xref: /openbmc/linux/kernel/bpf/hashtab.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17 #include <linux/bpf_mem_alloc.h>
18 
19 #define HTAB_CREATE_FLAG_MASK						\
20 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
21 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
22 
23 #define BATCH_OPS(_name)			\
24 	.map_lookup_batch =			\
25 	_name##_map_lookup_batch,		\
26 	.map_lookup_and_delete_batch =		\
27 	_name##_map_lookup_and_delete_batch,	\
28 	.map_update_batch =			\
29 	generic_map_update_batch,		\
30 	.map_delete_batch =			\
31 	generic_map_delete_batch
32 
33 /*
34  * The bucket lock has two protection scopes:
35  *
36  * 1) Serializing concurrent operations from BPF programs on different
37  *    CPUs
38  *
39  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
40  *
41  * BPF programs can execute in any context including perf, kprobes and
42  * tracing. As there are almost no limits where perf, kprobes and tracing
43  * can be invoked from the lock operations need to be protected against
44  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
45  * the lock held section when functions which acquire this lock are invoked
46  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
47  * variable bpf_prog_active, which prevents BPF programs attached to perf
48  * events, kprobes and tracing to be invoked before the prior invocation
49  * from one of these contexts completed. sys_bpf() uses the same mechanism
50  * by pinning the task to the current CPU and incrementing the recursion
51  * protection across the map operation.
52  *
53  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
54  * operations like memory allocations (even with GFP_ATOMIC) from atomic
55  * contexts. This is required because even with GFP_ATOMIC the memory
56  * allocator calls into code paths which acquire locks with long held lock
57  * sections. To ensure the deterministic behaviour these locks are regular
58  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
59  * true atomic contexts on an RT kernel are the low level hardware
60  * handling, scheduling, low level interrupt handling, NMIs etc. None of
61  * these contexts should ever do memory allocations.
62  *
63  * As regular device interrupt handlers and soft interrupts are forced into
64  * thread context, the existing code which does
65  *   spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
66  * just works.
67  *
68  * In theory the BPF locks could be converted to regular spinlocks as well,
69  * but the bucket locks and percpu_freelist locks can be taken from
70  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
71  * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
72  * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
73  * because there is no memory allocation within the lock held sections. However
74  * after hash map was fully converted to use bpf_mem_alloc, there will be
75  * non-synchronous memory allocation for non-preallocated hash map, so it is
76  * safe to always use raw spinlock for bucket lock.
77  */
78 struct bucket {
79 	struct hlist_nulls_head head;
80 	raw_spinlock_t raw_lock;
81 };
82 
83 #define HASHTAB_MAP_LOCK_COUNT 8
84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
85 
86 struct bpf_htab {
87 	struct bpf_map map;
88 	struct bpf_mem_alloc ma;
89 	struct bpf_mem_alloc pcpu_ma;
90 	struct bucket *buckets;
91 	void *elems;
92 	union {
93 		struct pcpu_freelist freelist;
94 		struct bpf_lru lru;
95 	};
96 	struct htab_elem *__percpu *extra_elems;
97 	/* number of elements in non-preallocated hashtable are kept
98 	 * in either pcount or count
99 	 */
100 	struct percpu_counter pcount;
101 	atomic_t count;
102 	bool use_percpu_counter;
103 	u32 n_buckets;	/* number of hash buckets */
104 	u32 elem_size;	/* size of each element in bytes */
105 	u32 hashrnd;
106 	struct lock_class_key lockdep_key;
107 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
108 };
109 
110 /* each htab element is struct htab_elem + key + value */
111 struct htab_elem {
112 	union {
113 		struct hlist_nulls_node hash_node;
114 		struct {
115 			void *padding;
116 			union {
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		/* pointer to per-cpu pointer */
124 		void *ptr_to_pptr;
125 		struct bpf_lru_node lru_node;
126 	};
127 	u32 hash;
128 	char key[] __aligned(8);
129 };
130 
131 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
132 {
133 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
134 }
135 
136 static void htab_init_buckets(struct bpf_htab *htab)
137 {
138 	unsigned int i;
139 
140 	for (i = 0; i < htab->n_buckets; i++) {
141 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
142 		raw_spin_lock_init(&htab->buckets[i].raw_lock);
143 		lockdep_set_class(&htab->buckets[i].raw_lock,
144 					  &htab->lockdep_key);
145 		cond_resched();
146 	}
147 }
148 
149 static inline int htab_lock_bucket(const struct bpf_htab *htab,
150 				   struct bucket *b, u32 hash,
151 				   unsigned long *pflags)
152 {
153 	unsigned long flags;
154 
155 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
156 
157 	preempt_disable();
158 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
159 		__this_cpu_dec(*(htab->map_locked[hash]));
160 		preempt_enable();
161 		return -EBUSY;
162 	}
163 
164 	raw_spin_lock_irqsave(&b->raw_lock, flags);
165 	*pflags = flags;
166 
167 	return 0;
168 }
169 
170 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
171 				      struct bucket *b, u32 hash,
172 				      unsigned long flags)
173 {
174 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
175 	raw_spin_unlock_irqrestore(&b->raw_lock, flags);
176 	__this_cpu_dec(*(htab->map_locked[hash]));
177 	preempt_enable();
178 }
179 
180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
181 
182 static bool htab_is_lru(const struct bpf_htab *htab)
183 {
184 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
185 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
186 }
187 
188 static bool htab_is_percpu(const struct bpf_htab *htab)
189 {
190 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
191 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
192 }
193 
194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
195 				     void __percpu *pptr)
196 {
197 	*(void __percpu **)(l->key + key_size) = pptr;
198 }
199 
200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
201 {
202 	return *(void __percpu **)(l->key + key_size);
203 }
204 
205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
206 {
207 	return *(void **)(l->key + roundup(map->key_size, 8));
208 }
209 
210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
211 {
212 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
213 }
214 
215 static bool htab_has_extra_elems(struct bpf_htab *htab)
216 {
217 	return !htab_is_percpu(htab) && !htab_is_lru(htab);
218 }
219 
220 static void htab_free_prealloced_timers(struct bpf_htab *htab)
221 {
222 	u32 num_entries = htab->map.max_entries;
223 	int i;
224 
225 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
226 		return;
227 	if (htab_has_extra_elems(htab))
228 		num_entries += num_possible_cpus();
229 
230 	for (i = 0; i < num_entries; i++) {
231 		struct htab_elem *elem;
232 
233 		elem = get_htab_elem(htab, i);
234 		bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
235 		cond_resched();
236 	}
237 }
238 
239 static void htab_free_prealloced_fields(struct bpf_htab *htab)
240 {
241 	u32 num_entries = htab->map.max_entries;
242 	int i;
243 
244 	if (IS_ERR_OR_NULL(htab->map.record))
245 		return;
246 	if (htab_has_extra_elems(htab))
247 		num_entries += num_possible_cpus();
248 	for (i = 0; i < num_entries; i++) {
249 		struct htab_elem *elem;
250 
251 		elem = get_htab_elem(htab, i);
252 		if (htab_is_percpu(htab)) {
253 			void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
254 			int cpu;
255 
256 			for_each_possible_cpu(cpu) {
257 				bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
258 				cond_resched();
259 			}
260 		} else {
261 			bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
262 			cond_resched();
263 		}
264 		cond_resched();
265 	}
266 }
267 
268 static void htab_free_elems(struct bpf_htab *htab)
269 {
270 	int i;
271 
272 	if (!htab_is_percpu(htab))
273 		goto free_elems;
274 
275 	for (i = 0; i < htab->map.max_entries; i++) {
276 		void __percpu *pptr;
277 
278 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
279 					 htab->map.key_size);
280 		free_percpu(pptr);
281 		cond_resched();
282 	}
283 free_elems:
284 	bpf_map_area_free(htab->elems);
285 }
286 
287 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
288  * (bucket_lock). If both locks need to be acquired together, the lock
289  * order is always lru_lock -> bucket_lock and this only happens in
290  * bpf_lru_list.c logic. For example, certain code path of
291  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
292  * will acquire lru_lock first followed by acquiring bucket_lock.
293  *
294  * In hashtab.c, to avoid deadlock, lock acquisition of
295  * bucket_lock followed by lru_lock is not allowed. In such cases,
296  * bucket_lock needs to be released first before acquiring lru_lock.
