 	seq_puts(m, ": ");
1571 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1572 	seq_puts(m, "\n");
1573 
1574 	rcu_read_unlock();
1575 }
1576 
1577 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1578 					     void *value, bool is_lru_map,
1579 					     bool is_percpu, u64 flags)
1580 {
1581 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1582 	struct hlist_nulls_head *head;
1583 	unsigned long bflags;
1584 	struct htab_elem *l;
1585 	u32 hash, key_size;
1586 	struct bucket *b;
1587 	int ret;
1588 
1589 	key_size = map->key_size;
1590 
1591 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1592 	b = __select_bucket(htab, hash);
1593 	head = &b->head;
1594 
1595 	ret = htab_lock_bucket(htab, b, hash, &bflags);
1596 	if (ret)
1597 		return ret;
1598 
1599 	l = lookup_elem_raw(head, hash, key, key_size);
1600 	if (!l) {
1601 		ret = -ENOENT;
1602 	} else {
1603 		if (is_percpu) {
1604 			u32 roundup_value_size = round_up(map->value_size, 8);
1605 			void __percpu *pptr;
1606 			int off = 0, cpu;
1607 
1608 			pptr = htab_elem_get_ptr(l, key_size);
1609 			for_each_possible_cpu(cpu) {
1610 				copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu));
1611 				check_and_init_map_value(&htab->map, value + off);
1612 				off += roundup_value_size;
1613 			}
1614 		} else {
1615 			u32 roundup_key_size = round_up(map->key_size, 8);
1616 
1617 			if (flags & BPF_F_LOCK)
1618 				copy_map_value_locked(map, value, l->key +
1619 						      roundup_key_size,
1620 						      true);
1621 			else
1622 				copy_map_value(map, value, l->key +
1623 					       roundup_key_size);
1624 			/* Zeroing special fields in the temp buffer */
1625 			check_and_init_map_value(map, value);
1626 		}
1627 
1628 		hlist_nulls_del_rcu(&l->hash_node);
1629 		if (!is_lru_map)
1630 			free_htab_elem(htab, l);
1631 	}
1632 
1633 	htab_unlock_bucket(htab, b, hash, bflags);
1634 
1635 	if (is_lru_map && l)
1636 		htab_lru_push_free(htab, l);
1637 
1638 	return ret;
1639 }
1640 
1641 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1642 					   void *value, u64 flags)
1643 {
1644 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1645 						 flags);
1646 }
1647 
1648 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1649 						  void *key, void *value,
1650 						  u64 flags)
1651 {
1652 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1653 						 flags);
1654 }
1655 
1656 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1657 					       void *value, u64 flags)
1658 {
1659 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1660 						 flags);
1661 }
1662 
1663 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1664 						      void *key, void *value,
1665 						      u64 flags)
1666 {
1667 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1668 						 flags);
1669 }
1670 
1671 static int
1672 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1673 				   const union bpf_attr *attr,
1674 				   union bpf_attr __user *uattr,
1675 				   bool do_delete, bool is_lru_map,
1676 				   bool is_percpu)
1677 {
1678 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1679 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1680 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1681 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1682 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1683 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1684 	u32 batch, max_count, size, bucket_size, map_id;
1685 	struct htab_elem *node_to_free = NULL;
1686 	u64 elem_map_flags, map_flags;
1687 	struct hlist_nulls_head *head;
1688 	struct hlist_nulls_node *n;
1689 	unsigned long flags = 0;
1690 	bool locked = false;
1691 	struct htab_elem *l;
1692 	struct bucket *b;
1693 	int ret = 0;
1694 
1695 	elem_map_flags = attr->batch.elem_flags;
1696 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1697 	    ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1698 		return -EINVAL;
1699 
1700 	map_flags = attr->batch.flags;
1701 	if (map_flags)
1702 		return -EINVAL;
1703 
1704 	max_count = attr->batch.count;
1705 	if (!max_count)
1706 		return 0;
1707 
1708 	if (put_user(0, &uattr->batch.count))
1709 		return -EFAULT;
1710 
1711 	batch = 0;
1712 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1713 		return -EFAULT;
1714 
1715 	if (batch >= htab->n_buckets)
1716 		return -ENOENT;
1717 
1718 	key_size = htab->map.key_size;
1719 	roundup_key_size = round_up(htab->map.key_size, 8);
1720 	value_size = htab->map.value_size;
1721 	size = round_up(value_size, 8);
1722 	if (is_percpu)
1723 		value_size = size * num_possible_cpus();
1724 	total = 0;
1725 	/* while experimenting with hash tables with sizes ranging from 10 to
1726 	 * 1000, it was observed that a bucket can have up to 5 entries.
