1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 #include "bpf_lru_list.h" 16 #include "map_in_map.h" 17 #include <linux/bpf_mem_alloc.h> 18 19 #define HTAB_CREATE_FLAG_MASK \ 20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 22 23 #define BATCH_OPS(_name) \ 24 .map_lookup_batch = \ 25 _name##_map_lookup_batch, \ 26 .map_lookup_and_delete_batch = \ 27 _name##_map_lookup_and_delete_batch, \ 28 .map_update_batch = \ 29 generic_map_update_batch, \ 30 .map_delete_batch = \ 31 generic_map_delete_batch 32 33 /* 34 * The bucket lock has two protection scopes: 35 * 36 * 1) Serializing concurrent operations from BPF programs on different 37 * CPUs 38 * 39 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 40 * 41 * BPF programs can execute in any context including perf, kprobes and 42 * tracing. As there are almost no limits where perf, kprobes and tracing 43 * can be invoked from the lock operations need to be protected against 44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 45 * the lock held section when functions which acquire this lock are invoked 46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 47 * variable bpf_prog_active, which prevents BPF programs attached to perf 48 * events, kprobes and tracing to be invoked before the prior invocation 49 * from one of these contexts completed. sys_bpf() uses the same mechanism 50 * by pinning the task to the current CPU and incrementing the recursion 51 * protection across the map operation. 52 * 53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 54 * operations like memory allocations (even with GFP_ATOMIC) from atomic 55 * contexts. This is required because even with GFP_ATOMIC the memory 56 * allocator calls into code paths which acquire locks with long held lock 57 * sections. To ensure the deterministic behaviour these locks are regular 58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 59 * true atomic contexts on an RT kernel are the low level hardware 60 * handling, scheduling, low level interrupt handling, NMIs etc. None of 61 * these contexts should ever do memory allocations. 62 * 63 * As regular device interrupt handlers and soft interrupts are forced into 64 * thread context, the existing code which does 65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 66 * just works. 67 * 68 * In theory the BPF locks could be converted to regular spinlocks as well, 69 * but the bucket locks and percpu_freelist locks can be taken from 70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 73 * because there is no memory allocation within the lock held sections. However 74 * after hash map was fully converted to use bpf_mem_alloc, there will be 75 * non-synchronous memory allocation for non-preallocated hash map, so it is 76 * safe to always use raw spinlock for bucket lock. 77 */ 78 struct bucket { 79 struct hlist_nulls_head head; 80 raw_spinlock_t raw_lock; 81 }; 82 83 #define HASHTAB_MAP_LOCK_COUNT 8 84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 85 86 struct bpf_htab { 87 struct bpf_map map; 88 struct bpf_mem_alloc ma; 89 struct bpf_mem_alloc pcpu_ma; 90 struct bucket *buckets; 91 void *elems; 92 union { 93 struct pcpu_freelist freelist; 94 struct bpf_lru lru; 95 }; 96 struct htab_elem *__percpu *extra_elems; 97 /* number of elements in non-preallocated hashtable are kept 98 * in either pcount or count 99 */ 100 struct percpu_counter pcount; 101 atomic_t count; 102 bool use_percpu_counter; 103 u32 n_buckets; /* number of hash buckets */ 104 u32 elem_size; /* size of each element in bytes */ 105 u32 hashrnd; 106 struct lock_class_key lockdep_key; 107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 108 }; 109 110 /* each htab element is struct htab_elem + key + value */ 111 struct htab_elem { 112 union { 113 struct hlist_nulls_node hash_node; 114 struct { 115 void *padding; 116 union { 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 /* pointer to per-cpu pointer */ 124 void *ptr_to_pptr; 125 struct bpf_lru_node lru_node; 126 }; 127 u32 hash; 128 char key[] __aligned(8); 129 }; 130 131 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 132 { 133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 134 } 135 136 static void htab_init_buckets(struct bpf_htab *htab) 137 { 138 unsigned int i; 139 140 for (i = 0; i < htab->n_buckets; i++) { 141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 142 raw_spin_lock_init(&htab->buckets[i].raw_lock); 143 lockdep_set_class(&htab->buckets[i].raw_lock, 144 &htab->lockdep_key); 145 cond_resched(); 146 } 147 } 148 149 static inline int htab_lock_bucket(const struct bpf_htab *htab, 150 struct bucket *b, u32 hash, 151 unsigned long *pflags) 152 { 153 unsigned long flags; 154 155 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 156 157 preempt_disable(); 158 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 159 __this_cpu_dec(*(htab->map_locked[hash])); 160 preempt_enable(); 161 return -EBUSY; 162 } 163 164 raw_spin_lock_irqsave(&b->raw_lock, flags); 165 *pflags = flags; 166 167 return 0; 168 } 169 170 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 171 struct bucket *b, u32 hash, 172 unsigned long flags) 173 { 174 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 175 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 176 __this_cpu_dec(*(htab->map_locked[hash])); 177 preempt_enable(); 178 } 179 180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 181 182 static bool htab_is_lru(const struct bpf_htab *htab) 183 { 184 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 185 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 186 } 187 188 static bool htab_is_percpu(const struct bpf_htab *htab) 189 { 190 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 191 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 192 } 193 194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 195 void __percpu *pptr) 196 { 197 *(void __percpu **)(l->key + key_size) = pptr; 198 } 199 200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 201 { 202 return *(void __percpu **)(l->key + key_size); 203 } 204 205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 206 { 207 return *(void **)(l->key + roundup(map->key_size, 8)); 208 } 209 210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 211 { 212 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 213 } 214 215 static bool htab_has_extra_elems(struct bpf_htab *htab) 216 { 217 return !htab_is_percpu(htab) && !htab_is_lru(htab); 218 } 219 220 static void htab_free_prealloced_timers(struct bpf_htab *htab) 221 { 222 u32 num_entries = htab->map.max_entries; 223 int i; 224 225 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 226 return; 227 if (htab_has_extra_elems(htab)) 228 num_entries += num_possible_cpus(); 229 230 for (i = 0; i < num_entries; i++) { 231 struct htab_elem *elem; 232 233 elem = get_htab_elem(htab, i); 234 bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 235 cond_resched(); 236 } 237 } 238 239 static void htab_free_prealloced_fields(struct bpf_htab *htab) 240 { 241 u32 num_entries = htab->map.max_entries; 242 int i; 243 244 if (IS_ERR_OR_NULL(htab->map.record)) 245 return; 246 if (htab_has_extra_elems(htab)) 247 num_entries += num_possible_cpus(); 248 for (i = 0; i < num_entries; i++) { 249 struct htab_elem *elem; 250 251 elem = get_htab_elem(htab, i); 252 if (htab_is_percpu(htab)) { 253 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 254 int cpu; 255 256 for_each_possible_cpu(cpu) { 257 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 258 cond_resched(); 259 } 260 } else { 261 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 262 cond_resched(); 263 } 264 cond_resched(); 265 } 266 } 267 268 static void htab_free_elems(struct bpf_htab *htab) 269 { 270 int i; 271 272 if (!htab_is_percpu(htab)) 273 goto free_elems; 274 275 for (i = 0; i < htab->map.max_entries; i++) { 276 void __percpu *pptr; 277 278 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 279 htab->map.key_size); 280 free_percpu(pptr); 281 cond_resched(); 282 } 283 free_elems: 284 bpf_map_area_free(htab->elems); 285 } 286 287 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 288 * (bucket_lock). If both locks need to be acquired together, the lock 289 * order is always lru_lock -> bucket_lock and this only happens in 290 * bpf_lru_list.c logic. For example, certain code path of 291 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 292 * will acquire lru_lock first followed by acquiring bucket_lock. 293 * 294 * In hashtab.c, to avoid deadlock, lock acquisition of 295 * bucket_lock followed by lru_lock is not allowed. In such cases, 296 * bucket_lock needs to be released first before acquiring lru_lock. 297 */ 298 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 299 u32 hash) 300 { 301 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 302 struct htab_elem *l; 303 304 if (node) { 305 l = container_of(node, struct htab_elem, lru_node); 306 memcpy(l->key, key, htab->map.key_size); 307 return l; 308 } 309 310 return NULL; 311 } 312 313 static int prealloc_init(struct bpf_htab *htab) 314 { 315 u32 num_entries = htab->map.max_entries; 316 int err = -ENOMEM, i; 317 318 if (htab_has_extra_elems(htab)) 