297  */
298 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
299 					  u32 hash)
300 {
301 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
302 	struct htab_elem *l;
303 
304 	if (node) {
305 		l = container_of(node, struct htab_elem, lru_node);
306 		memcpy(l->key, key, htab->map.key_size);
307 		return l;
308 	}
309 
310 	return NULL;
311 }
312 
313 static int prealloc_init(struct bpf_htab *htab)
314 {
315 	u32 num_entries = htab->map.max_entries;
316 	int err = -ENOMEM, i;
317 
318 	if (htab_has_extra_elems(htab))
319 		num_entries += num_possible_cpus();
320 
321 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
322 					 htab->map.numa_node);
323 	if (!htab->elems)
324 		return -ENOMEM;
325 
326 	if (!htab_is_percpu(htab))
327 		goto skip_percpu_elems;
328 
329 	for (i = 0; i < num_entries; i++) {
330 		u32 size = round_up(htab->map.value_size, 8);
331 		void __percpu *pptr;
332 
333 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
334 					    GFP_USER | __GFP_NOWARN);
335 		if (!pptr)
336 			goto free_elems;
337 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
338 				  pptr);
339 		cond_resched();
340 	}
341 
342 skip_percpu_elems:
343 	if (htab_is_lru(htab))
344 		err = bpf_lru_init(&htab->lru,
345 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
346 				   offsetof(struct htab_elem, hash) -
347 				   offsetof(struct htab_elem, lru_node),
348 				   htab_lru_map_delete_node,
349 				   htab);
350 	else
351 		err = pcpu_freelist_init(&htab->freelist);
352 
353 	if (err)
354 		goto free_elems;
355 
356 	if (htab_is_lru(htab))
357 		bpf_lru_populate(&htab->lru, htab->elems,
358 				 offsetof(struct htab_elem, lru_node),
359 				 htab->elem_size, num_entries);
360 	else
361 		pcpu_freelist_populate(&htab->freelist,
362 				       htab->elems + offsetof(struct htab_elem, fnode),
363 				       htab->elem_size, num_entries);
364 
365 	return 0;
366 
367 free_elems:
368 	htab_free_elems(htab);
369 	return err;
370 }
371 
372 static void prealloc_destroy(struct bpf_htab *htab)
373 {
374 	htab_free_elems(htab);
375 
376 	if (htab_is_lru(htab))
377 		bpf_lru_destroy(&htab->lru);
378 	else
379 		pcpu_freelist_destroy(&htab->freelist);
380 }
381 
382 static int alloc_extra_elems(struct bpf_htab *htab)
383 {
384 	struct htab_elem *__percpu *pptr, *l_new;
385 	struct pcpu_freelist_node *l;
386 	int cpu;
387 
388 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
389 				    GFP_USER | __GFP_NOWARN);
390 	if (!pptr)
391 		return -ENOMEM;
392 
393 	for_each_possible_cpu(cpu) {
394 		l = pcpu_freelist_pop(&htab->freelist);
395 		/* pop will succeed, since prealloc_init()
396 		 * preallocated extra num_possible_cpus elements
397 		 */
398 		l_new = container_of(l, struct htab_elem, fnode);
399 		*per_cpu_ptr(pptr, cpu) = l_new;
400 	}
401 	htab->extra_elems = pptr;
402 	return 0;
403 }
404 
405 /* Called from syscall */
406 static int htab_map_alloc_check(union bpf_attr *attr)
407 {
408 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
409 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
410 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
411 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
412 	/* percpu_lru means each cpu has its own LRU list.
413 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
414 	 * the map's value itself is percpu.  percpu_lru has
415 	 * nothing to do with the map's value.
416 	 */
417 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
418 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
419 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
420 	int numa_node = bpf_map_attr_numa_node(attr);
421 
422 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
423 		     offsetof(struct htab_elem, hash_node.pprev));
424 
425 	if (zero_seed && !capable(CAP_SYS_ADMIN))
426 		/* Guard against local DoS, and discourage production use. */
427 		return -EPERM;
428 
429 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
430 	    !bpf_map_flags_access_ok(attr->map_flags))
431 		return -EINVAL;
432 
433 	if (!lru && percpu_lru)
434 		return -EINVAL;
435 
436 	if (lru && !prealloc)
437 		return -ENOTSUPP;
438 
439 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
440 		return -EINVAL;
441 
442 	/* check sanity of attributes.
443 	 * value_size == 0 may be allowed in the future to use map as a set
444 	 */
445 	if (attr->max_entries == 0 || attr->key_size == 0 ||
446 	    attr->value_size == 0)
447 		return -EINVAL;
448 
449 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
450 	   sizeof(struct htab_elem))
451 		/* if key_size + value_size is bigger, the user space won't be
452 		 * able to access the elements via bpf syscall. This check
453 		 * also makes sure that the elem_size doesn't overflow and it's
454 		 * kmalloc-able later in htab_map_update_elem()
455 		 */
456 		return -E2BIG;
457 
458 	return 0;
459 }
460 
461 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
462 {
463 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
464 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
465 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
466 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
467 	/* percpu_lru means each cpu has its own LRU list.
468 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
469 	 * the map's value itself is percpu.  percpu_lru has
470 	 * nothing to do with the map's value.
471 	 */
472 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
473 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
474 	struct bpf_htab *htab;
475 	int err, i;
476 
477 	htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
478 	if (!htab)
479 		return ERR_PTR(-ENOMEM);
480 
481 	lockdep_register_key(&htab->lockdep_key);
482 
483 	bpf_map_init_from_attr(&htab->map, attr);
484 
485 	if (percpu_lru) {
486 		/* ensure each CPU's lru list has >=1 elements.
487 		 * since we are at it, make each lru list has the same
488 		 * number of elements.
489 		 */
490 		htab->map.max_entries = roundup(attr->max_entries,
491 						num_possible_cpus());
492 		if (htab->map.max_entries < attr->max_entries)
493 			htab->map.max_entries = rounddown(attr->max_entries,
494 							  num_possible_cpus());
495 	}
496 
497 	/* hash table size must be power of 2 */
498 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
499 
500 	htab->elem_size = sizeof(struct htab_elem) +
501 			  round_up(htab->map.key_size, 8);
502 	if (percpu)
503 		htab->elem_size += sizeof(void *);
504 	else
505 		htab->elem_size += round_up(htab->map.value_size, 8);
506 
507 	err = -E2BIG;
508 	/* prevent zero size kmalloc and check for u32 overflow */
509 	if (htab->n_buckets == 0 ||
510 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
511 		goto free_htab;
512 
513 	err = -ENOMEM;
514 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
515 					   sizeof(struct bucket),
516 					   htab->map.numa_node);
517 	if (!htab->buckets)
518 		goto free_htab;
519 
520 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
521 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
522 							   sizeof(int),
523 							   sizeof(int),
524 							   GFP_USER);
525 		if (!htab->map_locked[i])
526 			goto free_map_locked;
527 	}
528 
529 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
530 		htab->hashrnd = 0;
531 	else
532 		htab->hashrnd = get_random_u32();
533 
534 	htab_init_buckets(htab);
535 
536 /* compute_batch_value() computes batch value as num_online_cpus() * 2
537  * and __percpu_counter_compare() needs
538  * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
539  * for percpu_counter to be faster than atomic_t. In practice the average bpf
540  * hash map size is 10k, which means that a system with 64 cpus will fill
541  * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
542  * define our own batch count as 32 then 10k hash map can be filled up to 80%:
543  * 10k - 8k > 32 _batch_ * 64 _cpus_
544  * and __percpu_counter_compare() will still be fast. At that point hash map
545  * collisions will dominate its performance anyway. Assume that hash map filled
546  * to 50+% isn't going to be O(1) and use the following formula to choose
547  * between percpu_counter and atomic_t.
548  */
549 #define PERCPU_COUNTER_BATCH 32
550 	if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
551 		htab->use_percpu_counter = true;
552 
553 	if (htab->use_percpu_counter) {
554 		err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
555 		if (err)
556 			goto free_map_locked;
557 	}
558 
559 	if (prealloc) {
560 		err = prealloc_init(htab);
561 		if (err)
562 			goto free_map_locked;
563 
564 		if (!percpu && !lru) {
565 			/* lru itself can remove the least used element, so
566 			 * there is no need for an extra elem during map_update.
567 			 */
568 			err = alloc_extra_elems(htab);
569 			if (err)
570 				goto free_prealloc;
571 		}
572 	} else {
573 		err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
574 		if (err)
575 			goto free_map_locked;
576 		if (percpu) {
577 			err = bpf_mem_alloc_init(&htab->pcpu_ma,
578 						 round_up(htab->map.value_size, 8), true);
579 			if (err)
580 				goto free_map_locked;
581 		}
582 	}
583 
584 	return &htab->map;
585 
586 free_prealloc:
587 	prealloc_destroy(htab);
588 free_map_locked:
589 	if (htab->use_percpu_counter)
590 		percpu_counter_destroy(&htab->pcount);
591 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
592 		free_percpu(htab->map_locked[i]);
593 	bpf_map_area_free(htab->buckets);
594 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
595 	bpf_mem_alloc_destroy(&htab->ma);
596 free_htab:
597 	lockdep_unregister_key(&htab->lockdep_key);
598 	bpf_map_area_free(htab);
599 	return ERR_PTR(err);
600 }
601 
602 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
603 {
604 	if (likely(key_len % 4 == 0))
605 		return jhash2(key, key_len / 4, hashrnd);
606 	return jhash(key, key_len, hashrnd);
607 }
608 
609 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
610 {
611 	return &htab->buckets[hash & (htab->n_buckets - 1)];
612 }
613 
614 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
615 {
616 	return &__select_bucket(htab, hash)->head;
617 }
618 
619 /* this lookup function can only be called with bucket lock taken */
620 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
621 					 void *key, u32 key_size)
622 {
623 	struct hlist_nulls_node *n;
624 	struct htab_elem *l;
625 
626 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
627 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
628 			return l;
629 
630 	return NULL;
631 }
632 
633 /* can be called without bucket lock. it will repeat the loop in
634  * the unlikely event when elements moved from one bucket into another
635  * while link list is being walked
636  */
637 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
638 					       u32 hash, void *key,
639 					       u32 key_size, u32 n_buckets)
640 {
641 	struct hlist_nulls_node *n;
642 	struct htab_elem *l;
643 
644 again:
645 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
646 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
647 			return l;
648 
649 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
650 		goto again;
651 
652 	return NULL;
653 }
654 
655 /* Called from syscall or from eBPF program directly, so
656  * arguments have to match bpf_map_lookup_elem() exactly.
657  * The return value is adjusted by BPF instructions
658  * in htab_map_gen_lookup().
