1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 #include "bpf_lru_list.h" 16 #include "map_in_map.h" 17 #include <linux/bpf_mem_alloc.h> 18 19 #define HTAB_CREATE_FLAG_MASK \ 20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 22 23 #define BATCH_OPS(_name) \ 24 .map_lookup_batch = \ 25 _name##_map_lookup_batch, \ 26 .map_lookup_and_delete_batch = \ 27 _name##_map_lookup_and_delete_batch, \ 28 .map_update_batch = \ 29 generic_map_update_batch, \ 30 .map_delete_batch = \ 31 generic_map_delete_batch 32 33 /* 34 * The bucket lock has two protection scopes: 35 * 36 * 1) Serializing concurrent operations from BPF programs on different 37 * CPUs 38 * 39 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 40 * 41 * BPF programs can execute in any context including perf, kprobes and 42 * tracing. As there are almost no limits where perf, kprobes and tracing 43 * can be invoked from the lock operations need to be protected against 44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 45 * the lock held section when functions which acquire this lock are invoked 46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 47 * variable bpf_prog_active, which prevents BPF programs attached to perf 48 * events, kprobes and tracing to be invoked before the prior invocation 49 * from one of these contexts completed. sys_bpf() uses the same mechanism 50 * by pinning the task to the current CPU and incrementing the recursion 51 * protection across the map operation. 52 * 53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 54 * operations like memory allocations (even with GFP_ATOMIC) from atomic 55 * contexts. This is required because even with GFP_ATOMIC the memory 56 * allocator calls into code paths which acquire locks with long held lock 57 * sections. To ensure the deterministic behaviour these locks are regular 58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 59 * true atomic contexts on an RT kernel are the low level hardware 60 * handling, scheduling, low level interrupt handling, NMIs etc. None of 61 * these contexts should ever do memory allocations. 62 * 63 * As regular device interrupt handlers and soft interrupts are forced into 64 * thread context, the existing code which does 65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 66 * just works. 67 * 68 * In theory the BPF locks could be converted to regular spinlocks as well, 69 * but the bucket locks and percpu_freelist locks can be taken from 70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 73 * because there is no memory allocation within the lock held sections. However 74 * after hash map was fully converted to use bpf_mem_alloc, there will be 75 * non-synchronous memory allocation for non-preallocated hash map, so it is 76 * safe to always use raw spinlock for bucket lock. 77 */ 78 struct bucket { 79 struct hlist_nulls_head head; 80 raw_spinlock_t raw_lock; 81 }; 82 83 #define HASHTAB_MAP_LOCK_COUNT 8 84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 85 86 struct bpf_htab { 87 struct bpf_map map; 88 struct bpf_mem_alloc ma; 89 struct bpf_mem_alloc pcpu_ma; 90 struct bucket *buckets; 91 void *elems; 92 union { 93 struct pcpu_freelist freelist; 94 struct bpf_lru lru; 95 }; 96 struct htab_elem *__percpu *extra_elems; 97 /* number of elements in non-preallocated hashtable are kept 98 * in either pcount or count 99 */ 100 struct percpu_counter pcount; 101 atomic_t count; 102 bool use_percpu_counter; 103 u32 n_buckets; /* number of hash buckets */ 104 u32 elem_size; /* size of each element in bytes */ 105 u32 hashrnd; 106 struct lock_class_key lockdep_key; 107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 108 }; 109 110 /* each htab element is struct htab_elem + key + value */ 111 struct htab_elem { 112 union { 113 struct hlist_nulls_node hash_node; 114 struct { 115 void *padding; 116 union { 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 /* pointer to per-cpu pointer */ 124 void *ptr_to_pptr; 125 struct bpf_lru_node lru_node; 126 }; 127 u32 hash; 128 char key[] __aligned(8); 129 }; 130 131 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 132 { 133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 134 } 135 136 static void htab_init_buckets(struct bpf_htab *htab) 137 { 138 unsigned int i; 139 140 for (i = 0; i < htab->n_buckets; i++) { 141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 142 raw_spin_lock_init(&htab->buckets[i].raw_lock); 143 lockdep_set_class(&htab->buckets[i].raw_lock, 144 &htab->lockdep_key); 145 cond_resched(); 146 } 147 } 148 149 static inline int htab_lock_bucket(const struct bpf_htab *htab, 150 struct bucket *b, u32 hash, 151 unsigned long *pflags) 152 { 153 unsigned long flags; 154 155 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 156 157 preempt_disable(); 158 local_irq_save(flags); 159 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 160 __this_cpu_dec(*(htab->map_locked[hash])); 161 local_irq_restore(flags); 162 preempt_enable(); 163 return -EBUSY; 164 } 165 166 raw_spin_lock(&b->raw_lock); 167 *pflags = flags; 168 169 return 0; 170 } 171 172 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 173 struct bucket *b, u32 hash, 174 unsigned long