319 num_entries += num_possible_cpus(); 320 321 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 322 htab->map.numa_node); 323 if (!htab->elems) 324 return -ENOMEM; 325 326 if (!htab_is_percpu(htab)) 327 goto skip_percpu_elems; 328 329 for (i = 0; i < num_entries; i++) { 330 u32 size = round_up(htab->map.value_size, 8); 331 void __percpu *pptr; 332 333 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 334 GFP_USER | __GFP_NOWARN); 335 if (!pptr) 336 goto free_elems; 337 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 338 pptr); 339 cond_resched(); 340 } 341 342 skip_percpu_elems: 343 if (htab_is_lru(htab)) 344 err = bpf_lru_init(&htab->lru, 345 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 346 offsetof(struct htab_elem, hash) - 347 offsetof(struct htab_elem, lru_node), 348 htab_lru_map_delete_node, 349 htab); 350 else 351 err = pcpu_freelist_init(&htab->freelist); 352 353 if (err) 354 goto free_elems; 355 356 if (htab_is_lru(htab)) 357 bpf_lru_populate(&htab->lru, htab->elems, 358 offsetof(struct htab_elem, lru_node), 359 htab->elem_size, num_entries); 360 else 361 pcpu_freelist_populate(&htab->freelist, 362 htab->elems + offsetof(struct htab_elem, fnode), 363 htab->elem_size, num_entries); 364 365 return 0; 366 367 free_elems: 368 htab_free_elems(htab); 369 return err; 370 } 371 372 static void prealloc_destroy(struct bpf_htab *htab) 373 { 374 htab_free_elems(htab); 375 376 if (htab_is_lru(htab)) 377 bpf_lru_destroy(&htab->lru); 378 else 379 pcpu_freelist_destroy(&htab->freelist); 380 } 381 382 static int alloc_extra_elems(struct bpf_htab *htab) 383 { 384 struct htab_elem *__percpu *pptr, *l_new; 385 struct pcpu_freelist_node *l; 386 int cpu; 387 388 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 389 GFP_USER | __GFP_NOWARN); 390 if (!pptr) 391 return -ENOMEM; 392 393 for_each_possible_cpu(cpu) { 394 l = pcpu_freelist_pop(&htab->freelist); 395 /* pop will succeed, since prealloc_init() 396 * preallocated extra num_possible_cpus elements 397 */ 398 l_new = container_of(l, struct htab_elem, fnode); 399 *per_cpu_ptr(pptr, cpu) = l_new; 400 } 401 htab->extra_elems = pptr; 402 return 0; 403 } 404 405 /* Called from syscall */ 406 static int htab_map_alloc_check(union bpf_attr *attr) 407 { 408 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 409 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 410 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 411 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 412 /* percpu_lru means each cpu has its own LRU list. 413 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 414 * the map's value itself is percpu. percpu_lru has 415 * nothing to do with the map's value. 416 */ 417 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 418 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 419 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 420 int numa_node = bpf_map_attr_numa_node(attr); 421 422 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 423 offsetof(struct htab_elem, hash_node.pprev)); 424 425 if (lru && !bpf_capable()) 426 /* LRU implementation is much complicated than other 427 * maps. Hence, limit to CAP_BPF. 428 */ 429 return -EPERM; 430 431 if (zero_seed && !capable(CAP_SYS_ADMIN)) 432 /* Guard against local DoS, and discourage production use. */ 433 return -EPERM; 434 435 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 436 !bpf_map_flags_access_ok(attr->map_flags)) 437 return -EINVAL; 438 439 if (!lru && percpu_lru) 440 return -EINVAL; 441 442 if (lru && !prealloc) 443 return -ENOTSUPP; 444 445 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 446 return -EINVAL; 447 448 /* check sanity of attributes. 449 * value_size == 0 may be allowed in the future to use map as a set 450 */ 451 if (attr->max_entries == 0 || attr->key_size == 0 || 452 attr->value_size == 0) 453 return -EINVAL; 454 455 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 456 sizeof(struct htab_elem)) 457 /* if key_size + value_size is bigger, the user space won't be 458 * able to access the elements via bpf syscall. This check 459 * also makes sure that the elem_size doesn't overflow and it's 460 * kmalloc-able later in htab_map_update_elem() 461 */ 462 return -E2BIG; 463 464 return 0; 465 } 466 467 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 468 { 469 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 470 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 471 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 472 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 473 /* percpu_lru means each cpu has its own LRU list. 474 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 475 * the map's value itself is percpu. percpu_lru has 476 * nothing to do with the map's value. 477 */ 478 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 479 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 480 struct bpf_htab *htab; 481 int err, i; 482 483 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 484 if (!htab) 485 return ERR_PTR(-ENOMEM); 486 487 lockdep_register_key(&htab->lockdep_key); 488 489 bpf_map_init_from_attr(&htab->map, attr); 490 491 if (percpu_lru) { 492 /* ensure each CPU's lru list has >=1 elements. 493 * since we are at it, make each lru list has the same 494 * number of elements. 495 */ 496 htab->map.max_entries = roundup(attr->max_entries, 497 num_possible_cpus()); 498 if (htab->map.max_entries < attr->max_entries) 499 htab->map.max_entries = rounddown(attr->max_entries, 500 num_possible_cpus()); 501 } 502 503 /* hash table size must be power of 2 */ 504 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 505 506 htab->elem_size = sizeof(struct htab_elem) + 507 round_up(htab->map.key_size, 8); 508 if (percpu) 509 htab->elem_size += sizeof(void *); 510 else 511 htab->elem_size += round_up(htab->map.value_size, 8); 512 513 err = -E2BIG; 514 /* prevent zero size kmalloc and check for u32 overflow */ 515 if (htab->n_buckets == 0 || 516 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 517 goto free_htab; 518 519 err = -ENOMEM; 520 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 521 sizeof(struct bucket), 522 htab->map.numa_node); 523 if (!htab->buckets) 524 goto free_htab; 525 526 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 527 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 528 sizeof(int), 529 sizeof(int), 530 GFP_USER); 531 if (!htab->map_locked[i]) 532 goto free_map_locked; 533 } 534 535 if (htab->map.map_flags & BPF_F_ZERO_SEED) 536 htab->hashrnd = 0; 537 else 538 htab->hashrnd = get_random_u32(); 539 540 htab_init_buckets(htab); 541 542 /* compute_batch_value() computes batch value as num_online_cpus() * 2 543 * and __percpu_counter_compare() needs 544 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 545 * for percpu_counter to be faster than atomic_t. In practice the average bpf 546 * hash map size is 10k, which means that a system with 64 cpus will fill 547 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 548 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 549 * 10k - 8k > 32 _batch_ * 64 _cpus_ 550 * and __percpu_counter_compare() will still be fast. At that point hash map 551 * collisions will dominate its performance anyway. Assume that hash map filled 552 * to 50+% isn't going to be O(1) and use the following formula to choose 553 * between percpu_counter and atomic_t. 554 */ 555 #define PERCPU_COUNTER_BATCH 32 556 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 557 htab->use_percpu_counter = true; 558 559 if (htab->use_percpu_counter) { 560 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 561 if (err) 562 goto free_map_locked; 563 } 564 565 if (prealloc) { 566 err = prealloc_init(htab); 567 if (err) 568 goto free_map_locked; 569 570 if (!percpu && !lru) { 571 /* lru itself can remove the least used element, so 572 * there is no need for an extra elem during map_update. 573 */ 574 err = alloc_extra_elems(htab); 575 if (err) 576 goto free_prealloc; 577 } 578 } else { 579 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 580 if (err) 581 goto free_map_locked; 582 if (percpu) { 583 err = bpf_mem_alloc_init(&htab->pcpu_ma, 584 round_up(htab->map.value_size, 8), true); 585 if (err) 586 goto free_map_locked; 587 } 588 } 589 590 return &htab->map; 591 592 free_prealloc: 593 prealloc_destroy(htab); 594 free_map_locked: 595 if (htab->use_percpu_counter) 596 percpu_counter_destroy(&htab->pcount); 597 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 598 free_percpu(htab->map_locked[i]); 599 bpf_map_area_free(htab->buckets); 600 bpf_mem_alloc_destroy(&htab->pcpu_ma); 601 bpf_mem_alloc_destroy(&htab->ma); 602 free_htab: 603 lockdep_unregister_key(&htab->lockdep_key); 604 bpf_map_area_free(htab); 605 return ERR_PTR(err); 606 } 607 608 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 609 { 610 if (likely(key_len % 4 == 0)) 611 return jhash2(key, key_len / 4, hashrnd); 612 return jhash(key, key_len, hashrnd); 613 } 614 615 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 616 { 617 return &htab->buckets[hash & (htab->n_buckets - 1)]; 618 } 619 620 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 621 { 622 return &__select_bucket(htab, hash)->head; 623 } 624 625 /* this lookup function can only be called with bucket lock taken */ 626 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 627 void *key, u32 key_size) 628 { 629 struct hlist_nulls_node *n; 630 struct htab_elem *l; 631 632 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 633 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 634 return l; 635 636 return NULL; 637 } 638 639 /* can be called without bucket lock. it will repeat the loop in 640 * the unlikely event when elements moved from one bucket into another 641 * while link list is being walked 642 */ 643 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 644 u32 hash, void *key, 645 u32 key_size, u32 n_buckets) 646 { 647 struct hlist_nulls_node *n; 648 struct htab_elem *l; 649 650 again: 651 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 652 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 653 return l; 654 655 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 656 goto again; 657 658 return NULL; 659 } 660 661 /* Called from syscall or from eBPF program directly, so 662 * arguments have to match bpf_map_lookup_elem() exactly. 