659  */
660 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
661 {
662 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
663 	struct hlist_nulls_head *head;
664 	struct htab_elem *l;
665 	u32 hash, key_size;
666 
667 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
668 		     !rcu_read_lock_bh_held());
669 
670 	key_size = map->key_size;
671 
672 	hash = htab_map_hash(key, key_size, htab->hashrnd);
673 
674 	head = select_bucket(htab, hash);
675 
676 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
677 
678 	return l;
679 }
680 
681 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
682 {
683 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
684 
685 	if (l)
686 		return l->key + round_up(map->key_size, 8);
687 
688 	return NULL;
689 }
690 
691 /* inline bpf_map_lookup_elem() call.
692  * Instead of:
693  * bpf_prog
694  *   bpf_map_lookup_elem
695  *     map->ops->map_lookup_elem
696  *       htab_map_lookup_elem
697  *         __htab_map_lookup_elem
698  * do:
699  * bpf_prog
700  *   __htab_map_lookup_elem
701  */
702 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
703 {
704 	struct bpf_insn *insn = insn_buf;
705 	const int ret = BPF_REG_0;
706 
707 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
708 		     (void *(*)(struct bpf_map *map, void *key))NULL));
709 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
710 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
711 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
712 				offsetof(struct htab_elem, key) +
713 				round_up(map->key_size, 8));
714 	return insn - insn_buf;
715 }
716 
717 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
718 							void *key, const bool mark)
719 {
720 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
721 
722 	if (l) {
723 		if (mark)
724 			bpf_lru_node_set_ref(&l->lru_node);
725 		return l->key + round_up(map->key_size, 8);
726 	}
727 
728 	return NULL;
729 }
730 
731 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
732 {
733 	return __htab_lru_map_lookup_elem(map, key, true);
734 }
735 
736 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
737 {
738 	return __htab_lru_map_lookup_elem(map, key, false);
739 }
740 
741 static int htab_lru_map_gen_lookup(struct bpf_map *map,
742 				   struct bpf_insn *insn_buf)
743 {
744 	struct bpf_insn *insn = insn_buf;
745 	const int ret = BPF_REG_0;
746 	const int ref_reg = BPF_REG_1;
747 
748 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
749 		     (void *(*)(struct bpf_map *map, void *key))NULL));
750 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
751 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
752 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
753 			      offsetof(struct htab_elem, lru_node) +
754 			      offsetof(struct bpf_lru_node, ref));
755 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
756 	*insn++ = BPF_ST_MEM(BPF_B, ret,
757 			     offsetof(struct htab_elem, lru_node) +
758 			     offsetof(struct bpf_lru_node, ref),
759 			     1);
760 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
761 				offsetof(struct htab_elem, key) +
762 				round_up(map->key_size, 8));
763 	return insn - insn_buf;
764 }
765 
766 static void check_and_free_fields(struct bpf_htab *htab,
767 				  struct htab_elem *elem)
768 {
769 	if (htab_is_percpu(htab)) {
770 		void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
771 		int cpu;
772 
773 		for_each_possible_cpu(cpu)
774 			bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
775 	} else {
776 		void *map_value = elem->key + round_up(htab->map.key_size, 8);
777 
778 		bpf_obj_free_fields(htab->map.record, map_value);
779 	}
780 }
781 
782 /* It is called from the bpf_lru_list when the LRU needs to delete
783  * older elements from the htab.
784  */
785 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
786 {
787 	struct bpf_htab *htab = arg;
788 	struct htab_elem *l = NULL, *tgt_l;
789 	struct hlist_nulls_head *head;
790 	struct hlist_nulls_node *n;
791 	unsigned long flags;
792 	struct bucket *b;
793 	int ret;
794 
795 	tgt_l = container_of(node, struct htab_elem, lru_node);
796 	b = __select_bucket(htab, tgt_l->hash);
797 	head = &b->head;
798 
799 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
800 	if (ret)
801 		return false;
802 
803 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
804 		if (l == tgt_l) {
805 			hlist_nulls_del_rcu(&l->hash_node);
806 			check_and_free_fields(htab, l);
807 			break;
808 		}
809 
810 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
811 
812 	return l == tgt_l;
813 }
814 
815 /* Called from syscall */
816 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
817 {
818 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
819 	struct hlist_nulls_head *head;
820 	struct htab_elem *l, *next_l;
821 	u32 hash, key_size;
822 	int i = 0;
823 
824 	WARN_ON_ONCE(!rcu_read_lock_held());
825 
826 	key_size = map->key_size;
827 
828 	if (!key)
829 		goto find_first_elem;
830 
831 	hash = htab_map_hash(key, key_size, htab->hashrnd);
832 
833 	head = select_bucket(htab, hash);
834 
835 	/* lookup the key */
836 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
837 
838 	if (!l)
839 		goto find_first_elem;
840 
841 	/* key was found, get next key in the same bucket */
842 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
843 				  struct htab_elem, hash_node);
844 
845 	if (next_l) {
846 		/* if next elem in this hash list is non-zero, just return it */
847 		memcpy(next_key, next_l->key, key_size);
848 		return 0;
849 	}
850 
851 	/* no more elements in this hash list, go to the next bucket */
852 	i = hash & (htab->n_buckets - 1);
853 	i++;
854 
855 find_first_elem:
856 	/* iterate over buckets */
857 	for (; i < htab->n_buckets; i++) {
858 		head = select_bucket(htab, i);
859 
860 		/* pick first element in the bucket */
861 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
862 					  struct htab_elem, hash_node);
863 		if (next_l) {
864 			/* if it's not empty, just return it */
865 			memcpy(next_key, next_l->key, key_size);
866 			return 0;
867 		}
868 	}
869 
870 	/* iterated over all buckets and all elements */
871 	return -ENOENT;
872 }
873 
874 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
875 {
876 	check_and_free_fields(htab, l);
877 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
878 		bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
879 	bpf_mem_cache_free(&htab->ma, l);
880 }
881 
882 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
883 {
884 	struct bpf_map *map = &htab->map;
885 	void *ptr;
886 
887 	if (map->ops->map_fd_put_ptr) {
888 		ptr = fd_htab_map_get_ptr(map, l);
889 		map->ops->map_fd_put_ptr(ptr);
890 	}
891 }
892 
893 static bool is_map_full(struct bpf_htab *htab)
894 {
895 	if (htab->use_percpu_counter)
896 		return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
897 						PERCPU_COUNTER_BATCH) >= 0;
898 	return atomic_read(&htab->count) >= htab->map.max_entries;
899 }
900 
901 static void inc_elem_count(struct bpf_htab *htab)
902 {
903 	if (htab->use_percpu_counter)
904 		percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
905 	else
906 		atomic_inc(&htab->count);
907 }
908 
909 static void dec_elem_count(struct bpf_htab *htab)
910 {
911 	if (htab->use_percpu_counter)
912 		percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
913 	else
914 		atomic_dec(&htab->count);
915 }
916 
917 
918 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
919 {
920 	htab_put_fd_value(htab, l);
921 
922 	if (htab_is_prealloc(htab)) {
923 		check_and_free_fields(htab, l);
924 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
925 	} else {
926 		dec_elem_count(htab);
927 		htab_elem_free(htab, l);
928 	}
929 }
930 
931 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
932 			    void *value, bool onallcpus)
933 {
934 	if (!onallcpus) {
935 		/* copy true value_size bytes */
936 		copy_map_value(&htab->map, this_cpu_ptr(pptr), value);
937 	} else {
938 		u32 size = round_up(htab->map.value_size, 8);
939 		int off = 0, cpu;
940 
941 		for_each_possible_cpu(cpu) {
942 			copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off);
943 			off += size;
944 		}
945 	}
946 }
947 
948 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
949 			    void *value, bool onallcpus)
950 {
951 	/* When not setting the initial value on all cpus, zero-fill element
952 	 * values for other cpus. Otherwise, bpf program has no way to ensure
953 	 * known initial values for cpus other than current one
954 	 * (onallcpus=false always when coming from bpf prog).
955 	 */
956 	if (!onallcpus) {
957 		int current_cpu = raw_smp_processor_id();
958 		int cpu;
959 
960 		for_each_possible_cpu(cpu) {
961 			if (cpu == current_cpu)
962 				copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value);
963 			else /* Since elem is preallocated, we cannot touch special fields */
964 				zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu));
965 		}
966 	} else {
967 		pcpu_copy_value(htab, pptr, value, onallcpus);
968 	}
969 }
970 
971 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
972 {
973 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
974 	       BITS_PER_LONG == 64;
975 }
976 
977 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
978 					 void *value, u32 key_size, u32 hash,
979 					 bool percpu, bool onallcpus,
980 					 struct htab_elem *old_elem)
981 {
982 	u32 size = htab->map.value_size;
983 	bool prealloc = htab_is_prealloc(htab);
984 	struct htab_elem *l_new, **pl_new;
985 	void __percpu *pptr;
986 
987 	if (prealloc) {
988 		if (old_elem) {
989 			/* if we're updating the existing element,
990 			 * use per-cpu extra elems to avoid freelist_pop/push
991 			 */
992 			pl_new = this_cpu_ptr(htab->extra_elems);
993 			l_new = *pl_new;
994 			htab_put_fd_value(htab, old_elem);
995 			*pl_new = old_elem;
996 		} else {
997 			struct pcpu_freelist_node *l;
998 
999 			l = __pcpu_freelist_pop(&htab->freelist);
1000 			if (!l)
1001 				return ERR_PTR(-E2BIG);
1002 			l_new = container_of(l, struct htab_elem, fnode);
1003 		}
1004 	} else {
1005 		if (is_map_full(htab))
1006 			if (!old_elem)
1007 				/* when map is full and update() is replacing
1008 				 * old element, it's ok to allocate, since
1009 				 * old element will be freed immediately.