flags) 175 { 176 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 177 raw_spin_unlock(&b->raw_lock); 178 __this_cpu_dec(*(htab->map_locked[hash])); 179 local_irq_restore(flags); 180 preempt_enable(); 181 } 182 183 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 184 185 static bool htab_is_lru(const struct bpf_htab *htab) 186 { 187 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 188 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 189 } 190 191 static bool htab_is_percpu(const struct bpf_htab *htab) 192 { 193 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 194 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 195 } 196 197 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 198 void __percpu *pptr) 199 { 200 *(void __percpu **)(l->key + key_size) = pptr; 201 } 202 203 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 204 { 205 return *(void __percpu **)(l->key + key_size); 206 } 207 208 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 209 { 210 return *(void **)(l->key + roundup(map->key_size, 8)); 211 } 212 213 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 214 { 215 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 216 } 217 218 static bool htab_has_extra_elems(struct bpf_htab *htab) 219 { 220 return !htab_is_percpu(htab) && !htab_is_lru(htab); 221 } 222 223 static void htab_free_prealloced_timers(struct bpf_htab *htab) 224 { 225 u32 num_entries = htab->map.max_entries; 226 int i; 227 228 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 229 return; 230 if (htab_has_extra_elems(htab)) 231 num_entries += num_possible_cpus(); 232 233 for (i = 0; i < num_entries; i++) { 234 struct htab_elem *elem; 235 236 elem = get_htab_elem(htab, i); 237 bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 238 cond_resched(); 239 } 240 } 241 242 static void htab_free_prealloced_fields(struct bpf_htab *htab) 243 { 244 u32 num_entries = htab->map.max_entries; 245 int i; 246 247 if (IS_ERR_OR_NULL(htab->map.record)) 248 return; 249 if (htab_has_extra_elems(htab)) 250 num_entries += num_possible_cpus(); 251 for (i = 0; i < num_entries; i++) { 252 struct htab_elem *elem; 253 254 elem = get_htab_elem(htab, i); 255 if (htab_is_percpu(htab)) { 256 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 257 int cpu; 258 259 for_each_possible_cpu(cpu) { 260 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 261 cond_resched(); 262 } 263 } else { 264 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 265 cond_resched(); 266 } 267 cond_resched(); 268 } 269 } 270 271 static void htab_free_elems(struct bpf_htab *htab) 272 { 273 int i; 274 275 if (!htab_is_percpu(htab)) 276 goto free_elems; 277 278 for (i = 0; i < htab->map.max_entries; i++) { 279 void __percpu *pptr; 280 281 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 282 htab->map.key_size); 283 free_percpu(pptr); 284 cond_resched(); 285 } 286 free_elems: 287 bpf_map_area_free(htab->elems); 288 } 289 290 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 291 * (bucket_lock). If both locks need to be acquired together, the lock 292 * order is always lru_lock -> bucket_lock and this only happens in 293 * bpf_lru_list.c logic. For example, certain code path of 294 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 295 * will acquire lru_lock first followed by acquiring bucket_lock. 296 * 297 * In hashtab.c, to avoid deadlock, lock acquisition of 298 * bucket_lock followed by lru_lock is not allowed. In such cases, 299 * bucket_lock needs to be released first before acquiring lru_lock. 300 */ 301 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 302 u32 hash) 303 { 304 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 305 struct htab_elem *l; 306 307 if (node) { 308 bpf_map_inc_elem_count(&htab->map); 309 l = container_of(node, struct htab_elem, lru_node); 310 memcpy(l->key, key, htab->map.key_size); 311 return l; 312 } 313 314 return NULL; 315 } 316 317 static int prealloc_init(struct bpf_htab *htab) 318 { 319 u32 num_entries = htab->map.max_entries; 320 int err = -ENOMEM, i; 321 322 if (htab_has_extra_elems(htab)) 323 num_entries += num_possible_cpus(); 324 325 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 326 htab->map.numa_node); 327 if (!htab->elems) 328 return -ENOMEM; 329 330 if (!htab_is_percpu(htab)) 331 goto skip_percpu_elems; 332 333 for (i = 0; i < num_entries; i++) { 334 u32 size = round_up(htab->map.value_size, 8); 335 void __percpu *pptr; 336 337 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 338 GFP_USER | __GFP_NOWARN); 339 if (!pptr) 340 goto free_elems; 341 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 342 pptr); 343 cond_resched(); 344 } 345 346 skip_percpu_elems: 347 if (htab_is_lru(htab)) 348 err = bpf_lru_init(&htab->lru, 349 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 350 offsetof(struct htab_elem, hash) - 351 offsetof(struct htab_elem, lru_node), 352 htab_lru_map_delete_node, 353 htab); 354 else 355 err = pcpu_freelist_init(&htab->freelist); 356 357 if (err) 358 goto free_elems; 359 360 if (htab_is_lru(htab)) 361 bpf_lru_populate(&htab->lru, htab->elems, 362 offsetof(struct htab_elem, lru_node), 363 htab->elem_size, num_entries); 364 else 