663 * The return value is adjusted by BPF instructions 664 * in htab_map_gen_lookup(). 665 */ 666 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 667 { 668 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 669 struct hlist_nulls_head *head; 670 struct htab_elem *l; 671 u32 hash, key_size; 672 673 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 674 !rcu_read_lock_bh_held()); 675 676 key_size = map->key_size; 677 678 hash = htab_map_hash(key, key_size, htab->hashrnd); 679 680 head = select_bucket(htab, hash); 681 682 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 683 684 return l; 685 } 686 687 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 688 { 689 struct htab_elem *l = __htab_map_lookup_elem(map, key); 690 691 if (l) 692 return l->key + round_up(map->key_size, 8); 693 694 return NULL; 695 } 696 697 /* inline bpf_map_lookup_elem() call. 698 * Instead of: 699 * bpf_prog 700 * bpf_map_lookup_elem 701 * map->ops->map_lookup_elem 702 * htab_map_lookup_elem 703 * __htab_map_lookup_elem 704 * do: 705 * bpf_prog 706 * __htab_map_lookup_elem 707 */ 708 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 709 { 710 struct bpf_insn *insn = insn_buf; 711 const int ret = BPF_REG_0; 712 713 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 714 (void *(*)(struct bpf_map *map, void *key))NULL)); 715 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 716 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 717 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 718 offsetof(struct htab_elem, key) + 719 round_up(map->key_size, 8)); 720 return insn - insn_buf; 721 } 722 723 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 724 void *key, const bool mark) 725 { 726 struct htab_elem *l = __htab_map_lookup_elem(map, key); 727 728 if (l) { 729 if (mark) 730 bpf_lru_node_set_ref(&l->lru_node); 731 return l->key + round_up(map->key_size, 8); 732 } 733 734 return NULL; 735 } 736 737 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 738 { 739 return __htab_lru_map_lookup_elem(map, key, true); 740 } 741 742 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 743 { 744 return __htab_lru_map_lookup_elem(map, key, false); 745 } 746 747 static int htab_lru_map_gen_lookup(struct bpf_map *map, 748 struct bpf_insn *insn_buf) 749 { 750 struct bpf_insn *insn = insn_buf; 751 const int ret = BPF_REG_0; 752 const int ref_reg = BPF_REG_1; 753 754 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 755 (void *(*)(struct bpf_map *map, void *key))NULL)); 756 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 757 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 758 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 759 offsetof(struct htab_elem, lru_node) + 760 offsetof(struct bpf_lru_node, ref)); 761 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 762 *insn++ = BPF_ST_MEM(BPF_B, ret, 763 offsetof(struct htab_elem, lru_node) + 764 offsetof(struct bpf_lru_node, ref), 765 1); 766 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 767 offsetof(struct htab_elem, key) + 768 round_up(map->key_size, 8)); 769 return insn - insn_buf; 770 } 771 772 static void check_and_free_fields(struct bpf_htab *htab, 773 struct htab_elem *elem) 774 { 775 if (htab_is_percpu(htab)) { 776 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 777 int cpu; 778 779 for_each_possible_cpu(cpu) 780 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 781 } else { 782 void *map_value = elem->key + round_up(htab->map.key_size, 8); 783 784 bpf_obj_free_fields(htab->map.record, map_value); 785 } 786 } 787 788 /* It is called from the bpf_lru_list when the LRU needs to delete 789 * older elements from the htab. 790 */ 791 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 792 { 793 struct bpf_htab *htab = arg; 794 struct htab_elem *l = NULL, *tgt_l; 795 struct hlist_nulls_head *head; 796 struct hlist_nulls_node *n; 797 unsigned long flags; 798 struct bucket *b; 799 int ret; 800 801 tgt_l = container_of(node, struct htab_elem, lru_node); 802 b = __select_bucket(htab, tgt_l->hash); 803 head = &b->head; 804 805 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 806 if (ret) 807 return false; 808 809 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 810 if (l == tgt_l) { 811 hlist_nulls_del_rcu(&l->hash_node); 812 check_and_free_fields(htab, l); 813 break; 814 } 815 816 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 817 818 return l == tgt_l; 819 } 820 821 /* Called from syscall */ 822 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 823 { 824 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 825 struct hlist_nulls_head *head; 826 struct htab_elem *l, *next_l; 827 u32 hash, key_size; 828 int i = 0; 829 830 WARN_ON_ONCE(!rcu_read_lock_held()); 831 832 key_size = map->key_size; 833 834 if (!key) 835 goto find_first_elem; 836 837 hash = htab_map_hash(key, key_size, htab->hashrnd); 838 839 head = select_bucket(htab, hash); 840 841 /* lookup the key */ 842 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 843 844 if (!l) 845 goto find_first_elem; 846 847 /* key was found, get next key in the same bucket */ 848 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 849 struct htab_elem, hash_node); 850 851 if (next_l) { 852 /* if next elem in this hash list is non-zero, just return it */ 853 memcpy(next_key, next_l->key, key_size); 854 return 0; 855 } 856 857 /* no more elements in this hash list, go to the next bucket */ 858 i = hash & (htab->n_buckets - 1); 859 i++; 860 861 find_first_elem: 862 /* iterate over buckets */ 863 for (; i < htab->n_buckets; i++) { 864 head = select_bucket(htab, i); 865 866 /* pick first element in the bucket */ 867 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 868 struct htab_elem, hash_node); 869 if (next_l) { 870 /* if it's not empty, just return it */ 871 memcpy(next_key, next_l->key, key_size); 872 return 0; 873 } 874 } 875 876 /* iterated over all buckets and all elements */ 877 return -ENOENT; 878 } 879 880 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 881 { 882 check_and_free_fields(htab, l); 883 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 884 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 885 bpf_mem_cache_free(&htab->ma, l); 886 } 887 888 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 889 { 890 struct bpf_map *map = &htab->map; 891 void *ptr; 892 893 if (map->ops->map_fd_put_ptr) { 894 ptr = fd_htab_map_get_ptr(map, l); 895 map->ops->map_fd_put_ptr(ptr); 896 } 897 } 898 899 static bool is_map_full(struct bpf_htab *htab) 900 { 901 if (htab->use_percpu_counter) 902 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 903 PERCPU_COUNTER_BATCH) >= 0; 904 return atomic_read(&htab->count) >= htab->map.max_entries; 905 } 906 907 static void inc_elem_count(struct bpf_htab *htab) 908 { 909 if (htab->use_percpu_counter) 910 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 911 else 912 atomic_inc(&htab->count); 913 } 914 915 static void dec_elem_count(struct bpf_htab *htab) 916 { 917 if (htab->use_percpu_counter) 918 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 919 else 920 atomic_dec(&htab->count); 921 } 922 923 924 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 925 { 926 htab_put_fd_value(htab, l); 927 928 if (htab_is_prealloc(htab)) { 929 check_and_free_fields(htab, l); 930 __pcpu_freelist_push(&htab->freelist, &l->fnode); 931 } else { 932 dec_elem_count(htab); 933 htab_elem_free(htab, l); 934 } 935 } 936 937 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 938 void *value, bool onallcpus) 939 { 940 if (!onallcpus) { 941 /* copy true value_size bytes */ 942 copy_map_value(&htab->map, this_cpu_ptr(pptr), value); 943 } else { 944 u32 size = round_up(htab->map.value_size, 8); 945 int off = 0, cpu; 946 947 for_each_possible_cpu(cpu) { 948 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); 949 off += size; 950 } 951 } 952 } 953 954 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 955 void *value, bool onallcpus) 956 { 957 /* When not setting the initial value on all cpus, zero-fill element 958 * values for other cpus. Otherwise, bpf program has no way to ensure 959 * known initial values for cpus other than current one 960 * (onallcpus=false always when coming from bpf prog). 