1727 	 */
1728 	bucket_size = 5;
1729 
1730 alloc:
1731 	/* We cannot do copy_from_user or copy_to_user inside
1732 	 * the rcu_read_lock. Allocate enough space here.
1733 	 */
1734 	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1735 	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1736 	if (!keys || !values) {
1737 		ret = -ENOMEM;
1738 		goto after_loop;
1739 	}
1740 
1741 again:
1742 	bpf_disable_instrumentation();
1743 	rcu_read_lock();
1744 again_nocopy:
1745 	dst_key = keys;
1746 	dst_val = values;
1747 	b = &htab->buckets[batch];
1748 	head = &b->head;
1749 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1750 	if (locked) {
1751 		ret = htab_lock_bucket(htab, b, batch, &flags);
1752 		if (ret) {
1753 			rcu_read_unlock();
1754 			bpf_enable_instrumentation();
1755 			goto after_loop;
1756 		}
1757 	}
1758 
1759 	bucket_cnt = 0;
1760 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1761 		bucket_cnt++;
1762 
1763 	if (bucket_cnt && !locked) {
1764 		locked = true;
1765 		goto again_nocopy;
1766 	}
1767 
1768 	if (bucket_cnt > (max_count - total)) {
1769 		if (total == 0)
1770 			ret = -ENOSPC;
1771 		/* Note that since bucket_cnt > 0 here, it is implicit
1772 		 * that the locked was grabbed, so release it.
1773 		 */
1774 		htab_unlock_bucket(htab, b, batch, flags);
1775 		rcu_read_unlock();
1776 		bpf_enable_instrumentation();
1777 		goto after_loop;
1778 	}
1779 
1780 	if (bucket_cnt > bucket_size) {
1781 		bucket_size = bucket_cnt;
1782 		/* Note that since bucket_cnt > 0 here, it is implicit
1783 		 * that the locked was grabbed, so release it.
1784 		 */
1785 		htab_unlock_bucket(htab, b, batch, flags);
1786 		rcu_read_unlock();
1787 		bpf_enable_instrumentation();
1788 		kvfree(keys);
1789 		kvfree(values);
1790 		goto alloc;
1791 	}
1792 
1793 	/* Next block is only safe to run if you have grabbed the lock */
1794 	if (!locked)
1795 		goto next_batch;
1796 
1797 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1798 		memcpy(dst_key, l->key, key_size);
1799 
1800 		if (is_percpu) {
1801 			int off = 0, cpu;
1802 			void __percpu *pptr;
1803 
1804 			pptr = htab_elem_get_ptr(l, map->key_size);
1805 			for_each_possible_cpu(cpu) {
1806 				copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu));
1807 				check_and_init_map_value(&htab->map, dst_val + off);
1808 				off += size;
1809 			}
1810 		} else {
1811 			value = l->key + roundup_key_size;
1812 			if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1813 				struct bpf_map **inner_map = value;
1814 
1815 				 /* Actual value is the id of the inner map */
1816 				map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1817 				value = &map_id;
1818 			}
1819 
1820 			if (elem_map_flags & BPF_F_LOCK)
1821 				copy_map_value_locked(map, dst_val, value,
1822 						      true);
1823 			else
1824 				copy_map_value(map, dst_val, value);
1825 			/* Zeroing special fields in the temp buffer */
1826 			check_and_init_map_value(map, dst_val);
1827 		}
1828 		if (do_delete) {
1829 			hlist_nulls_del_rcu(&l->hash_node);
1830 
1831 			/* bpf_lru_push_free() will acquire lru_lock, which
1832 			 * may cause deadlock. See comments in function
1833 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1834 			 * after releasing the bucket lock.