365 pcpu_freelist_populate(&htab->freelist, 366 htab->elems + offsetof(struct htab_elem, fnode), 367 htab->elem_size, num_entries); 368 369 return 0; 370 371 free_elems: 372 htab_free_elems(htab); 373 return err; 374 } 375 376 static void prealloc_destroy(struct bpf_htab *htab) 377 { 378 htab_free_elems(htab); 379 380 if (htab_is_lru(htab)) 381 bpf_lru_destroy(&htab->lru); 382 else 383 pcpu_freelist_destroy(&htab->freelist); 384 } 385 386 static int alloc_extra_elems(struct bpf_htab *htab) 387 { 388 struct htab_elem *__percpu *pptr, *l_new; 389 struct pcpu_freelist_node *l; 390 int cpu; 391 392 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 393 GFP_USER | __GFP_NOWARN); 394 if (!pptr) 395 return -ENOMEM; 396 397 for_each_possible_cpu(cpu) { 398 l = pcpu_freelist_pop(&htab->freelist); 399 /* pop will succeed, since prealloc_init() 400 * preallocated extra num_possible_cpus elements 401 */ 402 l_new = container_of(l, struct htab_elem, fnode); 403 *per_cpu_ptr(pptr, cpu) = l_new; 404 } 405 htab->extra_elems = pptr; 406 return 0; 407 } 408 409 /* Called from syscall */ 410 static int htab_map_alloc_check(union bpf_attr *attr) 411 { 412 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 413 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 414 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 415 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 416 /* percpu_lru means each cpu has its own LRU list. 417 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 418 * the map's value itself is percpu. percpu_lru has 419 * nothing to do with the map's value. 420 */ 421 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 422 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 423 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 424 int numa_node = bpf_map_attr_numa_node(attr); 425 426 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 427 offsetof(struct htab_elem, hash_node.pprev)); 428 429 if (zero_seed && !capable(CAP_SYS_ADMIN)) 430 /* Guard against local DoS, and discourage production use. */ 431 return -EPERM; 432 433 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 434 !bpf_map_flags_access_ok(attr->map_flags)) 435 return -EINVAL; 436 437 if (!lru && percpu_lru) 438 return -EINVAL; 439 440 if (lru && !prealloc) 441 return -ENOTSUPP; 442 443 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 444 return -EINVAL; 445 446 /* check sanity of attributes. 447 * value_size == 0 may be allowed in the future to use map as a set 448 */ 449 if (attr->max_entries == 0 || attr->key_size == 0 || 450 attr->value_size == 0) 451 return -EINVAL; 452 453 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 454 sizeof(struct htab_elem)) 455 /* if key_size + value_size is bigger, the user space won't be 456 * able to access the elements via bpf syscall. This check 457 * also makes sure that the elem_size doesn't overflow and it's 458 * kmalloc-able later in htab_map_update_elem() 459 */ 460 return -E2BIG; 461 /* percpu map value size is bound by PCPU_MIN_UNIT_SIZE */ 462 if (percpu && round_up(attr->value_size, 8) > PCPU_MIN_UNIT_SIZE) 463 return -E2BIG; 464 465 return 0; 466 } 467 468 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 469 { 470 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 471 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 472 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 473 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 474 /* percpu_lru means each cpu has its own LRU list. 475 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 476 * the map's value itself is percpu. percpu_lru has 477 * nothing to do with the map's value. 478 */ 479 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 480 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 481 struct bpf_htab *htab; 482 int err, i; 483 484 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 485 if (!htab) 486 return ERR_PTR(-ENOMEM); 487 488 lockdep_register_key(&htab->lockdep_key); 489 490 bpf_map_init_from_attr(&htab->map, attr); 491 492 if (percpu_lru) { 493 /* ensure each CPU's lru list has >=1 elements. 494 * since we are at it, make each lru list has the same 495 * number of elements. 496 */ 497 htab->map.max_entries = roundup(attr->max_entries, 498 num_possible_cpus()); 499 if (htab->map.max_entries < attr->max_entries) 500 htab->map.max_entries = rounddown(attr->max_entries, 501 num_possible_cpus()); 502 } 503 504 /* hash table size must be power of 2; roundup_pow_of_two() can overflow 505 * into UB on 32-bit arches, so check that first 506 */ 507 err = -E2BIG; 508 if (htab->map.max_entries > 1UL << 31) 509 goto free_htab; 510 511 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 512 513 htab->elem_size = sizeof(struct htab_elem) + 514 round_up(htab->map.key_size, 8); 515 if (percpu) 516 htab->elem_size += sizeof(void *); 517 else 518 htab->elem_size += round_up(htab->map.value_size, 8); 519 520 /* check for u32 overflow */ 521 if (htab->n_buckets > U32_MAX / sizeof(struct bucket)) 522 goto free_htab; 523 524 err = bpf_map_init_elem_count(&htab->map); 525 if (err) 526 goto free_htab; 527 528 err = -ENOMEM; 529 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 