1010 				 * Otherwise return an error
1011 				 */
1012 				return ERR_PTR(-E2BIG);
1013 		inc_elem_count(htab);
1014 		l_new = bpf_mem_cache_alloc(&htab->ma);
1015 		if (!l_new) {
1016 			l_new = ERR_PTR(-ENOMEM);
1017 			goto dec_count;
1018 		}
1019 	}
1020 
1021 	memcpy(l_new->key, key, key_size);
1022 	if (percpu) {
1023 		if (prealloc) {
1024 			pptr = htab_elem_get_ptr(l_new, key_size);
1025 		} else {
1026 			/* alloc_percpu zero-fills */
1027 			pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
1028 			if (!pptr) {
1029 				bpf_mem_cache_free(&htab->ma, l_new);
1030 				l_new = ERR_PTR(-ENOMEM);
1031 				goto dec_count;
1032 			}
1033 			l_new->ptr_to_pptr = pptr;
1034 			pptr = *(void **)pptr;
1035 		}
1036 
1037 		pcpu_init_value(htab, pptr, value, onallcpus);
1038 
1039 		if (!prealloc)
1040 			htab_elem_set_ptr(l_new, key_size, pptr);
1041 	} else if (fd_htab_map_needs_adjust(htab)) {
1042 		size = round_up(size, 8);
1043 		memcpy(l_new->key + round_up(key_size, 8), value, size);
1044 	} else {
1045 		copy_map_value(&htab->map,
1046 			       l_new->key + round_up(key_size, 8),
1047 			       value);
1048 	}
1049 
1050 	l_new->hash = hash;
1051 	return l_new;
1052 dec_count:
1053 	dec_elem_count(htab);
1054 	return l_new;
1055 }
1056 
1057 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1058 		       u64 map_flags)
1059 {
1060 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1061 		/* elem already exists */
1062 		return -EEXIST;
1063 
1064 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1065 		/* elem doesn't exist, cannot update it */
1066 		return -ENOENT;
1067 
1068 	return 0;
1069 }
1070 
1071 /* Called from syscall or from eBPF program */
1072 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1073 				 u64 map_flags)
1074 {
1075 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1076 	struct htab_elem *l_new = NULL, *l_old;
1077 	struct hlist_nulls_head *head;
1078 	unsigned long flags;
1079 	struct bucket *b;
1080 	u32 key_size, hash;
1081 	int ret;
1082 
1083 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1084 		/* unknown flags */
1085 		return -EINVAL;
1086 
1087 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1088 		     !rcu_read_lock_bh_held());
1089 
1090 	key_size = map->key_size;
1091 
1092 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1093 
1094 	b = __select_bucket(htab, hash);
1095 	head = &b->head;
1096 
1097 	if (unlikely(map_flags & BPF_F_LOCK)) {
1098 		if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1099 			return -EINVAL;
1100 		/* find an element without taking the bucket lock */
1101 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1102 					      htab->n_buckets);
1103 		ret = check_flags(htab, l_old, map_flags);
1104 		if (ret)
1105 			return ret;
1106 		if (l_old) {
1107 			/* grab the element lock and update value in place */
1108 			copy_map_value_locked(map,
1109 					      l_old->key + round_up(key_size, 8),
1110 					      value, false);
1111 			return 0;
1112 		}
1113 		/* fall through, grab the bucket lock and lookup again.
1114 		 * 99.9% chance that the element won't be found,
1115 		 * but second lookup under lock has to be done.
1116 		 */
1117 	}
1118 
1119 	ret = htab_lock_bucket(htab, b, hash, &flags);
1120 	if (ret)
1121 		return ret;
1122 
1123 	l_old = lookup_elem_raw(head, hash, key, key_size);
1124 
1125 	ret = check_flags(htab, l_old, map_flags);
1126 	if (ret)
1127 		goto err;
1128 
1129 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1130 		/* first lookup without the bucket lock didn't find the element,
1131 		 * but second lookup with the bucket lock found it.
1132 		 * This case is highly unlikely, but has to be dealt with:
1133 		 * grab the element lock in addition to the bucket lock
1134 		 * and update element in place
1135 		 */
1136 		copy_map_value_locked(map,
1137 				      l_old->key + round_up(key_size, 8),
1138 				      value, false);
1139 		ret = 0;
1140 		goto err;
1141 	}
1142 
1143 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1144 				l_old);
1145 	if (IS_ERR(l_new)) {
1146 		/* all pre-allocated elements are in use or memory exhausted */
1147 		ret = PTR_ERR(l_new);
1148 		goto err;
1149 	}
1150 
1151 	/* add new element to the head of the list, so that
1152 	 * concurrent search will find it before old elem
1153 	 */
1154 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1155 	if (l_old) {
1156 		hlist_nulls_del_rcu(&l_old->hash_node);
1157 		if (!htab_is_prealloc(htab))
1158 			free_htab_elem(htab, l_old);
1159 		else
1160 			check_and_free_fields(htab, l_old);
1161 	}
1162 	ret = 0;
1163 err:
1164 	htab_unlock_bucket(htab, b, hash, flags);
1165 	return ret;
1166 }
1167 
1168 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1169 {
1170 	check_and_free_fields(htab, elem);
1171 	bpf_lru_push_free(&htab->lru, &elem->lru_node);
1172 }
1173 
1174 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1175 				     u64 map_flags)
1176 {
1177 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1178 	struct htab_elem *l_new, *l_old = NULL;
1179 	struct hlist_nulls_head *head;
1180 	unsigned long flags;
1181 	struct bucket *b;
1182 	u32 key_size, hash;
1183 	int ret;
1184 
1185 	if (unlikely(map_flags > BPF_EXIST))
1186 		/* unknown flags */
1187 		return -EINVAL;
1188 
1189 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1190 		     !rcu_read_lock_bh_held());
1191 
1192 	key_size = map->key_size;
1193 
1194 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1195 
1196 	b = __select_bucket(htab, hash);
1197 	head = &b->head;
1198 
1199 	/* For LRU, we need to alloc before taking bucket's
1200 	 * spinlock because getting free nodes from LRU may need
1201 	 * to remove older elements from htab and this removal
1202 	 * operation will need a bucket lock.
1203 	 */
1204 	l_new = prealloc_lru_pop(htab, key, hash);
1205 	if (!l_new)
1206 		return -ENOMEM;
1207 	copy_map_value(&htab->map,
1208 		       l_new->key + round_up(map->key_size, 8), value);
1209 
1210 	ret = htab_lock_bucket(htab, b, hash, &flags);
1211 	if (ret)
1212 		goto err_lock_bucket;
1213 
1214 	l_old = lookup_elem_raw(head, hash, key, key_size);
1215 
1216 	ret = check_flags(htab, l_old, map_flags);
1217 	if (ret)
1218 		goto err;
1219 
1220 	/* add new element to the head of the list, so that
1221 	 * concurrent search will find it before old elem
1222 	 */
1223 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1224 	if (l_old) {
1225 		bpf_lru_node_set_ref(&l_new->lru_node);
1226 		hlist_nulls_del_rcu(&l_old->hash_node);
1227 	}
1228 	ret = 0;
1229 
1230 err:
1231 	htab_unlock_bucket(htab, b, hash, flags);
1232 
1233 err_lock_bucket:
1234 	if (ret)
1235 		htab_lru_push_free(htab, l_new);
1236 	else if (l_old)
1237 		htab_lru_push_free(htab, l_old);
1238 
1239 	return ret;
1240 }
1241 
1242 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1243 					  void *value, u64 map_flags,
1244 					  bool onallcpus)
1245 {
1246 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1247 	struct htab_elem *l_new = NULL, *l_old;
1248 	struct hlist_nulls_head *head;
1249 	unsigned long flags;
1250 	struct bucket *b;
1251 	u32 key_size, hash;
1252 	int ret;
1253 
1254 	if (unlikely(map_flags > BPF_EXIST))
1255 		/* unknown flags */
1256 		return -EINVAL;
1257 
1258 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1259 		     !rcu_read_lock_bh_held());
1260 
1261 	key_size = map->key_size;
1262 
1263 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1264 
1265 	b = __select_bucket(htab, hash);
1266 	head = &b->head;
1267 
1268 	ret = htab_lock_bucket(htab, b, hash, &flags);
1269 	if (ret)
1270 		return ret;
1271 
1272 	l_old = lookup_elem_raw(head, hash, key, key_size);
1273 
1274 	ret = check_flags(htab, l_old, map_flags);
1275 	if (ret)
1276 		goto err;
1277 
1278 	if (l_old) {
1279 		/* per-cpu hash map can update value in-place */
1280 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1281 				value, onallcpus);
1282 	} else {
1283 		l_new = alloc_htab_elem(htab, key, value, key_size,
1284 					hash, true, onallcpus, NULL);
1285 		if (IS_ERR(l_new)) {
1286 			ret = PTR_ERR(l_new);
1287 			goto err;
1288 		}
1289 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1290 	}
1291 	ret = 0;
1292 err:
1293 	htab_unlock_bucket(htab, b, hash, flags);
1294 	return ret;
1295 }
1296 
1297 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1298 					      void *value, u64 map_flags,
1299 					      bool onallcpus)
1300 {
1301 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1302 	struct htab_elem *l_new = NULL, *l_old;
1303 	struct hlist_nulls_head *head;
1304 	unsigned long flags;
1305 	struct bucket *b;
1306 	u32 key_size, hash;
1307 	int ret;
1308 
1309 	if (unlikely(map_flags > BPF_EXIST))
1310 		/* unknown flags */
1311 		return -EINVAL;
1312 
1313 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1314 		     !rcu_read_lock_bh_held());
1315 
1316 	key_size = map->key_size;
1317 
1318 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1319 
1320 	b = __select_bucket(htab, hash);
1321 	head = &b->head;
1322 
1323 	/* For LRU, we need to alloc before taking bucket's
1324 	 * spinlock because LRU's elem alloc may need
1325 	 * to remove older elem from htab and this removal
1326 	 * operation will need a bucket lock.