961 */ 962 if (!onallcpus) { 963 int current_cpu = raw_smp_processor_id(); 964 int cpu; 965 966 for_each_possible_cpu(cpu) { 967 if (cpu == current_cpu) 968 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); 969 else /* Since elem is preallocated, we cannot touch special fields */ 970 zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); 971 } 972 } else { 973 pcpu_copy_value(htab, pptr, value, onallcpus); 974 } 975 } 976 977 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 978 { 979 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 980 BITS_PER_LONG == 64; 981 } 982 983 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 984 void *value, u32 key_size, u32 hash, 985 bool percpu, bool onallcpus, 986 struct htab_elem *old_elem) 987 { 988 u32 size = htab->map.value_size; 989 bool prealloc = htab_is_prealloc(htab); 990 struct htab_elem *l_new, **pl_new; 991 void __percpu *pptr; 992 993 if (prealloc) { 994 if (old_elem) { 995 /* if we're updating the existing element, 996 * use per-cpu extra elems to avoid freelist_pop/push 997 */ 998 pl_new = this_cpu_ptr(htab->extra_elems); 999 l_new = *pl_new; 1000 htab_put_fd_value(htab, old_elem); 1001 *pl_new = old_elem; 1002 } else { 1003 struct pcpu_freelist_node *l; 1004 1005 l = __pcpu_freelist_pop(&htab->freelist); 1006 if (!l) 1007 return ERR_PTR(-E2BIG); 1008 l_new = container_of(l, struct htab_elem, fnode); 1009 } 1010 } else { 1011 if (is_map_full(htab)) 1012 if (!old_elem) 1013 /* when map is full and update() is replacing 1014 * old element, it's ok to allocate, since 1015 * old element will be freed immediately. 1016 * Otherwise return an error 1017 */ 1018 return ERR_PTR(-E2BIG); 1019 inc_elem_count(htab); 1020 l_new = bpf_mem_cache_alloc(&htab->ma); 1021 if (!l_new) { 1022 l_new = ERR_PTR(-ENOMEM); 1023 goto dec_count; 1024 } 1025 } 1026 1027 memcpy(l_new->key, key, key_size); 1028 if (percpu) { 1029 if (prealloc) { 1030 pptr = htab_elem_get_ptr(l_new, key_size); 1031 } else { 1032 /* alloc_percpu zero-fills */ 1033 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1034 if (!pptr) { 1035 bpf_mem_cache_free(&htab->ma, l_new); 1036 l_new = ERR_PTR(-ENOMEM); 1037 goto dec_count; 1038 } 1039 l_new->ptr_to_pptr = pptr; 1040 pptr = *(void **)pptr; 1041 } 1042 1043 pcpu_init_value(htab, pptr, value, onallcpus); 1044 1045 if (!prealloc) 1046 htab_elem_set_ptr(l_new, key_size, pptr); 1047 } else if (fd_htab_map_needs_adjust(htab)) { 1048 size = round_up(size, 8); 1049 memcpy(l_new->key + round_up(key_size, 8), value, size); 1050 } else { 1051 copy_map_value(&htab->map, 1052 l_new->key + round_up(key_size, 8), 1053 value); 1054 } 1055 1056 l_new->hash = hash; 1057 return l_new; 1058 dec_count: 1059 dec_elem_count(htab); 1060 return l_new; 1061 } 1062 1063 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1064 u64 map_flags) 1065 { 1066 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1067 /* elem already exists */ 1068 return -EEXIST; 1069 1070 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1071 /* elem doesn't exist, cannot update it */ 1072 return -ENOENT; 1073 1074 return 0; 1075 } 1076 1077 /* Called from syscall or from eBPF program */ 1078 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1079 u64 map_flags) 1080 { 1081 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1082 struct htab_elem *l_new = NULL, *l_old; 1083 struct hlist_nulls_head *head; 1084 unsigned long flags; 1085 struct bucket *b; 1086 u32 key_size, hash; 1087 int ret; 1088 1089 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1090 /* unknown flags */ 1091 return -EINVAL; 1092 1093 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1094 !rcu_read_lock_bh_held()); 1095 1096 key_size = map->key_size; 1097 1098 hash = htab_map_hash(key, key_size, htab->hashrnd); 1099 1100 b = __select_bucket(htab, hash); 1101 head = &b->head; 1102 1103 if (unlikely(map_flags & BPF_F_LOCK)) { 1104 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1105 return -EINVAL; 1106 /* find an element without taking the bucket lock */ 1107 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1108 htab->n_buckets); 1109 ret = check_flags(htab, l_old, map_flags); 1110 if (ret) 1111 return ret; 1112 if (l_old) { 1113 /* grab the element lock and update value in place */ 1114 copy_map_value_locked(map, 1115 l_old->key + round_up(key_size, 8), 1116 value, false); 1117 return 0; 1118 } 1119 /* fall through, grab the bucket lock and lookup again. 1120 * 99.9% chance that the element won't be found, 1121 * but second lookup under lock has to be done. 1122 */ 1123 } 1124 1125 ret = htab_lock_bucket(htab, b, hash, &flags); 1126 if (ret) 1127 return ret; 1128 1129 l_old = lookup_elem_raw(head, hash, key, key_size); 1130 1131 ret = check_flags(htab, l_old, map_flags); 1132 if (ret) 1133 goto err; 1134 1135 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1136 /* first lookup without the bucket lock didn't find the element, 1137 * but second lookup with the bucket lock found it. 1138 * This case is highly unlikely, but has to be dealt with: 1139 * grab the element lock in addition to the bucket lock 1140 * and update element in place 1141 */ 1142 copy_map_value_locked(map, 1143 l_old->key + round_up(key_size, 8), 1144 value, false); 1145 ret = 0; 1146 goto err; 1147 } 1148 1149 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1150 l_old); 1151 if (IS_ERR(l_new)) { 1152 /* all pre-allocated elements are in use or memory exhausted */ 1153 ret = PTR_ERR(l_new); 1154 goto err; 1155 } 1156 1157 /* add new element to the head of the list, so that 1158 * concurrent search will find it before old elem 1159 */ 1160 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1161 if (l_old) { 1162 hlist_nulls_del_rcu(&l_old->hash_node); 1163 if (!htab_is_prealloc(htab)) 1164 free_htab_elem(htab, l_old); 1165 else 1166 check_and_free_fields(htab, l_old); 1167 } 1168 ret = 0; 1169 err: 1170 htab_unlock_bucket(htab, b, hash, flags); 1171 return ret; 1172 } 1173 1174 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1175 { 1176 check_and_free_fields(htab, elem); 1177 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1178 } 1179 1180 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1181 u64 map_flags) 1182 { 1183 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1184 struct htab_elem *l_new, *l_old = NULL; 1185 struct hlist_nulls_head *head; 1186 unsigned long flags; 1187 struct bucket *b; 1188 u32 key_size, hash; 1189 int ret; 1190 1191 if (unlikely(map_flags > BPF_EXIST)) 1192 /* unknown flags */ 1193 return -EINVAL; 1194 1195 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1196 !rcu_read_lock_bh_held()); 1197 1198 key_size = map->key_size; 1199 1200 hash = htab_map_hash(key, key_size, htab->hashrnd); 1201 1202 b = __select_bucket(htab, hash); 1203 head = &b->head; 1204 1205 /* For LRU, we need to alloc before taking bucket's 1206 * spinlock because getting free nodes from LRU may need 1207 * to remove older elements from htab and this removal 1208 * operation will need a bucket lock. 1209 */ 1210 l_new = prealloc_lru_pop(htab, key, hash); 1211 if (!l_new) 1212 return -ENOMEM; 1213 copy_map_value(&htab->map, 1214 l_new->key + round_up(map->key_size, 8), value); 1215 1216 ret = htab_lock_bucket(htab, b, hash, &flags); 1217 if (ret) 1218 goto err_lock_bucket; 1219 1220 l_old = lookup_elem_raw(head, hash, key, key_size); 1221 1222 ret = check_flags(htab, l_old, map_flags); 1223 if (ret) 1224 goto err; 1225 1226 /* add new element to the head of the list, so that 1227 * concurrent search will find it before old elem 1228 */ 1229 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1230 if (l_old) { 1231 bpf_lru_node_set_ref(&l_new->lru_node); 1232 hlist_nulls_del_rcu(&l_old->hash_node); 1233 } 1234 ret = 0; 1235 1236 err: 1237 htab_unlock_bucket(htab, b, hash, flags); 1238 1239 err_lock_bucket: 1240 if (ret) 1241 htab_lru_push_free(htab, l_new); 1242 else if (l_old) 1243 htab_lru_push_free(htab, l_old); 1244 1245 return ret; 1246 } 1247 1248 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1249 void *value, u64 map_flags, 1250 bool onallcpus) 1251 { 1252 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1253 struct htab_elem *l_new = NULL, *l_old; 1254 struct hlist_nulls_head *head; 1255 unsigned long flags; 1256 struct bucket *b; 1257 u32 key_size, hash; 1258 int ret; 1259 1260 if (unlikely(map_flags > BPF_EXIST)) 1261 /* unknown flags */ 1262 return -EINVAL; 1263 1264 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1265 !rcu_read_lock_bh_held()); 1266 1267 key_size = map->key_size; 1268 1269 hash = htab_map_hash(key, key_size, htab->hashrnd); 1270 1271 b = __select_bucket(htab, hash); 1272 head = &b->head; 1273 1274 ret = htab_lock_bucket(htab, b, hash, &flags); 1275 if (ret) 1276 return ret; 1277 1278 l_old = lookup_elem_raw(head, hash, key, key_size); 1279 1280 ret = check_flags(htab, l_old, map_flags); 1281 if (ret) 1282 goto err; 1283 1284 if (l_old) { 1285 /* per-cpu hash map can update value in-place */ 1286 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1287 value, onallcpus); 1288 } else { 1289 l_new = alloc_htab_elem(htab, key, value, key_size, 1290 hash, true, onallcpus, NULL); 1291 if (IS_ERR(l_new)) { 1292 ret = PTR_ERR(l_new); 1293 goto err; 1294 } 1295 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1296 } 1297 ret = 0; 1298 err: 1299 htab_unlock_bucket(htab, b, hash, flags); 1300 return ret; 1301 } 1302 1303 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1304 void *value, u64 map_flags, 1305 bool onallcpus) 1306 { 1307 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1308 struct htab_elem *l_new = NULL, *l_old; 1309 struct hlist_nulls_head *head; 1310 unsigned long flags; 1311 struct bucket *b; 1312 u32 key_size, hash; 1313 int ret; 1314 1315 if (unlikely(map_flags > BPF_EXIST)) 1316 /* unknown flags */ 1317 return -EINVAL; 1318 1319 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1320 !rcu_read_lock_bh_held()); 1321 1322 key_size = map->key_size; 1323 1324 hash = htab_map_hash(key, key_size, htab->hashrnd); 1325 1326 b = __select_bucket(htab, hash); 1327 head = &b->head; 1328 1329 /* For LRU, we need to alloc before taking bucket's 1330 * spinlock because LRU's elem alloc may need 1331 * to remove older elem from htab and this removal 1332 * operation will need a bucket lock. 1333 */ 1334 if (map_flags != BPF_EXIST) { 1335 l_new = prealloc_lru_pop(htab, key, hash); 1336 if (!l_new) 1337 return -ENOMEM; 1338 } 1339 1340 ret = htab_lock_bucket(htab, b, hash, &flags); 1341 if (ret) 1342 goto err_lock_bucket; 1343 1344 l_old = lookup_elem_raw(head, hash, key, key_size); 1345 1346 ret = check_flags(htab, l_old, map_flags); 1347 if (ret) 1348 goto err; 1349 1350 if (l_old) { 1351 bpf_lru_node_set_ref(&l_old->lru_node); 1352 1353 /* per-cpu hash map can update value in-place */ 1354 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1355 value, onallcpus); 1356 } else { 1357 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1358 value, onallcpus); 1359 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1360 l_new = NULL; 1361 } 1362 ret = 0; 1363 err: 1364 htab_unlock_bucket(htab, b, hash, flags); 1365 err_lock_bucket: 1366 if (l_new) 1367 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1368 return ret; 1369 } 1370 1371 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1372 void *value, u64 map_flags) 1373 { 1374 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1375 } 1376 1377 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1378 void *value, u64 map_flags) 1379 { 1380 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1381 false); 1382 } 1383 1384 /* Called from syscall or from eBPF program */ 1385 static long htab_map_delete_elem(struct bpf_map *map, void *key) 1386 { 1387 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1388 struct hlist_nulls_head *head; 1389 struct bucket *b; 1390 struct htab_elem *l; 1391 unsigned long flags; 1392 u32 hash, key_size; 1393 int ret; 1394 1395 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1396 !rcu_read_lock_bh_held()); 1397 1398 key_size = map->key_size; 1399 1400 hash = htab_map_hash(key, key_size, htab->hashrnd); 1401 b = __select_bucket(htab, hash); 1402 head = &b->head; 1403 1404 ret = htab_lock_bucket(htab, b, hash, &flags); 1405 if (ret) 1406 return ret; 1407 1408 l = lookup_elem_raw(head, hash, key, key_size); 1409 1410 if (l) { 1411 hlist_nulls_del_rcu(&l->hash_node); 1412 free_htab_elem(htab, l); 1413 } else { 1414 ret = -ENOENT; 1415 } 1416 1417 htab_unlock_bucket(htab, b, hash, flags); 1418 return ret; 1419 } 1420 1421 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1422 { 1423 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1424 struct hlist_nulls_head *head; 1425 struct bucket *b; 1426 struct htab_elem *l; 1427 unsigned long flags; 1428 u32 hash, key_size; 1429 int ret; 1430 1431 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1432 !rcu_read_lock_bh_held()); 1433 1434 key_size = map->key_size; 1435 1436 hash = htab_map_hash(key, key_size, htab->hashrnd); 1437 b = __select_bucket(htab, hash); 1438 head = &b->head; 1439 1440 ret = htab_lock_bucket(htab, b, hash, &flags); 1441 if (ret) 1442 return ret; 1443 1444 l = lookup_elem_raw(head, hash, key, key_size); 1445 1446 if (l) 1447 hlist_nulls_del_rcu(&l->hash_node); 1448 else 1449 ret = -ENOENT; 1450 1451 htab_unlock_bucket(htab, b, hash, flags); 1452 if (l) 1453 htab_lru_push_free(htab, l); 1454 return ret; 1455 } 1456 1457 static void delete_all_elements(struct bpf_htab *htab) 1458 { 1459 int i; 1460 1461 /* It's called from a worker thread, so disable migration here, 1462 * since bpf_mem_cache_free() relies on that. 1463 */ 1464 migrate_disable(); 1465 for (i = 0; i < htab->n_buckets; i++) { 1466 struct hlist_nulls_head *head = select_bucket(htab, i); 1467 struct hlist_nulls_node *n; 1468 struct htab_elem *l; 1469 1470 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1471 hlist_nulls_del_rcu(&l->hash_node); 1472 htab_elem_free(htab, l); 1473 } 1474 } 1475 migrate_enable(); 1476 } 1477 1478 static void htab_free_malloced_timers(struct bpf_htab *htab) 1479 { 1480 int i; 1481 1482 rcu_read_lock(); 1483 for (i = 0; i < htab->n_buckets; i++) { 1484 struct hlist_nulls_head *head = select_bucket(htab, i); 1485 struct hlist_nulls_node *n; 1486 struct htab_elem *l; 1487 1488 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1489 /* We only free timer on uref dropping to zero */ 1490 bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8)); 1491 } 1492 cond_resched_rcu(); 1493 } 1494 rcu_read_unlock(); 1495 } 1496 1497 static void htab_map_free_timers(struct bpf_map *map) 1498 { 1499 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1500 1501 /* We only free timer on uref dropping to zero */ 1502 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 1503 return; 1504 if (!htab_is_prealloc(htab)) 1505 htab_free_malloced_timers(htab); 1506 else 1507 htab_free_prealloced_timers(htab); 1508 } 1509 1510 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1511 static void htab_map_free(struct bpf_map *map) 1512 { 1513 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1514 int i; 1515 1516 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1517 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1518 * There is no need to synchronize_rcu() here to protect map elements. 1519 */ 1520 1521 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1522 * underneath and is reponsible for waiting for callbacks to finish 1523 * during bpf_mem_alloc_destroy(). 1524 */ 1525 if (!htab_is_prealloc(htab)) { 1526 delete_all_elements(htab); 1527 } else { 1528 htab_free_prealloced_fields(htab); 1529 prealloc_destroy(htab); 1530 } 1531 1532 free_percpu(htab->extra_elems); 1533 bpf_map_area_free(htab->buckets); 1534 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1535 bpf_mem_alloc_destroy(&htab->ma); 1536 if (htab->use_percpu_counter) 1537 percpu_counter_destroy(&htab->pcount); 1538 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1539 free_percpu(htab->map_locked[i]); 1540 lockdep_unregister_key(&htab->lockdep_key); 1541 bpf_map_area_free(htab); 1542 } 1543 1544 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1545 struct seq_file *m) 1546 { 1547 void *value; 1548 1549 rcu_read_lock(); 1550 1551 value = htab_map_lookup_elem(map, key); 1552 if (!value) { 1553 rcu_read_unlock(); 1554 return; 1555 } 1556 1557 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1558 seq_puts(m, ": "); 1559 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1560 seq_puts(m, "\n"); 1561 1562 rcu_read_unlock(); 1563 } 1564 1565 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1566 void *value, bool is_lru_map, 1567 bool is_percpu, u64 flags) 1568 { 1569 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1570 struct hlist_nulls_head *head; 1571 unsigned long bflags; 1572 struct htab_elem *l; 1573 u32 hash, key_size; 1574 struct bucket *b; 1575 int ret; 1576 1577 key_size = map->key_size; 1578 1579 hash = htab_map_hash(key, key_size, htab->hashrnd); 1580 b = __select_bucket(htab, hash); 1581 head = &b->head; 1582 1583 ret = htab_lock_bucket(htab, b, hash, &bflags); 1584 if (ret) 1585 return ret; 1586 1587 l = lookup_elem_raw(head, hash, key, key_size); 1588 if (!l) { 1589 ret = -ENOENT; 1590 } else { 1591 if (is_percpu) { 1592 u32 roundup_value_size = round_up(map->value_size, 8); 1593 void __percpu *pptr; 1594 int off = 0, cpu; 1595 1596 pptr = htab_elem_get_ptr(l, key_size); 1597 for_each_possible_cpu(cpu) { 1598 copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); 1599 check_and_init_map_value(&htab->map, value + off); 1600 off += roundup_value_size; 1601 } 1602 } else { 1603 u32 roundup_key_size = round_up(map->key_size, 8); 1604 1605 if (flags & BPF_F_LOCK) 1606 copy_map_value_locked(map, value, l->key + 1607 roundup_key_size, 1608 true); 1609 else 1610 copy_map_value(map, value, l->key + 1611 roundup_key_size); 1612 /* Zeroing special fields in the temp buffer */ 1613 check_and_init_map_value(map, value); 1614 } 1615 1616 hlist_nulls_del_rcu(&l->hash_node); 1617 if (!is_lru_map) 1618 free_htab_elem(htab, l); 