530 sizeof(struct bucket), 531 htab->map.numa_node); 532 if (!htab->buckets) 533 goto free_elem_count; 534 535 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 536 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 537 sizeof(int), 538 sizeof(int), 539 GFP_USER); 540 if (!htab->map_locked[i]) 541 goto free_map_locked; 542 } 543 544 if (htab->map.map_flags & BPF_F_ZERO_SEED) 545 htab->hashrnd = 0; 546 else 547 htab->hashrnd = get_random_u32(); 548 549 htab_init_buckets(htab); 550 551 /* compute_batch_value() computes batch value as num_online_cpus() * 2 552 * and __percpu_counter_compare() needs 553 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 554 * for percpu_counter to be faster than atomic_t. In practice the average bpf 555 * hash map size is 10k, which means that a system with 64 cpus will fill 556 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 557 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 558 * 10k - 8k > 32 _batch_ * 64 _cpus_ 559 * and __percpu_counter_compare() will still be fast. At that point hash map 560 * collisions will dominate its performance anyway. Assume that hash map filled 561 * to 50+% isn't going to be O(1) and use the following formula to choose 562 * between percpu_counter and atomic_t. 563 */ 564 #define PERCPU_COUNTER_BATCH 32 565 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 566 htab->use_percpu_counter = true; 567 568 if (htab->use_percpu_counter) { 569 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 570 if (err) 571 goto free_map_locked; 572 } 573 574 if (prealloc) { 575 err = prealloc_init(htab); 576 if (err) 577 goto free_map_locked; 578 579 if (!percpu && !lru) { 580 /* lru itself can remove the least used element, so 581 * there is no need for an extra elem during map_update. 582 */ 583 err = alloc_extra_elems(htab); 584 if (err) 585 goto free_prealloc; 586 } 587 } else { 588 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 589 if (err) 590 goto free_map_locked; 591 if (percpu) { 592 err = bpf_mem_alloc_init(&htab->pcpu_ma, 593 round_up(htab->map.value_size, 8), true); 594 if (err) 595 goto free_map_locked; 596 } 597 } 598 599 return &htab->map; 600 601 free_prealloc: 602 prealloc_destroy(htab); 603 free_map_locked: 604 if (htab->use_percpu_counter) 605 percpu_counter_destroy(&htab->pcount); 606 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 607 free_percpu(htab->map_locked[i]); 608 bpf_map_area_free(htab->buckets); 609 bpf_mem_alloc_destroy(&htab->pcpu_ma); 610 bpf_mem_alloc_destroy(&htab->ma); 611 free_elem_count: 612 bpf_map_free_elem_count(&htab->map); 613 free_htab: 614 lockdep_unregister_key(&htab->lockdep_key); 615 bpf_map_area_free(htab); 616 return ERR_PTR(err); 617 } 618 619 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 620 { 621 if (likely(key_len % 4 == 0)) 622 return jhash2(key, key_len / 4, hashrnd); 623 return jhash(key, key_len, hashrnd); 624 } 625 626 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 627 { 628 return &htab->buckets[hash & (htab->n_buckets - 1)]; 629 } 630 631 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 632 { 633 return &__select_bucket(htab, hash)->head; 634 } 635 636 /* this lookup function can only be called with bucket lock taken */ 637 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 638 void *key, u32 key_size) 639 { 640 struct hlist_nulls_node *n; 641 struct htab_elem *l; 642 643 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 644 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 645 return l; 646 647 return NULL; 648 } 649 650 /* can be called without bucket lock. it will repeat the loop in 651 * the unlikely event when elements moved from one bucket into another 652 * while link list is being walked 653 */ 654 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 655 u32 hash, void *key, 656 u32 key_size, u32 n_buckets) 657 { 658 struct hlist_nulls_node *n; 659 struct htab_elem *l; 660 661 again: 662 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 663 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 664 return l; 665 666 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 667 goto again; 668 669 return NULL; 670 } 671 672 /* Called from syscall or from eBPF program directly, so 673 * arguments have to match bpf_map_lookup_elem() exactly. 674 * The return value is adjusted by BPF instructions 675 * in htab_map_gen_lookup(). 676 */ 677 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 678 { 679 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 680 struct hlist_nulls_head *head; 681 struct htab_elem *l; 682 u32 hash, key_size; 683 684 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 685 !rcu_read_lock_bh_held()); 686 687 key_size = map->key_size; 688 689 hash = htab_map_hash(key, key_size, htab->hashrnd); 690 691 head = select_bucket(htab, hash); 692 693 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 694 695 return l; 696 } 697 698 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 699 { 700 struct htab_elem *l = __htab_map_lookup_elem(map, key); 701 702 if (l) 703 return l->key + round_up(map->key_size, 8); 704 705 return NULL; 706 } 707 708 /* inline bpf_map_lookup_elem() call. 709 * Instead