1327 	 */
1328 	if (map_flags != BPF_EXIST) {
1329 		l_new = prealloc_lru_pop(htab, key, hash);
1330 		if (!l_new)
1331 			return -ENOMEM;
1332 	}
1333 
1334 	ret = htab_lock_bucket(htab, b, hash, &flags);
1335 	if (ret)
1336 		goto err_lock_bucket;
1337 
1338 	l_old = lookup_elem_raw(head, hash, key, key_size);
1339 
1340 	ret = check_flags(htab, l_old, map_flags);
1341 	if (ret)
1342 		goto err;
1343 
1344 	if (l_old) {
1345 		bpf_lru_node_set_ref(&l_old->lru_node);
1346 
1347 		/* per-cpu hash map can update value in-place */
1348 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1349 				value, onallcpus);
1350 	} else {
1351 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1352 				value, onallcpus);
1353 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1354 		l_new = NULL;
1355 	}
1356 	ret = 0;
1357 err:
1358 	htab_unlock_bucket(htab, b, hash, flags);
1359 err_lock_bucket:
1360 	if (l_new)
1361 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1362 	return ret;
1363 }
1364 
1365 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1366 					void *value, u64 map_flags)
1367 {
1368 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1369 }
1370 
1371 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1372 					    void *value, u64 map_flags)
1373 {
1374 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1375 						 false);
1376 }
1377 
1378 /* Called from syscall or from eBPF program */
1379 static long htab_map_delete_elem(struct bpf_map *map, void *key)
1380 {
1381 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1382 	struct hlist_nulls_head *head;
1383 	struct bucket *b;
1384 	struct htab_elem *l;
1385 	unsigned long flags;
1386 	u32 hash, key_size;
1387 	int ret;
1388 
1389 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1390 		     !rcu_read_lock_bh_held());
1391 
1392 	key_size = map->key_size;
1393 
1394 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1395 	b = __select_bucket(htab, hash);
1396 	head = &b->head;
1397 
1398 	ret = htab_lock_bucket(htab, b, hash, &flags);
1399 	if (ret)
1400 		return ret;
1401 
1402 	l = lookup_elem_raw(head, hash, key, key_size);
1403 
1404 	if (l) {
1405 		hlist_nulls_del_rcu(&l->hash_node);
1406 		free_htab_elem(htab, l);
1407 	} else {
1408 		ret = -ENOENT;
1409 	}
1410 
1411 	htab_unlock_bucket(htab, b, hash, flags);
1412 	return ret;
1413 }
1414 
1415 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1416 {
1417 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1418 	struct hlist_nulls_head *head;
1419 	struct bucket *b;
1420 	struct htab_elem *l;
1421 	unsigned long flags;
1422 	u32 hash, key_size;
1423 	int ret;
1424 
1425 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1426 		     !rcu_read_lock_bh_held());
1427 
1428 	key_size = map->key_size;
1429 
1430 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1431 	b = __select_bucket(htab, hash);
1432 	head = &b->head;
1433 
1434 	ret = htab_lock_bucket(htab, b, hash, &flags);
1435 	if (ret)
1436 		return ret;
1437 
1438 	l = lookup_elem_raw(head, hash, key, key_size);
1439 
1440 	if (l)
1441 		hlist_nulls_del_rcu(&l->hash_node);
1442 	else
1443 		ret = -ENOENT;
1444 
1445 	htab_unlock_bucket(htab, b, hash, flags);
1446 	if (l)
1447 		htab_lru_push_free(htab, l);
1448 	return ret;
1449 }
1450 
1451 static void delete_all_elements(struct bpf_htab *htab)
1452 {
1453 	int i;
1454 
1455 	/* It's called from a worker thread, so disable migration here,
1456 	 * since bpf_mem_cache_free() relies on that.
1457 	 */
1458 	migrate_disable();
1459 	for (i = 0; i < htab->n_buckets; i++) {
1460 		struct hlist_nulls_head *head = select_bucket(htab, i);
1461 		struct hlist_nulls_node *n;
1462 		struct htab_elem *l;
1463 
1464 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1465 			hlist_nulls_del_rcu(&l->hash_node);
1466 			htab_elem_free(htab, l);
1467 		}
1468 	}
1469 	migrate_enable();
1470 }
1471 
1472 static void htab_free_malloced_timers(struct bpf_htab *htab)
1473 {
1474 	int i;
1475 
1476 	rcu_read_lock();
1477 	for (i = 0; i < htab->n_buckets; i++) {
1478 		struct hlist_nulls_head *head = select_bucket(htab, i);
1479 		struct hlist_nulls_node *n;
1480 		struct htab_elem *l;
1481 
1482 		hlist_nulls_for_each_entry(l, n, head, hash_node) {
1483 			/* We only free timer on uref dropping to zero */
1484 			bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
1485 		}
1486 		cond_resched_rcu();
1487 	}
1488 	rcu_read_unlock();
1489 }
1490 
1491 static void htab_map_free_timers(struct bpf_map *map)
1492 {
1493 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1494 
1495 	/* We only free timer on uref dropping to zero */
1496 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
1497 		return;
1498 	if (!htab_is_prealloc(htab))
1499 		htab_free_malloced_timers(htab);
1500 	else
1501 		htab_free_prealloced_timers(htab);
1502 }
1503 
1504 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1505 static void htab_map_free(struct bpf_map *map)
1506 {
1507 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1508 	int i;
1509 
1510 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1511 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1512 	 * There is no need to synchronize_rcu() here to protect map elements.
1513 	 */
1514 
1515 	/* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
1516 	 * underneath and is reponsible for waiting for callbacks to finish
1517 	 * during bpf_mem_alloc_destroy().
1518 	 */
1519 	if (!htab_is_prealloc(htab)) {
1520 		delete_all_elements(htab);
1521 	} else {
1522 		htab_free_prealloced_fields(htab);
1523 		prealloc_destroy(htab);
1524 	}
1525 
1526 	free_percpu(htab->extra_elems);
1527 	bpf_map_area_free(htab->buckets);
1528 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
1529 	bpf_mem_alloc_destroy(&htab->ma);
1530 	if (htab->use_percpu_counter)
1531 		percpu_counter_destroy(&htab->pcount);
1532 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1533 		free_percpu(htab->map_locked[i]);
1534 	lockdep_unregister_key(&htab->lockdep_key);
1535 	bpf_map_area_free(htab);
1536 }
1537 
1538 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1539 				   struct seq_file *m)
1540 {
1541 	void *value;
1542 
1543 	rcu_read_lock();
1544 
1545 	value = htab_map_lookup_elem(map, key);
1546 	if (!value) {
1547 		rcu_read_unlock();
1548 		return;
1549 	}
1550 
1551 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1552 	seq_puts(m, ": ");
1553 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1554 	seq_puts(m, "\n");
1555 
1556 	rcu_read_unlock();
1557 }
1558 
1559 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1560 					     void *value, bool is_lru_map,
1561 					     bool is_percpu, u64 flags)
1562 {
1563 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1564 	struct hlist_nulls_head *head;
1565 	unsigned long bflags;
1566 	struct htab_elem *l;
1567 	u32 hash, key_size;
1568 	struct bucket *b;
1569 	int ret;
1570 
1571 	key_size = map->key_size;
1572 
1573 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1574 	b = __select_bucket(htab, hash);
1575 	head = &b->head;
1576 
1577 	ret = htab_lock_bucket(htab, b, hash, &bflags);
1578 	if (ret)
1579 		return ret;
1580 
1581 	l = lookup_elem_raw(head, hash, key, key_size);
1582 	if (!l) {
1583 		ret = -ENOENT;
1584 	} else {
1585 		if (is_percpu) {
1586 			u32 roundup_value_size = round_up(map->value_size, 8);
1587 			void __percpu *pptr;
1588 			int off = 0, cpu;
1589 
1590 			pptr = htab_elem_get_ptr(l, key_size);
1591 			for_each_possible_cpu(cpu) {
1592 				copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu));
1593 				check_and_init_map_value(&htab->map, value + off);
1594 				off += roundup_value_size;
1595 			}
1596 		} else {
1597 			u32 roundup_key_size = round_up(map->key_size, 8);
1598 
1599 			if (flags & BPF_F_LOCK)
1600 				copy_map_value_locked(map, value, l->key +
1601 						      roundup_key_size,
1602 						      true);
1603 			else
1604 				copy_map_value(map, value, l->key +
1605 					       roundup_key_size);
1606 			/* Zeroing special fields in the temp buffer */
1607 			check_and_init_map_value(map, value);
1608 		}
1609 
1610 		hlist_nulls_del_rcu(&l->hash_node);
1611 		if (!is_lru_map)
1612 			free_htab_elem(htab, l);
1613 	}
1614 
1615 	htab_unlock_bucket(htab, b, hash, bflags);
1616 
1617 	if (is_lru_map && l)
1618 		htab_lru_push_free(htab, l);
1619 
1620 	return ret;
1621 }
1622 
1623 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1624 					   void *value, u64 flags)
1625 {
1626 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1627 						 flags);
1628 }
1629 
1630 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1631 						  void *key, void *value,
1632 						  u64 flags)
1633 {
1634 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1635 						 flags);
1636 }
1637 
1638 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1639 					       void *value, u64 flags)
1640 {
1641 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1642 						 flags);
1643 }
1644 
1645 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1646 						      void *key, void *value,
1647 						      u64 flags)
1648 {
1649 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1650 						 flags);
1651 }
1652 
1653 static int
1654 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1655 				   const union bpf_attr *attr,
1656 				   union bpf_attr __user *uattr,
1657 				   bool do_delete, bool is_lru_map,
1658 				   bool is_percpu)
1659 {
1660 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1661 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1662 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1663 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1664 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1665 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1666 	u32 batch, max_count, size, bucket_size, map_id;
1667 	struct htab_elem *node_to_free = NULL;
1668 	u64 elem_map_flags, map_flags;
1669 	struct hlist_nulls_head *head;
1670 	struct hlist_nulls_node *n;
1671 	unsigned long flags = 0;
1672 	bool locked = false;
1673 	struct htab_elem *l;
1674 	struct bucket *b;
1675 	int ret = 0;
1676 
1677 	elem_map_flags = attr->batch.elem_flags;
1678 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1679 	    ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1680 		return -EINVAL;
1681 
1682 	map_flags = attr->batch.flags;
1683 	if (map_flags)
1684 		return -EINVAL;
1685 
1686 	max_count = attr->batch.count;
1687 	if (!max_count)
1688 		return 0;
1689 
1690 	if (put_user(0, &uattr->batch.count))
1691 		return -EFAULT;
1692 
1693 	batch = 0;
1694 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1695 		return -EFAULT;
1696 
1697 	if (batch >= htab->n_buckets)
1698 		return -ENOENT;
1699 
1700 	key_size = htab->map.key_size;
1701 	roundup_key_size = round_up(htab->map.key_size, 8);
1702 	value_size = htab->map.value_size;
1703 	size = round_up(value_size, 8);
1704 	if (is_percpu)
1705 		value_size = size * num_possible_cpus();
1706 	total = 0;
1707 	/* while experimenting with hash tables with sizes ranging from 10 to
1708 	 * 1000, it was observed that a bucket can have up to 5 entries.