1835 			 */
1836 			if (is_lru_map) {
1837 				l->batch_flink = node_to_free;
1838 				node_to_free = l;
1839 			} else {
1840 				free_htab_elem(htab, l);
1841 			}
1842 		}
1843 		dst_key += key_size;
1844 		dst_val += value_size;
1845 	}
1846 
1847 	htab_unlock_bucket(htab, b, batch, flags);
1848 	locked = false;
1849 
1850 	while (node_to_free) {
1851 		l = node_to_free;
1852 		node_to_free = node_to_free->batch_flink;
1853 		htab_lru_push_free(htab, l);
1854 	}
1855 
1856 next_batch:
1857 	/* If we are not copying data, we can go to next bucket and avoid
1858 	 * unlocking the rcu.
1859 	 */
1860 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1861 		batch++;
1862 		goto again_nocopy;
1863 	}
1864 
1865 	rcu_read_unlock();
1866 	bpf_enable_instrumentation();
1867 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1868 	    key_size * bucket_cnt) ||
1869 	    copy_to_user(uvalues + total * value_size, values,
1870 	    value_size * bucket_cnt))) {
1871 		ret = -EFAULT;
1872 		goto after_loop;
1873 	}
1874 
1875 	total += bucket_cnt;
1876 	batch++;
1877 	if (batch >= htab->n_buckets) {
1878 		ret = -ENOENT;
1879 		goto after_loop;
1880 	}
1881 	goto again;
1882 
1883 after_loop:
1884 	if (ret == -EFAULT)
1885 		goto out;
1886 
1887 	/* copy # of entries and next batch */
1888 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1889 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1890 	    put_user(total, &uattr->batch.count))
1891 		ret = -EFAULT;
1892 
1893 out:
1894 	kvfree(keys);
1895 	kvfree(values);
1896 	return ret;
1897 }
1898 
1899 static int
1900 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1901 			     union bpf_attr __user *uattr)
1902 {
1903 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1904 						  false, true);
1905 }
1906 
1907 static int
1908 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1909 					const union bpf_attr *attr,
1910 					union bpf_attr __user *uattr)
1911 {
1912 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1913 						  false, true);
1914 }
1915 
1916 static int
1917 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1918 		      union bpf_attr __user *uattr)
1919 {
1920 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1921 						  false, false);
1922 }
1923 
1924 static int
1925 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1926 				 const union bpf_attr *attr,
1927 				 union bpf_attr __user *uattr)
1928 {
1929 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1930 						  false, false);
1931 }
1932 
1933 static int
1934 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1935 				 const union bpf_attr *attr,
1936 				 union bpf_attr __user *uattr)
1937 {
1938 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1939 						  true, true);
1940 }
1941 
1942 static int
1943 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1944 					    const union bpf_attr *attr,
1945 					    union bpf_attr __user *uattr)
1946 {
1947 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1948 						  true, true);
1949 }
1950 
1951 static int
1952 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1953 			  union bpf_attr __user *uattr)
1954 {
1955 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1956 						  true, false);
1957 }
1958 
1959 static int
1960 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1961 				     const union bpf_attr *attr,
1962 				     union bpf_attr __user *uattr)
1963 {
1964 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1965 						  true, false);
1966 }
1967 
1968 struct bpf_iter_seq_hash_map_info {
1969 	struct bpf_map *map;
1970 	struct bpf_htab *htab;
1971 	void *percpu_value_buf; // non-zero means percpu hash
1972 	u32 bucket_id;
1973 	u32 skip_elems;
1974 };
1975 
1976 static struct htab_elem *
1977 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1978 			   struct htab_elem *prev_elem)
1979 {
1980 	const struct bpf_htab *htab = info->htab;
1981 	u32 skip_elems = info->skip_elems;
1982 	u32 bucket_id = info->bucket_id;
1983 	struct hlist_nulls_head *head;
1984 	struct hlist_nulls_node *n;
1985 	struct htab_elem *elem;
1986 	struct bucket *b;
1987 	u32 i, count;
1988 
1989 	if (bucket_id >= htab->n_buckets)
1990 		return NULL;
1991 
1992 	/* try to find next elem in the same bucket */
1993 	if (prev_elem) {
1994 		/* no update/deletion on this bucket, prev_elem should be still valid
1995 		 * and we won't skip elements.