of: 710 * bpf_prog 711 * bpf_map_lookup_elem 712 * map->ops->map_lookup_elem 713 * htab_map_lookup_elem 714 * __htab_map_lookup_elem 715 * do: 716 * bpf_prog 717 * __htab_map_lookup_elem 718 */ 719 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 720 { 721 struct bpf_insn *insn = insn_buf; 722 const int ret = BPF_REG_0; 723 724 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 725 (void *(*)(struct bpf_map *map, void *key))NULL)); 726 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 727 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 728 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 729 offsetof(struct htab_elem, key) + 730 round_up(map->key_size, 8)); 731 return insn - insn_buf; 732 } 733 734 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 735 void *key, const bool mark) 736 { 737 struct htab_elem *l = __htab_map_lookup_elem(map, key); 738 739 if (l) { 740 if (mark) 741 bpf_lru_node_set_ref(&l->lru_node); 742 return l->key + round_up(map->key_size, 8); 743 } 744 745 return NULL; 746 } 747 748 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 749 { 750 return __htab_lru_map_lookup_elem(map, key, true); 751 } 752 753 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 754 { 755 return __htab_lru_map_lookup_elem(map, key, false); 756 } 757 758 static int htab_lru_map_gen_lookup(struct bpf_map *map, 759 struct bpf_insn *insn_buf) 760 { 761 struct bpf_insn *insn = insn_buf; 762 const int ret = BPF_REG_0; 763 const int ref_reg = BPF_REG_1; 764 765 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 766 (void *(*)(struct bpf_map *map, void *key))NULL)); 767 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 768 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 769 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 770 offsetof(struct htab_elem, lru_node) + 771 offsetof(struct bpf_lru_node, ref)); 772 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 773 *insn++ = BPF_ST_MEM(BPF_B, ret, 774 offsetof(struct htab_elem, lru_node) + 775 offsetof(struct bpf_lru_node, ref), 776 1); 777 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 778 offsetof(struct htab_elem, key) + 779 round_up(map->key_size, 8)); 780 return insn - insn_buf; 781 } 782 783 static void check_and_free_fields(struct bpf_htab *htab, 784 struct htab_elem *elem) 785 { 786 if (htab_is_percpu(htab)) { 787 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 788 int cpu; 789 790 for_each_possible_cpu(cpu) 791 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 792 } else { 793 void *map_value = elem->key + round_up(htab->map.key_size, 8); 794 795 bpf_obj_free_fields(htab->map.record, map_value); 796 } 797 } 798 799 /* It is called from the bpf_lru_list when the LRU needs to delete 800 * older elements from the htab. 801 */ 802 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 803 { 804 struct bpf_htab *htab = arg; 805 struct htab_elem *l = NULL, *tgt_l; 806 struct hlist_nulls_head *head; 807 struct hlist_nulls_node *n; 808 unsigned long flags; 809 struct bucket *b; 810 int ret; 811 812 tgt_l = container_of(node, struct htab_elem, lru_node); 813 b = __select_bucket(htab, tgt_l->hash); 814 head = &b->head; 815 816 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 817 if (ret) 818 return false; 819 820 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 821 if (l == tgt_l) { 822 hlist_nulls_del_rcu(&l->hash_node); 823 check_and_free_fields(htab, l); 824 bpf_map_dec_elem_count(&htab->map); 825 break; 826 } 827 828 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 829 830 return l == tgt_l; 831 } 832 833 /* Called from syscall */ 834 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 835 { 836 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 837 struct hlist_nulls_head *head; 838 struct htab_elem *l, *next_l; 839 u32 hash, key_size; 840 int i = 0; 841 842 WARN_ON_ONCE(!rcu_read_lock_held()); 843 844 key_size = map->key_size; 845 846 if (!key) 847 goto find_first_elem; 848 849 hash = htab_map_hash(key, key_size, htab->hashrnd); 850 851 head = select_bucket(htab, hash); 852 853 /* lookup the key */ 854 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 855 856 if (!l) 857 goto find_first_elem; 858 859 /* key was found, get next key in the same bucket */ 860 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 861 struct htab_elem, hash_node); 862 863 if (next_l) { 864 /* if next elem in this hash list is non-zero, just return it */ 865 memcpy(next_key, next_l->key, key_size); 866 return 0; 867 } 868 869 /* no more elements in this hash list, go to the next bucket */ 870 i = hash & (htab->n_buckets - 1); 871 i++; 872 873 find_first_elem: 874 /* iterate over buckets */ 875 for (; i < htab->n_buckets; i++) { 876 head = select_bucket(htab, i); 877 878 /* pick first element in the bucket */ 879 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 880 struct htab_elem, hash_node); 881 if (next_l) { 882 /* if it's not empty, just return it */ 883 memcpy(next_key, next_l->key, key_size); 884 return 0; 885 } 886 } 887 888 /* iterated over all buckets and all elements */ 889 return -ENOENT; 890 } 891 892 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 893 { 894 