1709 	 */
1710 	bucket_size = 5;
1711 
1712 alloc:
1713 	/* We cannot do copy_from_user or copy_to_user inside
1714 	 * the rcu_read_lock. Allocate enough space here.
1715 	 */
1716 	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1717 	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1718 	if (!keys || !values) {
1719 		ret = -ENOMEM;
1720 		goto after_loop;
1721 	}
1722 
1723 again:
1724 	bpf_disable_instrumentation();
1725 	rcu_read_lock();
1726 again_nocopy:
1727 	dst_key = keys;
1728 	dst_val = values;
1729 	b = &htab->buckets[batch];
1730 	head = &b->head;
1731 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1732 	if (locked) {
1733 		ret = htab_lock_bucket(htab, b, batch, &flags);
1734 		if (ret) {
1735 			rcu_read_unlock();
1736 			bpf_enable_instrumentation();
1737 			goto after_loop;
1738 		}
1739 	}
1740 
1741 	bucket_cnt = 0;
1742 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1743 		bucket_cnt++;
1744 
1745 	if (bucket_cnt && !locked) {
1746 		locked = true;
1747 		goto again_nocopy;
1748 	}
1749 
1750 	if (bucket_cnt > (max_count - total)) {
1751 		if (total == 0)
1752 			ret = -ENOSPC;
1753 		/* Note that since bucket_cnt > 0 here, it is implicit
1754 		 * that the locked was grabbed, so release it.
1755 		 */
1756 		htab_unlock_bucket(htab, b, batch, flags);
1757 		rcu_read_unlock();
1758 		bpf_enable_instrumentation();
1759 		goto after_loop;
1760 	}
1761 
1762 	if (bucket_cnt > bucket_size) {
1763 		bucket_size = bucket_cnt;
1764 		/* Note that since bucket_cnt > 0 here, it is implicit
1765 		 * that the locked was grabbed, so release it.
1766 		 */
1767 		htab_unlock_bucket(htab, b, batch, flags);
1768 		rcu_read_unlock();
1769 		bpf_enable_instrumentation();
1770 		kvfree(keys);
1771 		kvfree(values);
1772 		goto alloc;
1773 	}
1774 
1775 	/* Next block is only safe to run if you have grabbed the lock */
1776 	if (!locked)
1777 		goto next_batch;
1778 
1779 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1780 		memcpy(dst_key, l->key, key_size);
1781 
1782 		if (is_percpu) {
1783 			int off = 0, cpu;
1784 			void __percpu *pptr;
1785 
1786 			pptr = htab_elem_get_ptr(l, map->key_size);
1787 			for_each_possible_cpu(cpu) {
1788 				copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu));
1789 				check_and_init_map_value(&htab->map, dst_val + off);
1790 				off += size;
1791 			}
1792 		} else {
1793 			value = l->key + roundup_key_size;
1794 			if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1795 				struct bpf_map **inner_map = value;
1796 
1797 				 /* Actual value is the id of the inner map */
1798 				map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1799 				value = &map_id;
1800 			}
1801 
1802 			if (elem_map_flags & BPF_F_LOCK)
1803 				copy_map_value_locked(map, dst_val, value,
1804 						      true);
1805 			else
1806 				copy_map_value(map, dst_val, value);
1807 			/* Zeroing special fields in the temp buffer */
1808 			check_and_init_map_value(map, dst_val);
1809 		}
1810 		if (do_delete) {
1811 			hlist_nulls_del_rcu(&l->hash_node);
1812 
1813 			/* bpf_lru_push_free() will acquire lru_lock, which
1814 			 * may cause deadlock. See comments in function
1815 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1816 			 * after releasing the bucket lock.
1817 			 */
1818 			if (is_lru_map) {
1819 				l->batch_flink = node_to_free;
1820 				node_to_free = l;
1821 			} else {
1822 				free_htab_elem(htab, l);
1823 			}
1824 		}
1825 		dst_key += key_size;
1826 		dst_val += value_size;
1827 	}
1828 
1829 	htab_unlock_bucket(htab, b, batch, flags);
1830 	locked = false;
1831 
1832 	while (node_to_free) {
1833 		l = node_to_free;
1834 		node_to_free = node_to_free->batch_flink;
1835 		htab_lru_push_free(htab, l);
1836 	}
1837 
1838 next_batch:
1839 	/* If we are not copying data, we can go to next bucket and avoid
1840 	 * unlocking the rcu.
1841 	 */
1842 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1843 		batch++;
1844 		goto again_nocopy;
1845 	}
1846 
1847 	rcu_read_unlock();
1848 	bpf_enable_instrumentation();
1849 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1850 	    key_size * bucket_cnt) ||
1851 	    copy_to_user(uvalues + total * value_size, values,
1852 	    value_size * bucket_cnt))) {
1853 		ret = -EFAULT;
1854 		goto after_loop;
1855 	}
1856 
1857 	total += bucket_cnt;
1858 	batch++;
1859 	if (batch >= htab->n_buckets) {
1860 		ret = -ENOENT;
1861 		goto after_loop;
1862 	}
1863 	goto again;
1864 
1865 after_loop:
1866 	if (ret == -EFAULT)
1867 		goto out;
1868 
1869 	/* copy # of entries and next batch */
1870 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1871 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1872 	    put_user(total, &uattr->batch.count))
1873 		ret = -EFAULT;
1874 
1875 out:
1876 	kvfree(keys);
1877 	kvfree(values);
1878 	return ret;
1879 }
1880 
1881 static int
1882 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1883 			     union bpf_attr __user *uattr)
1884 {
1885 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1886 						  false, true);
1887 }
1888 
1889 static int
1890 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1891 					const union bpf_attr *attr,
1892 					union bpf_attr __user *uattr)
1893 {
1894 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1895 						  false, true);
1896 }
1897 
1898 static int
1899 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1900 		      union bpf_attr __user *uattr)
1901 {
1902 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1903 						  false, false);
1904 }
1905 
1906 static int
1907 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1908 				 const union bpf_attr *attr,
1909 				 union bpf_attr __user *uattr)
1910 {
1911 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1912 						  false, false);
1913 }
1914 
1915 static int
1916 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1917 				 const union bpf_attr *attr,
1918 				 union bpf_attr __user *uattr)
1919 {
1920 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1921 						  true, true);
1922 }
1923 
1924 static int
1925 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1926 					    const union bpf_attr *attr,
1927 					    union bpf_attr __user *uattr)
1928 {
1929 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1930 						  true, true);
1931 }
1932 
1933 static int
1934 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1935 			  union bpf_attr __user *uattr)
1936 {
1937 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1938 						  true, false);
1939 }
1940 
1941 static int
1942 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1943 				     const union bpf_attr *attr,
1944 				     union bpf_attr __user *uattr)
1945 {
1946 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1947 						  true, false);
1948 }
1949 
1950 struct bpf_iter_seq_hash_map_info {
1951 	struct bpf_map *map;
1952 	struct bpf_htab *htab;
1953 	void *percpu_value_buf; // non-zero means percpu hash
1954 	u32 bucket_id;
1955 	u32 skip_elems;
1956 };
1957 
1958 static struct htab_elem *
1959 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1960 			   struct htab_elem *prev_elem)
1961 {
1962 	const struct bpf_htab *htab = info->htab;
1963 	u32 skip_elems = info->skip_elems;
1964 	u32 bucket_id = info->bucket_id;
1965 	struct hlist_nulls_head *head;
1966 	struct hlist_nulls_node *n;
1967 	struct htab_elem *elem;
1968 	struct bucket *b;
1969 	u32 i, count;
1970 
1971 	if (bucket_id >= htab->n_buckets)
1972 		return NULL;
1973 
1974 	/* try to find next elem in the same bucket */
1975 	if (prev_elem) {
1976 		/* no update/deletion on this bucket, prev_elem should be still valid
1977 		 * and we won't skip elements.