1996 		 */
1997 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1998 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1999 		if (elem)
2000 			return elem;
2001 
2002 		/* not found, unlock and go to the next bucket */
2003 		b = &htab->buckets[bucket_id++];
2004 		rcu_read_unlock();
2005 		skip_elems = 0;
2006 	}
2007 
2008 	for (i = bucket_id; i < htab->n_buckets; i++) {
2009 		b = &htab->buckets[i];
2010 		rcu_read_lock();
2011 
2012 		count = 0;
2013 		head = &b->head;
2014 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2015 			if (count >= skip_elems) {
2016 				info->bucket_id = i;
2017 				info->skip_elems = count;
2018 				return elem;
2019 			}
2020 			count++;
2021 		}
2022 
2023 		rcu_read_unlock();
2024 		skip_elems = 0;
2025 	}
2026 
2027 	info->bucket_id = i;
2028 	info->skip_elems = 0;
2029 	return NULL;
2030 }
2031 
2032 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
2033 {
2034 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2035 	struct htab_elem *elem;
2036 
2037 	elem = bpf_hash_map_seq_find_next(info, NULL);
2038 	if (!elem)
2039 		return NULL;
2040 
2041 	if (*pos == 0)
2042 		++*pos;
2043 	return elem;
2044 }
2045 
2046 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2047 {
2048 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2049 
2050 	++*pos;
2051 	++info->skip_elems;
2052 	return bpf_hash_map_seq_find_next(info, v);
2053 }
2054 
2055 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
2056 {
2057 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2058 	u32 roundup_key_size, roundup_value_size;
2059 	struct bpf_iter__bpf_map_elem ctx = {};
2060 	struct bpf_map *map = info->map;
2061 	struct bpf_iter_meta meta;
2062 	int ret = 0, off = 0, cpu;
2063 	struct bpf_prog *prog;
2064 	void __percpu *pptr;
2065 
2066 	meta.seq = seq;
2067 	prog = bpf_iter_get_info(&meta, elem == NULL);
2068 	if (prog) {
2069 		ctx.meta = &meta;
2070 		ctx.map = info->map;
2071 		if (elem) {
2072 			roundup_key_size = round_up(map->key_size, 8);
2073 			ctx.key = elem->key;
2074 			if (!info->percpu_value_buf) {
2075 				ctx.value = elem->key + roundup_key_size;
2076 			} else {
2077 				roundup_value_size = round_up(map->value_size, 8);
2078 				pptr = htab_elem_get_ptr(elem, map->key_size);
2079 				for_each_possible_cpu(cpu) {
2080 					copy_map_value_long(map, info->percpu_value_buf + off,
2081 							    per_cpu_ptr(pptr, cpu));
2082 					check_and_init_map_value(map, info->percpu_value_buf + off);
2083 					off += roundup_value_size;
2084 				}
2085 				ctx.value = info->percpu_value_buf;
2086 			}
2087 		}
2088 		ret = bpf_iter_run_prog(prog, &ctx);
2089 	}
2090 
2091 	return ret;
2092 }
2093 
2094 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2095 {
2096 	return __bpf_hash_map_seq_show(seq, v);
2097 }
2098 
2099 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2100 {
2101 	if (!v)
2102 		(void)__bpf_hash_map_seq_show(seq, NULL);
2103 	else
2104 		rcu_read_unlock();
2105 }
2106 
2107 static int bpf_iter_init_hash_map(void *priv_data,
2108 				  struct bpf_iter_aux_info *aux)
2109 {
2110 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2111 	struct bpf_map *map = aux->map;
2112 	void *value_buf;
2113 	u32 buf_size;
2114 
2115 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2116 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2117 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2118 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2119 		if (!value_buf)
2120 			return -ENOMEM;
2121 
2122 		seq_info->percpu_value_buf = value_buf;