1619 } 1620 1621 htab_unlock_bucket(htab, b, hash, bflags); 1622 1623 if (is_lru_map && l) 1624 htab_lru_push_free(htab, l); 1625 1626 return ret; 1627 } 1628 1629 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1630 void *value, u64 flags) 1631 { 1632 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1633 flags); 1634 } 1635 1636 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1637 void *key, void *value, 1638 u64 flags) 1639 { 1640 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1641 flags); 1642 } 1643 1644 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1645 void *value, u64 flags) 1646 { 1647 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1648 flags); 1649 } 1650 1651 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1652 void *key, void *value, 1653 u64 flags) 1654 { 1655 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1656 flags); 1657 } 1658 1659 static int 1660 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1661 const union bpf_attr *attr, 1662 union bpf_attr __user *uattr, 1663 bool do_delete, bool is_lru_map, 1664 bool is_percpu) 1665 { 1666 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1667 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1668 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1669 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1670 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1671 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1672 u32 batch, max_count, size, bucket_size, map_id; 1673 struct htab_elem *node_to_free = NULL; 1674 u64 elem_map_flags, map_flags; 1675 struct hlist_nulls_head *head; 1676 struct hlist_nulls_node *n; 1677 unsigned long flags = 0; 1678 bool locked = false; 1679 struct htab_elem *l; 1680 struct bucket *b; 1681 int ret = 0; 1682 1683 elem_map_flags = attr->batch.elem_flags; 1684 if ((elem_map_flags & ~BPF_F_LOCK) || 1685 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1686 return -EINVAL; 1687 1688 map_flags = attr->batch.flags; 1689 if (map_flags) 1690 return -EINVAL; 1691 1692 max_count = attr->batch.count; 1693 if (!max_count) 1694 return 0; 1695 1696 if (put_user(0, &uattr->batch.count)) 1697 return -EFAULT; 1698 1699 batch = 0; 1700 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1701 return -EFAULT; 1702 1703 if (batch >= htab->n_buckets) 1704 return -ENOENT; 1705 1706 key_size = htab->map.key_size; 1707 roundup_key_size = round_up(htab->map.key_size, 8); 1708 value_size = htab->map.value_size; 1709 size = round_up(value_size, 8); 1710 if (is_percpu) 1711 value_size = size * num_possible_cpus(); 1712 total = 0; 1713 /* while experimenting with hash tables with sizes ranging from 10 to 1714 * 1000, it was observed that a bucket can have up to 5 entries. 1715 */ 1716 bucket_size = 5; 1717 1718 alloc: 1719 /* We cannot do copy_from_user or copy_to_user inside 1720 * the rcu_read_lock. Allocate enough space here. 1721 */ 1722 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1723 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1724 if (!keys || !values) { 1725 ret = -ENOMEM; 1726 goto after_loop; 1727 } 1728 1729 again: 1730 bpf_disable_instrumentation(); 1731 rcu_read_lock(); 1732 again_nocopy: 1733 dst_key = keys; 1734 dst_val = values; 1735 b = &htab->buckets[batch]; 1736 head = &b->head; 1737 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1738 if (locked) { 1739 ret = htab_lock_bucket(htab, b, batch, &flags); 1740 if (ret) { 1741 rcu_read_unlock(); 1742 bpf_enable_instrumentation(); 1743 goto after_loop; 1744 } 1745 } 1746 1747 bucket_cnt = 0; 1748 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1749 bucket_cnt++; 1750 1751 if (bucket_cnt && !locked) { 1752 locked = true; 1753 goto again_nocopy; 1754 } 1755 1756 if (bucket_cnt > (max_count - total)) { 1757 if (total == 0) 1758 ret = -ENOSPC; 1759 /* Note that since bucket_cnt > 0 here, it is implicit 1760 * that the locked was grabbed, so release it. 1761 */ 1762 htab_unlock_bucket(htab, b, batch, flags); 1763 rcu_read_unlock(); 1764 bpf_enable_instrumentation(); 1765 goto after_loop; 1766 } 1767 1768 if (bucket_cnt > bucket_size) { 1769 bucket_size = bucket_cnt; 1770 /* Note that since bucket_cnt > 0 here, it is implicit 1771 * that the locked was grabbed, so release it. 1772 */ 1773 htab_unlock_bucket(htab, b, batch, flags); 1774 rcu_read_unlock(); 1775 bpf_enable_instrumentation(); 1776 kvfree(keys); 1777 kvfree(values); 1778 goto alloc; 1779 } 1780 1781 /* Next block is only safe to run if you have grabbed the lock */ 1782 if (!locked) 1783 goto next_batch; 1784 1785 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1786 memcpy(dst_key, l->key, key_size); 1787 1788 if (is_percpu) { 1789 int off = 0, cpu; 1790 void __percpu *pptr; 1791 1792 pptr = htab_elem_get_ptr(l, map->key_size); 1793 for_each_possible_cpu(cpu) { 1794 copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); 1795 check_and_init_map_value(&htab->map, dst_val + off); 1796 off += size; 1797 } 1798 } else { 1799 value = l->key + roundup_key_size; 1800 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1801 struct bpf_map **inner_map = value; 1802 1803 /* Actual value is the id of the inner map */ 1804 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1805 value = &map_id; 1806 } 1807 1808 if (elem_map_flags & BPF_F_LOCK) 1809 copy_map_value_locked(map, dst_val, value, 1810 true); 1811 else 1812 copy_map_value(map, dst_val, value); 1813 /* Zeroing special fields in the temp buffer */ 1814 check_and_init_map_value(map, dst_val); 1815 } 1816 if (do_delete) { 1817 hlist_nulls_del_rcu(&l->hash_node); 1818 1819 /* bpf_lru_push_free() will acquire lru_lock, which 1820 * may cause deadlock. See comments in function 1821 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1822 * after releasing the bucket lock. 1823 */ 1824 if (is_lru_map) { 1825 l->batch_flink = node_to_free; 1826 node_to_free = l; 1827 } else { 1828 free_htab_elem(htab, l); 1829 } 1830 } 1831 dst_key += key_size; 1832 dst_val += value_size; 1833 } 1834 1835 htab_unlock_bucket(htab, b, batch, flags); 1836 locked = false; 1837 1838 while (node_to_free) { 1839 l = node_to_free; 1840 node_to_free = node_to_free->batch_flink; 1841 htab_lru_push_free(htab, l); 1842 } 1843 1844 next_batch: 1845 /* If we are not copying data, we can go to next bucket and avoid 1846 * unlocking the rcu. 1847 */ 1848 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1849 batch++; 1850 goto again_nocopy; 1851 } 1852 1853 rcu_read_unlock(); 1854 bpf_enable_instrumentation(); 1855 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1856 key_size * bucket_cnt) || 1857 copy_to_user(uvalues + total * value_size, values, 1858 value_size * bucket_cnt))) { 1859 ret = -EFAULT; 1860 goto after_loop; 1861 } 1862 1863 total += bucket_cnt; 1864 batch++; 1865 if (batch >= htab->n_buckets) { 1866 ret = -ENOENT; 1867 goto after_loop; 1868 } 1869 goto again; 1870 1871 after_loop: 1872 if (ret == -EFAULT) 1873 goto out; 1874 1875 /* copy # of entries and next batch */ 1876 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1877 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1878 put_user(total, &uattr->batch.count)) 1879 ret = -EFAULT; 1880 1881 out: 1882 kvfree(keys); 1883 kvfree(values); 1884 return ret; 1885 } 1886 1887 static int 1888 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1889 union bpf_attr __user *uattr) 1890 { 1891 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1892 false, true); 1893 } 1894 1895 static int 1896 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1897 const union bpf_attr *attr, 1898 union bpf_attr __user *uattr) 1899 { 1900 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1901 false, true); 1902 } 1903 1904 static int 1905 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1906 union bpf_attr __user *uattr) 1907 { 1908 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1909 false, false); 1910 } 1911 1912 static int 1913 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1914 const union bpf_attr *attr, 1915 union bpf_attr __user *uattr) 1916 { 1917 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1918 false, false); 1919 } 1920 1921 static int 1922 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1923 const union bpf_attr *attr, 1924 union bpf_attr __user *uattr) 1925 { 1926 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1927 true, true); 1928 } 1929 1930 static int 1931 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1932 const union bpf_attr *attr, 1933 union bpf_attr __user *uattr) 1934 { 1935 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1936 true, true); 1937 } 1938 1939 static int 1940 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1941 union bpf_attr __user *uattr) 1942 { 1943 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1944 true, false); 1945 } 1946 1947 static int 1948 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1949 const union bpf_attr *attr, 1950 union bpf_attr __user *uattr) 1951 { 1952 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1953 true, false); 1954 } 1955 1956 struct bpf_iter_seq_hash_map_info { 1957 struct bpf_map *map; 1958 struct bpf_htab *htab; 1959 void *percpu_value_buf; // non-zero means percpu hash 1960 u32 bucket_id; 1961 u32 skip_elems; 1962 }; 1963 1964 static struct htab_elem * 1965 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1966 struct htab_elem *prev_elem) 1967 { 1968 const struct bpf_htab *htab = info->htab; 1969 u32 skip_elems = info->skip_elems; 1970 u32 bucket_id = info->bucket_id; 1971 struct hlist_nulls_head *head; 1972 struct hlist_nulls_node *n; 1973 struct htab_elem *elem; 1974 struct bucket *b; 1975 u32 i, count; 1976 1977 if (bucket_id >= htab->n_buckets) 1978 return NULL; 1979 1980 /* try to find next elem in the same bucket */ 1981 if (prev_elem) { 1982 /* no update/deletion on this bucket, prev_elem should be still valid 1983 * and we won't skip elements. 