1978 		 */
1979 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1980 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1981 		if (elem)
1982 			return elem;
1983 
1984 		/* not found, unlock and go to the next bucket */
1985 		b = &htab->buckets[bucket_id++];
1986 		rcu_read_unlock();
1987 		skip_elems = 0;
1988 	}
1989 
1990 	for (i = bucket_id; i < htab->n_buckets; i++) {
1991 		b = &htab->buckets[i];
1992 		rcu_read_lock();
1993 
1994 		count = 0;
1995 		head = &b->head;
1996 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1997 			if (count >= skip_elems) {
1998 				info->bucket_id = i;
1999 				info->skip_elems = count;
2000 				return elem;
2001 			}
2002 			count++;
2003 		}
2004 
2005 		rcu_read_unlock();
2006 		skip_elems = 0;
2007 	}
2008 
2009 	info->bucket_id = i;
2010 	info->skip_elems = 0;
2011 	return NULL;
2012 }
2013 
2014 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
2015 {
2016 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2017 	struct htab_elem *elem;
2018 
2019 	elem = bpf_hash_map_seq_find_next(info, NULL);
2020 	if (!elem)
2021 		return NULL;
2022 
2023 	if (*pos == 0)
2024 		++*pos;
2025 	return elem;
2026 }
2027 
2028 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2029 {
2030 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2031 
2032 	++*pos;
2033 	++info->skip_elems;
2034 	return bpf_hash_map_seq_find_next(info, v);
2035 }
2036 
2037 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
2038 {
2039 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2040 	u32 roundup_key_size, roundup_value_size;
2041 	struct bpf_iter__bpf_map_elem ctx = {};
2042 	struct bpf_map *map = info->map;
2043 	struct bpf_iter_meta meta;
2044 	int ret = 0, off = 0, cpu;
2045 	struct bpf_prog *prog;
2046 	void __percpu *pptr;
2047 
2048 	meta.seq = seq;
2049 	prog = bpf_iter_get_info(&meta, elem == NULL);
2050 	if (prog) {
2051 		ctx.meta = &meta;
2052 		ctx.map = info->map;
2053 		if (elem) {
2054 			roundup_key_size = round_up(map->key_size, 8);
2055 			ctx.key = elem->key;
2056 			if (!info->percpu_value_buf) {
2057 				ctx.value = elem->key + roundup_key_size;
2058 			} else {
2059 				roundup_value_size = round_up(map->value_size, 8);
2060 				pptr = htab_elem_get_ptr(elem, map->key_size);
2061 				for_each_possible_cpu(cpu) {
2062 					copy_map_value_long(map, info->percpu_value_buf + off,
2063 							    per_cpu_ptr(pptr, cpu));
2064 					check_and_init_map_value(map, info->percpu_value_buf + off);
2065 					off += roundup_value_size;
2066 				}
2067 				ctx.value = info->percpu_value_buf;
2068 			}
2069 		}
2070 		ret = bpf_iter_run_prog(prog, &ctx);
2071 	}
2072 
2073 	return ret;
2074 }
2075 
2076 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2077 {
2078 	return __bpf_hash_map_seq_show(seq, v);
2079 }
2080 
2081 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2082 {
2083 	if (!v)
2084 		(void)__bpf_hash_map_seq_show(seq, NULL);
2085 	else
2086 		rcu_read_unlock();
2087 }
2088 
2089 static int bpf_iter_init_hash_map(void *priv_data,
2090 				  struct bpf_iter_aux_info *aux)
2091 {
2092 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2093 	struct bpf_map *map = aux->map;
2094 	void *value_buf;
2095 	u32 buf_size;
2096 
2097 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2098 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2099 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2100 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2101 		if (!value_buf)
2102 			return -ENOMEM;
2103 
2104 		seq_info->percpu_value_buf = value_buf;
2105 	}
2106 
2107 	bpf_map_inc_with_uref(map);
2108 	seq_info->map = map;
2109 	seq_info->htab = container_of(map, struct bpf_htab, map);
2110 	return 0;
2111 }
2112 
2113 static void bpf_iter_fini_hash_map(void *priv_data)
2114 {
2115 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2116 
2117 	bpf_map_put_with_uref(seq_info->map);
2118 	kfree(seq_info->percpu_value_buf);
2119 }
2120 
2121 static const struct seq_operations bpf_hash_map_seq_ops = {
2122 	.start	= bpf_hash_map_seq_start,
2123 	.next	= bpf_hash_map_seq_next,
2124 	.stop	= bpf_hash_map_seq_stop,
2125 	.show	= bpf_hash_map_seq_show,
2126 };
2127 
2128 static const struct bpf_iter_seq_info iter_seq_info = {
2129 	.seq_ops		= &bpf_hash_map_seq_ops,
2130 	.init_seq_private	= bpf_iter_init_hash_map,
2131 	.fini_seq_private	= bpf_iter_fini_hash_map,
2132 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
2133 };
2134 
2135 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2136 				   void *callback_ctx, u64 flags)
2137 {
2138 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2139 	struct hlist_nulls_head *head;
2140 	struct hlist_nulls_node *n;
2141 	struct htab_elem *elem;
2142 	u32 roundup_key_size;
2143 	int i, num_elems = 0;
2144 	void __percpu *pptr;
2145 	struct bucket *b;
2146 	void *key, *val;
2147 	bool is_percpu;
2148 	u64 ret = 0;
2149 
2150 	if (flags != 0)
2151 		return -EINVAL;
2152 
2153 	is_percpu = htab_is_percpu(htab);
2154 
2155 	roundup_key_size = round_up(map->key_size, 8);
2156 	/* disable migration so percpu value prepared here will be the
2157 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2158 	 */
2159 	if (is_percpu)
2160 		migrate_disable();
2161 	for (i = 0; i < htab->n_buckets; i++) {
2162 		b = &htab->buckets[i];
2163 		rcu_read_lock();
2164 		head = &b->head;
2165 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2166 			key = elem->key;
2167 			if (is_percpu) {
2168 				/* current cpu value for percpu map */
2169 				pptr = htab_elem_get_ptr(elem, map->key_size);
2170 				val = this_cpu_ptr(pptr);
2171 			} else {
2172 				val = elem->key + roundup_key_size;
2173 			}
2174 			num_elems++;
2175 			ret = callback_fn((u64)(long)map, (u64)(long)key,
2176 					  (u64)(long)val, (u64)(long)callback_ctx, 0);
2177 			/* return value: 0 - continue, 1 - stop and return */
2178 			if (ret) {
2179 				rcu_read_unlock();
2180 				goto out;
2181 			}
2182 		}
2183 		rcu_read_unlock();
2184 	}
2185 out:
2186 	if (is_percpu)
2187 		migrate_enable();
2188 	return num_elems;
2189 }
2190 
2191 static u64 htab_map_mem_usage(const struct bpf_map *map)
2192 {
2193 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2194 	u32 value_size = round_up(htab->map.value_size, 8);
2195 	bool prealloc = htab_is_prealloc(htab);
2196 	bool percpu = htab_is_percpu(htab);
2197 	bool lru = htab_is_lru(htab);
2198 	u64 num_entries;
2199 	u64 usage = sizeof(struct bpf_htab);
2200 
2201 	usage += sizeof(struct bucket) * htab->n_buckets;
2202 	usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT;
2203 	if (prealloc) {
2204 		num_entries = map->max_entries;
2205 		if (htab_has_extra_elems(htab))
2206 			num_entries += num_possible_cpus();
2207 
2208 		usage += htab->elem_size * num_entries;
2209 
2210 		if (percpu)
2211 			usage += value_size * num_possible_cpus() * num_entries;
2212 		else if (!lru)
2213 			usage += sizeof(struct htab_elem *) * num_possible_cpus();
2214 	} else {
2215 #define LLIST_NODE_SZ sizeof(struct llist_node)
2216 
2217 		num_entries = htab->use_percpu_counter ?