2123 	}
2124 
2125 	bpf_map_inc_with_uref(map);
2126 	seq_info->map = map;
2127 	seq_info->htab = container_of(map, struct bpf_htab, map);
2128 	return 0;
2129 }
2130 
2131 static void bpf_iter_fini_hash_map(void *priv_data)
2132 {
2133 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2134 
2135 	bpf_map_put_with_uref(seq_info->map);
2136 	kfree(seq_info->percpu_value_buf);
2137 }
2138 
2139 static const struct seq_operations bpf_hash_map_seq_ops = {
2140 	.start	= bpf_hash_map_seq_start,
2141 	.next	= bpf_hash_map_seq_next,
2142 	.stop	= bpf_hash_map_seq_stop,
2143 	.show	= bpf_hash_map_seq_show,
2144 };
2145 
2146 static const struct bpf_iter_seq_info iter_seq_info = {
2147 	.seq_ops		= &bpf_hash_map_seq_ops,
2148 	.init_seq_private	= bpf_iter_init_hash_map,
2149 	.fini_seq_private	= bpf_iter_fini_hash_map,
2150 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
2151 };
2152 
2153 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2154 				   void *callback_ctx, u64 flags)
2155 {
2156 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2157 	struct hlist_nulls_head *head;
2158 	struct hlist_nulls_node *n;
2159 	struct htab_elem *elem;
2160 	u32 roundup_key_size;
2161 	int i, num_elems = 0;
2162 	void __percpu *pptr;
2163 	struct bucket *b;
2164 	void *key, *val;
2165 	bool is_percpu;
2166 	u64 ret = 0;
2167 
2168 	if (flags != 0)
2169 		return -EINVAL;
2170 
2171 	is_percpu = htab_is_percpu(htab);
2172 
2173 	roundup_key_size = round_up(map->key_size, 8);
2174 	/* disable migration so percpu value prepared here will be the
2175 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2176 	 */
2177 	if (is_percpu)
2178 		migrate_disable();
2179 	for (i = 0; i < htab->n_buckets; i++) {
2180 		b = &htab->buckets[i];
2181 		rcu_read_lock();
2182 		head = &b->head;
2183 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2184 			key = elem->key;
2185 			if (is_percpu) {
2186 				/* current cpu value for percpu map */
2187 				pptr = htab_elem_get_ptr(elem, map->key_size);
2188 				val = this_cpu_ptr(pptr);
2189 			} else {
2190 				val = elem->key + roundup_key_size;
2191 			}
2192 			num_elems++;
2193 			ret = callback_fn((u64)(long)map, (u64)(long)key,
2194 					  (u64)(long)val, (u64)(long)callback_ctx, 0);
2195 			/* return value: 0 - continue, 1 - stop and return */
2196 			if (ret) {
2197 				rcu_read_unlock();
2198 				goto out;
2199 			}
2200 		}
2201 		rcu_read_unlock();
2202 	}
2203 out:
2204 	if (is_percpu)
2205 		migrate_enable();
2206 	return num_elems;
2207 }
2208 
2209 static u64 htab_map_mem_usage(const struct bpf_map *map)
2210 {
2211 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2212 	u32 value_size = round_up(htab->map.value_size, 8);
2213 	bool prealloc = htab_is_prealloc(htab);
2214 	bool percpu = htab_is_percpu(htab);
2215 	bool lru = htab_is_lru(htab);
2216 	u64 num_entries;
2217 	u64 usage = sizeof(struct bpf_htab);
2218 
2219 	usage += sizeof(struct bucket) * htab->n_buckets;
2220 	usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT;
2221 	if (prealloc) {
2222 		num_entries = map->max_entries;
2223 		if (htab_has_extra_elems(htab))
2224 			num_entries += num_possible_cpus();
2225 
2226 		usage += htab->elem_size * num_entries;
2227 
2228 		if (percpu)
2229 			usage += value_size * num_possible_cpus() * num_entries;
2230 		else if (!lru)
2231 			usage += sizeof(struct htab_elem *) * num_possible_cpus();
2232 	} else {
2233 #define LLIST_NODE_SZ sizeof(struct llist_node)
2234 
2235 		num_entries = htab->use_percpu_counter ?