check_and_free_fields(htab, l); 895 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 896 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 897 bpf_mem_cache_free(&htab->ma, l); 898 } 899 900 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 901 { 902 struct bpf_map *map = &htab->map; 903 void *ptr; 904 905 if (map->ops->map_fd_put_ptr) { 906 ptr = fd_htab_map_get_ptr(map, l); 907 map->ops->map_fd_put_ptr(map, ptr, true); 908 } 909 } 910 911 static bool is_map_full(struct bpf_htab *htab) 912 { 913 if (htab->use_percpu_counter) 914 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 915 PERCPU_COUNTER_BATCH) >= 0; 916 return atomic_read(&htab->count) >= htab->map.max_entries; 917 } 918 919 static void inc_elem_count(struct bpf_htab *htab) 920 { 921 bpf_map_inc_elem_count(&htab->map); 922 923 if (htab->use_percpu_counter) 924 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 925 else 926 atomic_inc(&htab->count); 927 } 928 929 static void dec_elem_count(struct bpf_htab *htab) 930 { 931 bpf_map_dec_elem_count(&htab->map); 932 933 if (htab->use_percpu_counter) 934 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 935 else 936 atomic_dec(&htab->count); 937 } 938 939 940 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 941 { 942 htab_put_fd_value(htab, l); 943 944 if (htab_is_prealloc(htab)) { 945 bpf_map_dec_elem_count(&htab->map); 946 check_and_free_fields(htab, l); 947 __pcpu_freelist_push(&htab->freelist, &l->fnode); 948 } else { 949 dec_elem_count(htab); 950 htab_elem_free(htab, l); 951 } 952 } 953 954 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 955 void *value, bool onallcpus) 956 { 957 if (!onallcpus) { 958 /* copy true value_size bytes */ 959 copy_map_value(&htab->map, this_cpu_ptr(pptr), value); 960 } else { 961 u32 size = round_up(htab->map.value_size, 8); 962 int off = 0, cpu; 963 964 for_each_possible_cpu(cpu) { 965 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); 966 off += size; 967 } 968 } 969 } 970 971 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 972 void *value, bool onallcpus) 973 { 974 /* When not setting the initial value on all cpus, zero-fill element 975 * values for other cpus. Otherwise, bpf program has no way to ensure 976 * known initial values for cpus other than current one 977 * (onallcpus=false always when coming from bpf prog). 978 */ 979 if (!onallcpus) { 980 int current_cpu = raw_smp_processor_id(); 981 int cpu; 982 983 for_each_possible_cpu(cpu) { 984 if (cpu == current_cpu) 985 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); 986 else /* Since elem is preallocated, we cannot touch special fields */ 987 zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); 988 } 989 } else { 990 pcpu_copy_value(htab, pptr, value, onallcpus); 991 } 992 } 993 994 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 995 { 996 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 997 BITS_PER_LONG == 64; 998 } 999 1000 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 1001 void *value, u32 key_size, u32 hash, 1002 bool percpu, bool onallcpus, 1003 struct htab_elem *old_elem) 1004 { 1005 u32 size = htab->map.value_size; 1006 bool prealloc = htab_is_prealloc(htab); 1007 struct htab_elem *l_new, **pl_new; 1008 void __percpu *pptr; 1009 1010 if (prealloc) { 1011 if (old_elem) { 1012 /* if we're updating the existing element, 1013 * use per-cpu extra elems to avoid freelist_pop/push 1014 */ 1015 pl_new = this_cpu_ptr(htab->extra_elems); 1016 l_new = *pl_new; 1017 htab_put_fd_value(htab, old_elem); 1018 *pl_new = old_elem; 1019 } else { 1020 struct pcpu_freelist_node *l; 1021 1022 l = __pcpu_freelist_pop(&htab->freelist); 1023 if (!l) 1024 return ERR_PTR(-E2BIG); 1025 l_new = container_of(l, struct htab_elem, fnode); 1026 bpf_map_inc_elem_count(&htab->map); 1027 } 1028 } else { 1029 if (is_map_full(htab)) 1030 if (!old_elem) 1031 /* when map is full and update() is replacing 1032 * old element, it's ok to allocate, since 1033 * old element will be freed immediately. 1034 * Otherwise return an error 1035 */ 1036 return ERR_PTR(-E2BIG); 1037 inc_elem_count(htab); 1038 l_new = bpf_mem_cache_alloc(&htab->ma); 1039 if (!l_new) { 1040 l_new = ERR_PTR(-ENOMEM); 1041 goto dec_count; 1042 } 1043 } 1044 1045 memcpy(l_new->key, key, key_size); 1046 if (percpu) { 1047 if (prealloc) { 1048 pptr = htab_elem_get_ptr(l_new, key_size); 1049 } else { 1050 /* alloc_percpu zero-fills */ 1051 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1052 if (!pptr) { 1053 bpf_mem_cache_free(&htab->ma, l_new); 1054 l_new = ERR_PTR(-ENOMEM); 1055 goto dec_count; 1056 } 1057 l_new->ptr_to_pptr = pptr; 1058 pptr = *(void **)pptr; 1059 } 1060 1061 pcpu_init_value(htab, pptr, value, onallcpus); 1062 1063 if (!prealloc) 1064 htab_elem_set_ptr(l_new, key_size, pptr); 1065 } else if (fd_htab_map_needs_adjust(htab)) { 1066 size = round_up(size, 8); 1067 memcpy(l_new->key + round_up(key_size, 8), value, size); 1068 } else { 1069 copy_map_value(&htab->map, 1070 l_new->key + round_up(key_size, 8), 1071 value); 1072 } 1073 1074 l_new->hash = hash; 1075 return l_new; 1076 dec_count: 1077 dec_elem_count(htab); 1078 return l_new; 1079 } 1080 1081 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1082 