1984 */ 1985 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1986 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1987 if (elem) 1988 return elem; 1989 1990 /* not found, unlock and go to the next bucket */ 1991 b = &htab->buckets[bucket_id++]; 1992 rcu_read_unlock(); 1993 skip_elems = 0; 1994 } 1995 1996 for (i = bucket_id; i < htab->n_buckets; i++) { 1997 b = &htab->buckets[i]; 1998 rcu_read_lock(); 1999 2000 count = 0; 2001 head = &b->head; 2002 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2003 if (count >= skip_elems) { 2004 info->bucket_id = i; 2005 info->skip_elems = count; 2006 return elem; 2007 } 2008 count++; 2009 } 2010 2011 rcu_read_unlock(); 2012 skip_elems = 0; 2013 } 2014 2015 info->bucket_id = i; 2016 info->skip_elems = 0; 2017 return NULL; 2018 } 2019 2020 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2021 { 2022 struct bpf_iter_seq_hash_map_info *info = seq->private; 2023 struct htab_elem *elem; 2024 2025 elem = bpf_hash_map_seq_find_next(info, NULL); 2026 if (!elem) 2027 return NULL; 2028 2029 if (*pos == 0) 2030 ++*pos; 2031 return elem; 2032 } 2033 2034 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2035 { 2036 struct bpf_iter_seq_hash_map_info *info = seq->private; 2037 2038 ++*pos; 2039 ++info->skip_elems; 2040 return bpf_hash_map_seq_find_next(info, v); 2041 } 2042 2043 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2044 { 2045 struct bpf_iter_seq_hash_map_info *info = seq->private; 2046 u32 roundup_key_size, roundup_value_size; 2047 struct bpf_iter__bpf_map_elem ctx = {}; 2048 struct bpf_map *map = info->map; 2049 struct bpf_iter_meta meta; 2050 int ret = 0, off = 0, cpu; 2051 struct bpf_prog *prog; 2052 void __percpu *pptr; 2053 2054 meta.seq = seq; 2055 prog = bpf_iter_get_info(&meta, elem == NULL); 2056 if (prog) { 2057 ctx.meta = &meta; 2058 ctx.map = info->map; 2059 if (elem) { 2060 roundup_key_size = round_up(map->key_size, 8); 2061 ctx.key = elem->key; 2062 if (!info->percpu_value_buf) { 2063 ctx.value = elem->key + roundup_key_size; 2064 } else { 2065 roundup_value_size = round_up(map->value_size, 8); 2066 pptr = htab_elem_get_ptr(elem, map->key_size); 2067 for_each_possible_cpu(cpu) { 2068 copy_map_value_long(map, info->percpu_value_buf + off, 2069 per_cpu_ptr(pptr, cpu)); 2070 check_and_init_map_value(map, info->percpu_value_buf + off); 2071 off += roundup_value_size; 2072 } 2073 ctx.value = info->percpu_value_buf; 2074 } 2075 } 2076 ret = bpf_iter_run_prog(prog, &ctx); 2077 } 2078 2079 return ret; 2080 } 2081 2082 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2083 { 2084 return __bpf_hash_map_seq_show(seq, v); 2085 } 2086 2087 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2088 { 2089 if (!v) 2090 (void)__bpf_hash_map_seq_show(seq, NULL); 2091 else 2092 rcu_read_unlock(); 2093 } 2094 2095 static int bpf_iter_init_hash_map(void *priv_data, 2096 struct bpf_iter_aux_info *aux) 2097 { 2098 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2099 struct bpf_map *map = aux->map; 2100 void *value_buf; 2101 u32 buf_size; 2102 2103 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2104 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2105 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2106 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2107 if (!value_buf) 2108 return -ENOMEM; 2109 2110 seq_info->percpu_value_buf = value_buf; 2111 } 2112 2113 bpf_map_inc_with_uref(map); 2114 seq_info->map = map; 2115 seq_info->htab = container_of(map, struct bpf_htab, map); 2116 return 0; 2117 } 2118 2119 static void bpf_iter_fini_hash_map(void *priv_data) 2120 { 2121 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2122 2123 bpf_map_put_with_uref(seq_info->map); 2124 kfree(seq_info->percpu_value_buf); 2125 } 2126 2127 static const struct seq_operations bpf_hash_map_seq_ops = { 2128 .start = bpf_hash_map_seq_start, 2129 .next = bpf_hash_map_seq_next, 2130 .stop = bpf_hash_map_seq_stop, 2131 .show = bpf_hash_map_seq_show, 2132 }; 2133 2134 static const struct bpf_iter_seq_info iter_seq_info = { 2135 .seq_ops = &bpf_hash_map_seq_ops, 2136 .init_seq_private = bpf_iter_init_hash_map, 2137 .fini_seq_private = bpf_iter_fini_hash_map, 2138 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2139 }; 2140 2141 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2142 void *callback_ctx, u64 flags) 2143 { 2144 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2145 struct hlist_nulls_head *head; 2146 struct hlist_nulls_node *n; 2147 struct htab_elem *elem; 2148 u32 roundup_key_size; 2149 int i, num_elems = 0; 2150 void __percpu *pptr; 2151 struct bucket *b; 2152 void *key, *val; 2153 bool is_percpu; 2154 u64 ret = 0; 2155 2156 if (flags != 0) 2157 return -EINVAL; 2158 2159 is_percpu = htab_is_percpu(htab); 2160 2161 roundup_key_size = round_up(map->key_size, 8); 2162 /* disable migration so percpu value prepared here will be the 2163 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2164 */ 2165 if (is_percpu) 2166 migrate_disable(); 2167 for (i = 0; i < htab->n_buckets; i++) { 2168 b = &htab->buckets[i]; 2169 rcu_read_lock(); 2170 head = &b->head; 2171 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2172 key = elem->key; 2173 if (is_percpu) { 2174 /* current cpu value for percpu map */ 2175 pptr = htab_elem_get_ptr(elem, map->key_size); 2176 val = this_cpu_ptr(pptr); 2177 } else { 2178 val = elem->key + roundup_key_size; 2179 } 2180 num_elems++; 2181 ret = callback_fn((u64)(long)map, (u64)(long)key, 2182 (u64)(long)val, (u64)(long)callback_ctx, 0); 2183 /* return value: 0 - continue, 1 - stop and return */ 2184 if (ret) { 2185 rcu_read_unlock(); 2186 goto out; 2187 } 2188 } 2189 rcu_read_unlock(); 2190 } 2191 out: 2192 if (is_percpu) 2193 migrate_enable(); 2194 return num_elems; 2195 } 2196 2197 static u64 htab_map_mem_usage(const struct bpf_map *map) 2198 { 2199 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2200 u32 value_size = round_up(htab->map.value_size, 8); 2201 bool prealloc = htab_is_prealloc(htab); 2202 bool percpu = htab_is_percpu(htab); 2203 bool lru = htab_is_lru(htab); 2204 u64 num_entries; 2205 u64 usage = sizeof(struct bpf_htab); 2206 2207 usage += sizeof(struct bucket) * htab->n_buckets; 2208 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; 2209 if (prealloc) { 2210 num_entries = map->max_entries; 2211 if (htab_has_extra_elems(htab)) 2212 num_entries += num_possible_cpus(); 2213 2214 usage += htab->elem_size * num_entries; 2215 2216 if (percpu) 2217 usage += value_size * num_possible_cpus() * num_entries; 2218 else if (!lru) 2219 usage += sizeof(struct htab_elem *) * num_possible_cpus(); 2220 } else { 2221 #define LLIST_NODE_SZ sizeof(struct llist_node) 2222 2223 num_entries = htab->use_percpu_counter ? 2224 percpu_counter_sum(&htab->pcount) : 2225 atomic_read(&htab->count); 2226 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; 2227 if (percpu) { 2228 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; 2229 usage += value_size * num_possible_cpus() * num_entries; 2230 } 2231 } 2232 return usage; 2233 } 2234 2235 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2236 const struct bpf_map_ops htab_map_ops = { 2237 .map_meta_equal = bpf_map_meta_equal, 2238 .map_alloc_check = htab_map_alloc_check, 2239 .map_alloc = htab_map_alloc, 2240 .map_free = htab_map_free, 2241 .map_get_next_key = htab_map_get_next_key, 2242 .map_release_uref = htab_map_free_timers, 2243 .map_lookup_elem = htab_map_lookup_elem, 2244 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2245 .map_update_elem = htab_map_update_elem, 2246 .map_delete_elem = htab_map_delete_elem, 2247 .map_gen_lookup = htab_map_gen_lookup, 2248 .map_seq_show_elem = htab_map_seq_show_elem, 2249 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2250 .map_for_each_callback = bpf_for_each_hash_elem, 2251 .map_mem_usage = htab_map_mem_usage, 2252 BATCH_OPS(htab), 2253 .map_btf_id = &htab_map_btf_ids[0], 2254 .iter_seq_info = &iter_seq_info, 2255 }; 2256 2257 const struct bpf_map_ops htab_lru_map_ops = { 2258 .map_meta_equal = bpf_map_meta_equal, 2259 .map_alloc_check = htab_map_alloc_check, 2260 .map_alloc = htab_map_alloc, 2261 .map_free = htab_map_free, 2262 .map_get_next_key = htab_map_get_next_key, 2263 .map_release_uref = htab_map_free_timers, 2264 .map_lookup_elem = htab_lru_map_lookup_elem, 2265 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2266 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2267 .map_update_elem = htab_lru_map_update_elem, 2268 .map_delete_elem = htab_lru_map_delete_elem, 2269 .map_gen_lookup = htab_lru_map_gen_lookup, 2270 .map_seq_show_elem = htab_map_seq_show_elem, 2271 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2272 .map_for_each_callback = bpf_for_each_hash_elem, 2273 .map_mem_usage = htab_map_mem_usage, 2274 BATCH_OPS(htab_lru), 2275 .map_btf_id = &htab_map_btf_ids[0], 2276 .iter_seq_info = &iter_seq_info, 2277 }; 2278 2279 /* Called from eBPF program */ 2280 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2281 { 2282 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2283 2284 if (l) 2285 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2286 else 2287 return NULL; 2288 } 2289 2290 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2291 { 2292 struct htab_elem *l; 2293 2294 if (cpu >= nr_cpu_ids) 2295 return NULL; 2296 2297 l = __htab_map_lookup_elem(map, key); 2298 if (l) 2299 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2300 else 2301 return NULL; 2302 } 2303 2304 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2305 { 2306 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2307 2308 if (l) { 2309 bpf_lru_node_set_ref(&l->lru_node); 2310 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2311 } 2312 2313 return NULL; 2314 } 2315 2316 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2317 { 2318 struct htab_elem *l; 2319 2320 if (cpu >= nr_cpu_ids) 2321 return NULL; 2322 2323 l = __htab_map_lookup_elem(map, key); 2324 if (l) { 2325 bpf_lru_node_set_ref(&l->lru_node); 2326 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2327 } 2328 2329 return NULL; 2330 } 2331 2332 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2333 { 2334 struct htab_elem *l; 2335 void __percpu *pptr; 2336 int ret = -ENOENT; 2337 int cpu, off = 0; 2338 u32 size; 2339 2340 /* per_cpu areas are zero-filled and bpf programs can only 2341 * access 'value_size' of them, so copying rounded areas 2342 * will not leak any kernel data 2343 */ 2344 size = round_up(map->value_size, 8); 2345 rcu_read_lock(); 2346 l = __htab_map_lookup_elem(map, key); 2347 if (!l) 2348 goto out; 2349 /* We do not mark LRU map element here in order to not mess up 2350 * eviction heuristics when user space does a map walk. 2351 */ 2352 pptr = htab_elem_get_ptr(l, map->key_size); 2353 for_each_possible_cpu(cpu) { 2354 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 2355 check_and_init_map_value(map, value + off); 2356 off += size; 2357 } 2358 ret = 0; 2359 out: 2360 rcu_read_unlock(); 2361 return ret; 2362 } 2363 2364 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2365 u64 map_flags) 2366 { 2367 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2368 int ret; 2369 2370 rcu_read_lock(); 2371 if (htab_is_lru(htab)) 2372 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2373 map_flags, true); 2374 else 2375 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2376 true); 2377 rcu_read_unlock(); 2378 2379 return ret; 2380 } 2381 2382 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2383 struct seq_file *m) 2384 { 2385 struct htab_elem *l; 2386 void __percpu *pptr; 2387 int cpu; 2388 2389 rcu_read_lock(); 2390 2391 l = __htab_map_lookup_elem(map, key); 2392 if (!l) { 2393 rcu_read_unlock(); 2394 return; 2395 } 2396 2397 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2398 seq_puts(m, ": {\n"); 2399 pptr = htab_elem_get_ptr(l, map->key_size); 2400 for_each_possible_cpu(cpu) { 2401 seq_printf(m, "\tcpu%d: ", cpu); 2402 btf_type_seq_show(map->btf, map->btf_value_type_id, 2403 per_cpu_ptr(pptr, cpu), m); 2404 seq_puts(m, "\n"); 2405 } 2406 seq_puts(m, "}\n"); 2407 2408 rcu_read_unlock(); 2409 } 2410 2411 const struct bpf_map_ops htab_percpu_map_ops = { 2412 .map_meta_equal = bpf_map_meta_equal, 2413 .map_alloc_check = htab_map_alloc_check, 2414 .map_alloc = htab_map_alloc, 2415 .map_free = htab_map_free, 2416 .map_get_next_key = htab_map_get_next_key, 2417 .map_lookup_elem = htab_percpu_map_lookup_elem, 2418 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2419 .map_update_elem = htab_percpu_map_update_elem, 2420 .map_delete_elem = htab_map_delete_elem, 2421 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2422 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2423 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2424 .map_for_each_callback = bpf_for_each_hash_elem, 2425 .map_mem_usage = htab_map_mem_usage, 2426 BATCH_OPS(htab_percpu), 2427 .map_btf_id = &htab_map_btf_ids[0], 2428 .iter_seq_info = &iter_seq_info, 2429 }; 2430 2431 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2432 .map_meta_equal = bpf_map_meta_equal, 2433 .map_alloc_check = htab_map_alloc_check, 2434 .map_alloc = htab_map_alloc, 2435 .map_free = htab_map_free, 2436 .map_get_next_key = htab_map_get_next_key, 2437 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2438 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2439 .map_update_elem = htab_lru_percpu_map_update_elem, 2440 .map_delete_elem = htab_lru_map_delete_elem, 2441 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2442 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2443 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2444 .map_for_each_callback = bpf_for_each_hash_elem, 2445 .map_mem_usage = htab_map_mem_usage, 2446 BATCH_OPS(htab_lru_percpu), 2447 .map_btf_id = &htab_map_btf_ids[0], 2448 .iter_seq_info = &iter_seq_info, 2449 }; 2450 2451 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2452 { 2453 if (attr->value_size != sizeof(u32)) 2454 return -EINVAL; 2455 return htab_map_alloc_check(attr); 2456 } 2457 2458 static void fd_htab_map_free(struct bpf_map *map) 2459 { 2460 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2461 struct hlist_nulls_node *n; 2462 struct hlist_nulls_head *head; 2463 struct htab_elem *l; 2464 int i; 2465 2466 for (i = 0; i < htab->n_buckets; i++) { 2467 head = select_bucket(htab, i); 2468 2469 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2470 void *ptr = fd_htab_map_get_ptr(map, l); 2471 2472 map->ops->map_fd_put_ptr(ptr); 2473 } 2474 } 2475 2476 htab_map_free(map); 2477 } 2478 2479 /* only called from syscall */ 2480 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2481 { 2482 void **ptr; 2483 int ret = 0; 2484 2485 if (!map->ops->map_fd_sys_lookup_elem) 2486 return -ENOTSUPP; 2487 2488 rcu_read_lock(); 2489 ptr = htab_map_lookup_elem(map, key); 2490 if (ptr) 2491 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2492 else 2493 ret = -ENOENT; 2494 rcu_read_unlock(); 2495 2496 return ret; 2497 } 2498 2499 /* only called from syscall */ 2500 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2501 void *key, void *value, u64 map_flags) 2502 { 2503 void *ptr; 2504 int ret; 2505 u32 ufd = *(u32 *)value; 2506 2507 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2508 if (IS_ERR(ptr)) 2509 return PTR_ERR(ptr); 2510 2511 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2512 if (ret) 2513 map->ops->map_fd_put_ptr(ptr); 2514 2515 return ret; 2516 } 2517 2518 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2519 { 2520 struct bpf_map *map, *inner_map_meta; 2521 2522 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2523 if (IS_ERR(inner_map_meta)) 2524 return inner_map_meta; 2525 2526 map = htab_map_alloc(attr); 2527 if (IS_ERR(map)) { 2528 bpf_map_meta_free(inner_map_meta); 2529 return map; 2530 } 2531 2532 map->inner_map_meta = inner_map_meta; 2533 2534 return map; 2535 } 2536 2537 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2538 { 2539 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2540 2541 if (!inner_map) 2542 return NULL; 2543 2544 return READ_ONCE(*inner_map); 2545 } 2546 2547 static int htab_of_map_gen_lookup(struct bpf_map *map, 2548 struct bpf_insn *insn_buf) 2549 { 2550 struct bpf_insn *insn = insn_buf; 2551 const int ret = BPF_REG_0; 2552 2553 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2554 (void *(*)(struct bpf_map *map, void *key))NULL)); 2555 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2556 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2557 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2558 offsetof(struct htab_elem, key) + 2559 round_up(map->key_size, 8)); 2560 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2561 2562 return insn - insn_buf; 2563 } 2564 2565 static void htab_of_map_free(struct bpf_map *map) 2566 { 2567 bpf_map_meta_free(map->inner_map_meta); 2568 fd_htab_map_free(map); 2569 } 2570 2571 const struct bpf_map_ops htab_of_maps_map_ops = { 2572 .map_alloc_check = fd_htab_map_alloc_check, 2573 .map_alloc = htab_of_map_alloc, 2574 .map_free = htab_of_map_free, 2575 .map_get_next_key = htab_map_get_next_key, 2576 .map_lookup_elem = htab_of_map_lookup_elem, 2577 .map_delete_elem = htab_map_delete_elem, 2578 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2579 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2580 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2581 .map_gen_lookup = htab_of_map_gen_lookup, 2582 .map_check_btf = map_check_no_btf, 2583 .map_mem_usage = htab_map_mem_usage, 2584 BATCH_OPS(htab), 2585 .map_btf_id = &htab_map_btf_ids[0], 2586 }; 2587