2236 					  percpu_counter_sum(&htab->pcount) :
2237 					  atomic_read(&htab->count);
2238 		usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries;
2239 		if (percpu) {
2240 			usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries;
2241 			usage += value_size * num_possible_cpus() * num_entries;
2242 		}
2243 	}
2244 	return usage;
2245 }
2246 
2247 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2248 const struct bpf_map_ops htab_map_ops = {
2249 	.map_meta_equal = bpf_map_meta_equal,
2250 	.map_alloc_check = htab_map_alloc_check,
2251 	.map_alloc = htab_map_alloc,
2252 	.map_free = htab_map_free,
2253 	.map_get_next_key = htab_map_get_next_key,
2254 	.map_release_uref = htab_map_free_timers,
2255 	.map_lookup_elem = htab_map_lookup_elem,
2256 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2257 	.map_update_elem = htab_map_update_elem,
2258 	.map_delete_elem = htab_map_delete_elem,
2259 	.map_gen_lookup = htab_map_gen_lookup,
2260 	.map_seq_show_elem = htab_map_seq_show_elem,
2261 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2262 	.map_for_each_callback = bpf_for_each_hash_elem,
2263 	.map_mem_usage = htab_map_mem_usage,
2264 	BATCH_OPS(htab),
2265 	.map_btf_id = &htab_map_btf_ids[0],
2266 	.iter_seq_info = &iter_seq_info,
2267 };
2268 
2269 const struct bpf_map_ops htab_lru_map_ops = {
2270 	.map_meta_equal = bpf_map_meta_equal,
2271 	.map_alloc_check = htab_map_alloc_check,
2272 	.map_alloc = htab_map_alloc,
2273 	.map_free = htab_map_free,
2274 	.map_get_next_key = htab_map_get_next_key,
2275 	.map_release_uref = htab_map_free_timers,
2276 	.map_lookup_elem = htab_lru_map_lookup_elem,
2277 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2278 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2279 	.map_update_elem = htab_lru_map_update_elem,
2280 	.map_delete_elem = htab_lru_map_delete_elem,
2281 	.map_gen_lookup = htab_lru_map_gen_lookup,
2282 	.map_seq_show_elem = htab_map_seq_show_elem,
2283 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2284 	.map_for_each_callback = bpf_for_each_hash_elem,
2285 	.map_mem_usage = htab_map_mem_usage,
2286 	BATCH_OPS(htab_lru),
2287 	.map_btf_id = &htab_map_btf_ids[0],
2288 	.iter_seq_info = &iter_seq_info,
2289 };
2290 
2291 /* Called from eBPF program */
2292 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2293 {
2294 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2295 
2296 	if (l)
2297 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2298 	else
2299 		return NULL;
2300 }
2301 
2302 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2303 {
2304 	struct htab_elem *l;
2305 
2306 	if (cpu >= nr_cpu_ids)
2307 		return NULL;
2308 
2309 	l = __htab_map_lookup_elem(map, key);
2310 	if (l)
2311 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2312 	else
2313 		return NULL;
2314 }
2315 
2316 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2317 {
2318 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2319 
2320 	if (l) {
2321 		bpf_lru_node_set_ref(&l->lru_node);
2322 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2323 	}
2324 
2325 	return NULL;
2326 }
2327 
2328 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2329 {
2330 	struct htab_elem *l;
2331 
2332 	if (cpu >= nr_cpu_ids)
2333 		return NULL;
2334 
2335 	l = __htab_map_lookup_elem(map, key);
2336 	if (l) {
2337 		bpf_lru_node_set_ref(&l->lru_node);
2338 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2339 	}
2340 
2341 	return NULL;
2342 }
2343 
2344 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2345 {
2346 	struct htab_elem *l;
2347 	void __percpu *pptr;
2348 	int ret = -ENOENT;
2349 	int cpu, off = 0;
2350 	u32 size;
2351 
2352 	/* per_cpu areas are zero-filled and bpf programs can only
2353 	 * access 'value_size' of them, so copying rounded areas
2354 	 * will not leak any kernel data
2355 	 */
2356 	size = round_up(map->value_size, 8);
2357 	rcu_read_lock();
2358 	l = __htab_map_lookup_elem(map, key);
2359 	if (!l)
2360 		goto out;
2361 	/* We do not mark LRU map element here in order to not mess up
2362 	 * eviction heuristics when user space does a map walk.