u64 map_flags) 1083 { 1084 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1085 /* elem already exists */ 1086 return -EEXIST; 1087 1088 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1089 /* elem doesn't exist, cannot update it */ 1090 return -ENOENT; 1091 1092 return 0; 1093 } 1094 1095 /* Called from syscall or from eBPF program */ 1096 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1097 u64 map_flags) 1098 { 1099 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1100 struct htab_elem *l_new = NULL, *l_old; 1101 struct hlist_nulls_head *head; 1102 unsigned long flags; 1103 struct bucket *b; 1104 u32 key_size, hash; 1105 int ret; 1106 1107 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1108 /* unknown flags */ 1109 return -EINVAL; 1110 1111 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1112 !rcu_read_lock_bh_held()); 1113 1114 key_size = map->key_size; 1115 1116 hash = htab_map_hash(key, key_size, htab->hashrnd); 1117 1118 b = __select_bucket(htab, hash); 1119 head = &b->head; 1120 1121 if (unlikely(map_flags & BPF_F_LOCK)) { 1122 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1123 return -EINVAL; 1124 /* find an element without taking the bucket lock */ 1125 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1126 htab->n_buckets); 1127 ret = check_flags(htab, l_old, map_flags); 1128 if (ret) 1129 return ret; 1130 if (l_old) { 1131 /* grab the element lock and update value in place */ 1132 copy_map_value_locked(map, 1133 l_old->key + round_up(key_size, 8), 1134 value, false); 1135 return 0; 1136 } 1137 /* fall through, grab the bucket lock and lookup again. 1138 * 99.9% chance that the element won't be found, 1139 * but second lookup under lock has to be done. 1140 */ 1141 } 1142 1143 ret = htab_lock_bucket(htab, b, hash, &flags); 1144 if (ret) 1145 return ret; 1146 1147 l_old = lookup_elem_raw(head, hash, key, key_size); 1148 1149 ret = check_flags(htab, l_old, map_flags); 1150 if (ret) 1151 goto err; 1152 1153 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1154 /* first lookup without the bucket lock didn't find the element, 1155 * but second lookup with the bucket lock found it. 1156 * This case is highly unlikely, but has to be dealt with: 1157 * grab the element lock in addition to the bucket lock 1158 * and update element in place 1159 */ 1160 copy_map_value_locked(map, 1161 l_old->key + round_up(key_size, 8), 1162 value, false); 1163 ret = 0; 1164 goto err; 1165 } 1166 1167 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1168 l_old); 1169 if (IS_ERR(l_new)) { 1170 /* all pre-allocated elements are in use or memory exhausted */ 1171 ret = PTR_ERR(l_new); 1172 goto err; 1173 } 1174 1175 /* add new element to the head of the list, so that 1176 * concurrent search will find it before old elem 1177 */ 1178 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1179 if (l_old) { 1180 hlist_nulls_del_rcu(&l_old->hash_node); 1181 if (!htab_is_prealloc(htab)) 1182 free_htab_elem(htab, l_old); 1183 else 1184 check_and_free_fields(htab, l_old); 1185 } 1186 ret = 0; 1187 err: 1188 htab_unlock_bucket(htab, b, hash, flags); 1189 return ret; 1190 } 1191 1192 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1193 { 1194 check_and_free_fields(htab, elem); 1195 bpf_map_dec_elem_count(&htab->map); 1196 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1197 } 1198 1199 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1200 u64 map_flags) 1201 { 1202 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1203 struct htab_elem *l_new, *l_old = NULL; 1204 struct hlist_nulls_head *head; 1205 unsigned long flags; 1206 struct bucket *b; 1207 u32 key_size, hash; 1208 int ret; 1209 1210 if (unlikely(map_flags > BPF_EXIST)) 1211 /* unknown flags */ 1212 return -EINVAL; 1213 1214 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1215 !rcu_read_lock_bh_held()); 1216 1217 key_size = map->key_size; 1218 1219 hash = htab_map_hash(key, key_size, htab->hashrnd); 1220 1221 b = __select_bucket(htab, hash); 1222 head = &b->head; 1223 1224 /* For LRU, we need to alloc before taking bucket's 1225 * spinlock because getting free nodes from LRU may need 1226 * to remove older elements from htab and this removal 1227 * operation will need a bucket lock. 1228 */ 1229 l_new = prealloc_lru_pop(htab, key, hash); 1230 if (!l_new) 1231 return -ENOMEM; 1232 copy_map_value(&htab->map, 1233 l_new->key + round_up(map->key_size, 8), value); 1234 1235 ret = htab_lock_bucket(htab, b, hash, &flags); 1236 if (ret) 1237 goto err_lock_bucket; 1238 1239 l_old = lookup_elem_raw(head, hash, key, key_size); 1240 1241 ret = check_flags(htab, l_old, map_flags); 1242 if (ret) 1243 goto err; 1244 1245 /* add new element to the head of the list, so that 1246 * concurrent search will find it before old elem 1247 */ 1248 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1249 if (l_old) { 1250 bpf_lru_node_set_ref(&l_new->lru_node); 1251 hlist_nulls_del_rcu(&l_old->hash_node); 1252 } 1253 ret = 0; 1254 1255 err: 1256 htab_unlock_bucket(htab, b, hash, flags); 1257 1258 err_lock_bucket: 1259 if (ret) 1260 htab_lru_push_free(htab, l_new); 1261 else if (l_old) 1262 