2218 					  percpu_counter_sum(&htab->pcount) :
2219 					  atomic_read(&htab->count);
2220 		usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries;
2221 		if (percpu) {
2222 			usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries;
2223 			usage += value_size * num_possible_cpus() * num_entries;
2224 		}
2225 	}
2226 	return usage;
2227 }
2228 
2229 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2230 const struct bpf_map_ops htab_map_ops = {
2231 	.map_meta_equal = bpf_map_meta_equal,
2232 	.map_alloc_check = htab_map_alloc_check,
2233 	.map_alloc = htab_map_alloc,
2234 	.map_free = htab_map_free,
2235 	.map_get_next_key = htab_map_get_next_key,
2236 	.map_release_uref = htab_map_free_timers,
2237 	.map_lookup_elem = htab_map_lookup_elem,
2238 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2239 	.map_update_elem = htab_map_update_elem,
2240 	.map_delete_elem = htab_map_delete_elem,
2241 	.map_gen_lookup = htab_map_gen_lookup,
2242 	.map_seq_show_elem = htab_map_seq_show_elem,
2243 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2244 	.map_for_each_callback = bpf_for_each_hash_elem,
2245 	.map_mem_usage = htab_map_mem_usage,
2246 	BATCH_OPS(htab),
2247 	.map_btf_id = &htab_map_btf_ids[0],
2248 	.iter_seq_info = &iter_seq_info,
2249 };
2250 
2251 const struct bpf_map_ops htab_lru_map_ops = {
2252 	.map_meta_equal = bpf_map_meta_equal,
2253 	.map_alloc_check = htab_map_alloc_check,
2254 	.map_alloc = htab_map_alloc,
2255 	.map_free = htab_map_free,
2256 	.map_get_next_key = htab_map_get_next_key,
2257 	.map_release_uref = htab_map_free_timers,
2258 	.map_lookup_elem = htab_lru_map_lookup_elem,
2259 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2260 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2261 	.map_update_elem = htab_lru_map_update_elem,
2262 	.map_delete_elem = htab_lru_map_delete_elem,
2263 	.map_gen_lookup = htab_lru_map_gen_lookup,
2264 	.map_seq_show_elem = htab_map_seq_show_elem,
2265 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2266 	.map_for_each_callback = bpf_for_each_hash_elem,
2267 	.map_mem_usage = htab_map_mem_usage,
2268 	BATCH_OPS(htab_lru),
2269 	.map_btf_id = &htab_map_btf_ids[0],
2270 	.iter_seq_info = &iter_seq_info,
2271 };
2272 
2273 /* Called from eBPF program */
2274 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2275 {
2276 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2277 
2278 	if (l)
2279 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2280 	else
2281 		return NULL;
2282 }
2283 
2284 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2285 {
2286 	struct htab_elem *l;
2287 
2288 	if (cpu >= nr_cpu_ids)
2289 		return NULL;
2290 
2291 	l = __htab_map_lookup_elem(map, key);
2292 	if (l)
2293 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2294 	else
2295 		return NULL;
2296 }
2297 
2298 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2299 {
2300 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2301 
2302 	if (l) {
2303 		bpf_lru_node_set_ref(&l->lru_node);
2304 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2305 	}
2306 
2307 	return NULL;
2308 }
2309 
2310 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2311 {
2312 	struct htab_elem *l;
2313 
2314 	if (cpu >= nr_cpu_ids)
2315 		return NULL;
2316 
2317 	l = __htab_map_lookup_elem(map, key);
2318 	if (l) {
2319 		bpf_lru_node_set_ref(&l->lru_node);
2320 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2321 	}
2322 
2323 	return NULL;
2324 }
2325 
2326 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2327 {
2328 	struct htab_elem *l;
2329 	void __percpu *pptr;
2330 	int ret = -ENOENT;
2331 	int cpu, off = 0;
2332 	u32 size;
2333 
2334 	/* per_cpu areas are zero-filled and bpf programs can only
2335 	 * access 'value_size' of them, so copying rounded areas
2336 	 * will not leak any kernel data
2337 	 */
2338 	size = round_up(map->value_size, 8);
2339 	rcu_read_lock();
2340 	l = __htab_map_lookup_elem(map, key);
2341 	if (!l)
2342 		goto out;
2343 	/* We do not mark LRU map element here in order to not mess up
2344 	 * eviction heuristics when user space does a map walk.
2345 	 */
2346 	pptr = htab_elem_get_ptr(l, map->key_size);
2347 	for_each_possible_cpu(cpu) {
2348 		copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
2349 		check_and_init_map_value(map, value + off);
2350 		off += size;
2351 	}
2352 	ret = 0;
2353 out:
2354 	rcu_read_unlock();
2355 	return ret;
2356 }
2357 
2358 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2359 			   u64 map_flags)
2360 {
2361 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2362 	int ret;
2363 
2364 	rcu_read_lock();
2365 	if (htab_is_lru(htab))
2366 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2367 							map_flags, true);
2368 	else
2369 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2370 						    true);
2371 	rcu_read_unlock();
2372 
2373 	return ret;
2374 }
2375 
2376 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2377 					  struct seq_file *m)
2378 {
2379 	struct htab_elem *l;
2380 	void __percpu *pptr;
2381 	int cpu;
2382 
2383 	rcu_read_lock();
2384 
2385 	l = __htab_map_lookup_elem(map, key);
2386 	if (!l) {
2387 		rcu_read_unlock();
2388 		return;
2389 	}
2390 
2391 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2392 	seq_puts(m, ": {\n");
2393 	pptr = htab_elem_get_ptr(l, map->key_size);
2394 	for_each_possible_cpu(cpu) {
2395 		seq_printf(m, "\tcpu%d: ", cpu);
2396 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2397 				  per_cpu_ptr(pptr, cpu), m);
2398 		seq_puts(m, "\n");
2399 	}
2400 	seq_puts(m, "}\n");
2401 
2402 	rcu_read_unlock();
2403 }
2404 
2405 const struct bpf_map_ops htab_percpu_map_ops = {
2406 	.map_meta_equal = bpf_map_meta_equal,
2407 	.map_alloc_check = htab_map_alloc_check,
2408 	.map_alloc = htab_map_alloc,
2409 	.map_free = htab_map_free,
2410 	.map_get_next_key = htab_map_get_next_key,
2411 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2412 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2413 	.map_update_elem = htab_percpu_map_update_elem,
2414 	.map_delete_elem = htab_map_delete_elem,
2415 	.map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2416 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2417 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2418 	.map_for_each_callback = bpf_for_each_hash_elem,
2419 	.map_mem_usage = htab_map_mem_usage,
2420 	BATCH_OPS(htab_percpu),
2421 	.map_btf_id = &htab_map_btf_ids[0],
2422 	.iter_seq_info = &iter_seq_info,
2423 };
2424 
2425 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2426 	.map_meta_equal = bpf_map_meta_equal,
2427 	.map_alloc_check = htab_map_alloc_check,
2428 	.map_alloc = htab_map_alloc,
2429 	.map_free = htab_map_free,
2430 	.map_get_next_key = htab_map_get_next_key,
2431 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2432 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2433 	.map_update_elem = htab_lru_percpu_map_update_elem,
2434 	.map_delete_elem = htab_lru_map_delete_elem,
2435 	.map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2436 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2437 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2438 	.map_for_each_callback = bpf_for_each_hash_elem,
2439 	.map_mem_usage = htab_map_mem_usage,
2440 	BATCH_OPS(htab_lru_percpu),
2441 	.map_btf_id = &htab_map_btf_ids[0],
2442 	.iter_seq_info = &iter_seq_info,
2443 };
2444 
2445 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2446 {
2447 	if (attr->value_size != sizeof(u32))
2448 		return -EINVAL;
2449 	return htab_map_alloc_check(attr);
2450 }
2451 
2452 static void fd_htab_map_free(struct bpf_map *map)
2453 {
2454 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2455 	struct hlist_nulls_node *n;
2456 	struct hlist_nulls_head *head;
2457 	struct htab_elem *l;
2458 	int i;
2459 
2460 	for (i = 0; i < htab->n_buckets; i++) {
2461 		head = select_bucket(htab, i);
2462 
2463 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2464 			void *ptr = fd_htab_map_get_ptr(map, l);
2465 
2466 			map->ops->map_fd_put_ptr(ptr);
2467 		}
2468 	}
2469 
2470 	htab_map_free(map);
2471 }
2472 
2473 /* only called from syscall */
2474 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2475 {
2476 	void **ptr;
2477 	int ret = 0;
2478 
2479 	if (!map->ops->map_fd_sys_lookup_elem)
2480 		return -ENOTSUPP;
2481 
2482 	rcu_read_lock();
2483 	ptr = htab_map_lookup_elem(map, key);
2484 	if (ptr)
2485 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2486 	else
2487 		ret = -ENOENT;
2488 	rcu_read_unlock();
2489 
2490 	return ret;
2491 }
2492 
2493 /* only called from syscall */
2494 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2495 				void *key, void *value, u64 map_flags)
2496 {
2497 	void *ptr;
2498 	int ret;
2499 	u32 ufd = *(u32 *)value;
2500 
2501 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2502 	if (IS_ERR(ptr))
2503 		return PTR_ERR(ptr);
2504 
2505 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2506 	if (ret)
2507 		map->ops->map_fd_put_ptr(ptr);
2508 
2509 	return ret;
2510 }
2511 
2512 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2513 {
2514 	struct bpf_map *map, *inner_map_meta;
2515 
2516 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2517 	if (IS_ERR(inner_map_meta))
2518 		return inner_map_meta;
2519 
2520 	map = htab_map_alloc(attr);
2521 	if (IS_ERR(map)) {
2522 		bpf_map_meta_free(inner_map_meta);
2523 		return map;
2524 	}
2525 
2526 	map->inner_map_meta = inner_map_meta;
2527 
2528 	return map;
2529 }
2530 
2531 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2532 {
2533 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2534 
2535 	if (!inner_map)
2536 		return NULL;
2537 
2538 	return READ_ONCE(*inner_map);
2539 }
2540 
2541 static int htab_of_map_gen_lookup(struct bpf_map *map,
2542 				  struct bpf_insn *insn_buf)
2543 {
2544 	struct bpf_insn *insn = insn_buf;
2545 	const int ret = BPF_REG_0;
2546 
2547 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2548 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2549 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2550 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2551 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2552 				offsetof(struct htab_elem, key) +
2553 				round_up(map->key_size, 8));
2554 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2555 
2556 	return insn - insn_buf;
2557 }
2558 
2559 static void htab_of_map_free(struct bpf_map *map)
2560 {
2561 	bpf_map_meta_free(map->inner_map_meta);
2562 	fd_htab_map_free(map);
2563 }
2564 
2565 const struct bpf_map_ops htab_of_maps_map_ops = {
2566 	.map_alloc_check = fd_htab_map_alloc_check,
2567 	.map_alloc = htab_of_map_alloc,
2568 	.map_free = htab_of_map_free,
2569 	.map_get_next_key = htab_map_get_next_key,
2570 	.map_lookup_elem = htab_of_map_lookup_elem,
2571 	.map_delete_elem = htab_map_delete_elem,
2572 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2573 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2574 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2575 	.map_gen_lookup = htab_of_map_gen_lookup,
2576 	.map_check_btf = map_check_no_btf,
2577 	.map_mem_usage = htab_map_mem_usage,
2578 	BATCH_OPS(htab),
2579 	.map_btf_id = &htab_map_btf_ids[0],
2580 };
2581