2363 	 */
2364 	pptr = htab_elem_get_ptr(l, map->key_size);
2365 	for_each_possible_cpu(cpu) {
2366 		copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
2367 		check_and_init_map_value(map, value + off);
2368 		off += size;
2369 	}
2370 	ret = 0;
2371 out:
2372 	rcu_read_unlock();
2373 	return ret;
2374 }
2375 
2376 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2377 			   u64 map_flags)
2378 {
2379 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2380 	int ret;
2381 
2382 	rcu_read_lock();
2383 	if (htab_is_lru(htab))
2384 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2385 							map_flags, true);
2386 	else
2387 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2388 						    true);
2389 	rcu_read_unlock();
2390 
2391 	return ret;
2392 }
2393 
2394 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2395 					  struct seq_file *m)
2396 {
2397 	struct htab_elem *l;
2398 	void __percpu *pptr;
2399 	int cpu;
2400 
2401 	rcu_read_lock();
2402 
2403 	l = __htab_map_lookup_elem(map, key);
2404 	if (!l) {
2405 		rcu_read_unlock();
2406 		return;
2407 	}
2408 
2409 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2410 	seq_puts(m, ": {\n");
2411 	pptr = htab_elem_get_ptr(l, map->key_size);
2412 	for_each_possible_cpu(cpu) {
2413 		seq_printf(m, "\tcpu%d: ", cpu);
2414 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2415 				  per_cpu_ptr(pptr, cpu), m);
2416 		seq_puts(m, "\n");
2417 	}
2418 	seq_puts(m, "}\n");
2419 
2420 	rcu_read_unlock();
2421 }
2422 
2423 const struct bpf_map_ops htab_percpu_map_ops = {
2424 	.map_meta_equal = bpf_map_meta_equal,
2425 	.map_alloc_check = htab_map_alloc_check,
2426 	.map_alloc = htab_map_alloc,
2427 	.map_free = htab_map_free,
2428 	.map_get_next_key = htab_map_get_next_key,
2429 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2430 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2431 	.map_update_elem = htab_percpu_map_update_elem,
2432 	.map_delete_elem = htab_map_delete_elem,
2433 	.map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2434 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2435 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2436 	.map_for_each_callback = bpf_for_each_hash_elem,
2437 	.map_mem_usage = htab_map_mem_usage,
2438 	BATCH_OPS(htab_percpu),
2439 	.map_btf_id = &htab_map_btf_ids[0],
2440 	.iter_seq_info = &iter_seq_info,
2441 };
2442 
2443 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2444 	.map_meta_equal = bpf_map_meta_equal,
2445 	.map_alloc_check = htab_map_alloc_check,
2446 	.map_alloc = htab_map_alloc,
2447 	.map_free = htab_map_free,
2448 	.map_get_next_key = htab_map_get_next_key,
2449 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2450 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2451 	.map_update_elem = htab_lru_percpu_map_update_elem,
2452 	.map_delete_elem = htab_lru_map_delete_elem,
2453 	.map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2454 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2455 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2456 	.map_for_each_callback = bpf_for_each_hash_elem,
2457 	.map_mem_usage = htab_map_mem_usage,
2458 	BATCH_OPS(htab_lru_percpu),
2459 	.map_btf_id = &htab_map_btf_ids[0],
2460 	.iter_seq_info = &iter_seq_info,
2461 };
2462 
2463 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2464 {
2465 	if (attr->value_size != sizeof(u32))
2466 		return -EINVAL;
2467 	return htab_map_alloc_check(attr);
2468 }
2469 
2470 static void fd_htab_map_free(struct bpf_map *map)
2471 {
2472 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2473 	struct hlist_nulls_node *n;
2474 	struct hlist_nulls_head *head;
2475 	struct htab_elem *l;
2476 	int i;
2477 
2478 	for (i = 0; i < htab->n_buckets; i++) {
2479 		head = select_bucket(htab, i);
2480 
2481 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2482 			void *ptr = fd_htab_map_get_ptr(map, l);
2483 
2484 			map->ops->map_fd_put_ptr(ptr);
2485 		}
2486 	}
2487 
2488 	htab_map_free(map);
2489 }
2490 
2491 /* only called from syscall */
2492 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2493 {
2494 	void **ptr;
2495 	int ret = 0;
2496 
2497 	if (!map->ops->map_fd_sys_lookup_elem)
2498 		return -ENOTSUPP;
2499 
2500 	rcu_read_lock();
2501 	ptr = htab_map_lookup_elem(map, key);
2502 	if (ptr)
2503 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2504 	else
2505 		ret = -ENOENT;
2506 	rcu_read_unlock();
2507 
2508 	return ret;
2509 }
2510 
2511 /* only called from syscall */
2512 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2513 				void *key, void *value, u64 map_flags)
2514 {
2515 	void *ptr;
2516 	int ret;
2517 	u32 ufd = *(u32 *)value;
2518 
2519 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2520 	if (IS_ERR(ptr))
2521 		return PTR_ERR(ptr);
2522 
2523 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2524 	if (ret)
2525 		map->ops->map_fd_put_ptr(ptr);
2526 
2527 	return ret;
2528 }
2529 
2530 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2531 {
2532 	struct bpf_map *map, *inner_map_meta;
2533 
2534 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2535 	if (IS_ERR(inner_map_meta))
2536 		return inner_map_meta;
2537 
2538 	map = htab_map_alloc(attr);
2539 	if (IS_ERR(map)) {
2540 		bpf_map_meta_free(inner_map_meta);
2541 		return map;
2542 	}
2543 
2544 	map->inner_map_meta = inner_map_meta;
2545 
2546 	return map;
2547 }
2548 
2549 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2550 {
2551 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2552 
2553 	if (!inner_map)
2554 		return NULL;
2555 
2556 	return READ_ONCE(*inner_map);
2557 }
2558 
2559 static int htab_of_map_gen_lookup(struct bpf_map *map,
2560 				  struct bpf_insn *insn_buf)
2561 {
2562 	struct bpf_insn *insn = insn_buf;
2563 	const int ret = BPF_REG_0;
2564 
2565 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2566 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2567 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2568 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2569 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2570 				offsetof(struct htab_elem, key) +
2571 				round_up(map->key_size, 8));
2572 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2573 
2574 	return insn - insn_buf;
2575 }
2576 
2577 static void htab_of_map_free(struct bpf_map *map)
2578 {
2579 	bpf_map_meta_free(map->inner_map_meta);
2580 	fd_htab_map_free(map);
2581 }
2582 
2583 const struct bpf_map_ops htab_of_maps_map_ops = {
2584 	.map_alloc_check = fd_htab_map_alloc_check,
2585 	.map_alloc = htab_of_map_alloc,
2586 	.map_free = htab_of_map_free,
2587 	.map_get_next_key = htab_map_get_next_key,
2588 	.map_lookup_elem = htab_of_map_lookup_elem,
2589 	.map_delete_elem = htab_map_delete_elem,
2590 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2591 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2592 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2593 	.map_gen_lookup = htab_of_map_gen_lookup,
2594 	.map_check_btf = map_check_no_btf,
2595 	.map_mem_usage = htab_map_mem_usage,
2596 	BATCH_OPS(htab),
2597 	.map_btf_id = &htab_map_btf_ids[0],
2598 };
2599