htab_lru_push_free(htab, l_old); 1263 1264 return ret; 1265 } 1266 1267 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1268 void *value, u64 map_flags, 1269 bool onallcpus) 1270 { 1271 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1272 struct htab_elem *l_new = NULL, *l_old; 1273 struct hlist_nulls_head *head; 1274 unsigned long flags; 1275 struct bucket *b; 1276 u32 key_size, hash; 1277 int ret; 1278 1279 if (unlikely(map_flags > BPF_EXIST)) 1280 /* unknown flags */ 1281 return -EINVAL; 1282 1283 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1284 !rcu_read_lock_bh_held()); 1285 1286 key_size = map->key_size; 1287 1288 hash = htab_map_hash(key, key_size, htab->hashrnd); 1289 1290 b = __select_bucket(htab, hash); 1291 head = &b->head; 1292 1293 ret = htab_lock_bucket(htab, b, hash, &flags); 1294 if (ret) 1295 return ret; 1296 1297 l_old = lookup_elem_raw(head, hash, key, key_size); 1298 1299 ret = check_flags(htab, l_old, map_flags); 1300 if (ret) 1301 goto err; 1302 1303 if (l_old) { 1304 /* per-cpu hash map can update value in-place */ 1305 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1306 value, onallcpus); 1307 } else { 1308 l_new = alloc_htab_elem(htab, key, value, key_size, 1309 hash, true, onallcpus, NULL); 1310 if (IS_ERR(l_new)) { 1311 ret = PTR_ERR(l_new); 1312 goto err; 1313 } 1314 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1315 } 1316 ret = 0; 1317 err: 1318 htab_unlock_bucket(htab, b, hash, flags); 1319 return ret; 1320 } 1321 1322 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1323 void *value, u64 map_flags, 1324 bool onallcpus) 1325 { 1326 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1327 struct htab_elem *l_new = NULL, *l_old; 1328 struct hlist_nulls_head *head; 1329 unsigned long flags; 1330 struct bucket *b; 1331 u32 key_size, hash; 1332 int ret; 1333 1334 if (unlikely(map_flags > BPF_EXIST)) 1335 /* unknown flags */ 1336 return -EINVAL; 1337 1338 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1339 !rcu_read_lock_bh_held()); 1340 1341 key_size = map->key_size; 1342 1343 hash = htab_map_hash(key, key_size, htab->hashrnd); 1344 1345 b = __select_bucket(htab, hash); 1346 head = &b->head; 1347 1348 /* For LRU, we need to alloc before taking bucket's 1349 * spinlock because LRU's elem alloc may need 1350 * to remove older elem from htab and this removal 1351 * operation will need a bucket lock. 1352 */ 1353 if (map_flags != BPF_EXIST) { 1354 l_new = prealloc_lru_pop(htab, key, hash); 1355 if (!l_new) 1356 return -ENOMEM; 1357 } 1358 1359 ret = htab_lock_bucket(htab, b, hash, &flags); 1360 if (ret) 1361 goto err_lock_bucket; 1362 1363 l_old = lookup_elem_raw(head, hash, key, key_size); 1364 1365 ret = check_flags(htab, l_old, map_flags); 1366 if (ret) 1367 goto err; 1368 1369 if (l_old) { 1370 bpf_lru_node_set_ref(&l_old->lru_node); 1371 1372 /* per-cpu hash map can update value in-place */ 1373 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1374 value, onallcpus); 1375 } else { 1376 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1377 value, onallcpus); 1378 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1379 l_new = NULL; 1380 } 1381 ret = 0; 1382 err: 1383 htab_unlock_bucket(htab, b, hash, flags); 1384 err_lock_bucket: 1385 if (l_new) { 1386 bpf_map_dec_elem_count(&htab->map); 1387 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1388 } 1389 return ret; 1390 } 1391 1392 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1393 void *value, u64 map_flags) 1394 { 1395 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1396 } 1397 1398 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1399 void *value, u64 map_flags) 1400 { 1401 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1402 false); 1403 } 1404 1405 /* Called from syscall or from eBPF program */ 1406 static long htab_map_delete_elem(struct bpf_map *map, void *key) 1407 { 1408 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1409 struct hlist_nulls_head *head; 1410 struct bucket *b; 1411 struct htab_elem *l; 1412 unsigned long flags; 1413 u32 hash, key_size; 1414 int ret; 1415 1416 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1417 !rcu_read_lock_bh_held()); 1418 1419 key_size = map->key_size; 1420 1421 hash = htab_map_hash(key, key_size, htab->hashrnd); 1422 b = __select_bucket(htab, hash); 1423 head = &b->head; 1424 1425 ret = htab_lock_bucket(htab, b, hash, &flags); 1426 if (ret) 1427 return ret; 1428 1429 l = lookup_elem_raw(head, hash, key, key_size); 1430 1431 if (l) { 1432 hlist_nulls_del_rcu(&l->hash_node); 1433 free_htab_elem(htab, l); 1434 } else { 1435 ret = -ENOENT; 1436 } 1437 1438 htab_unlock_bucket(htab, b, hash, flags); 1439 return ret; 1440 } 1441 1442 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1443 { 1444 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1445 struct hlist_nulls_head *head; 1446 struct bucket *b; 1447 struct htab_elem *l; 1448 unsigned long flags; 1449 u32 hash, key_size; 1450 int ret; 1451 1452 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1453 !rcu_read_lock_bh_held()); 1454 1455 key_size = map->key_size; 1456 1457 hash = htab_map_hash(key, key_size, htab->hashrnd); 1458 b = __select_bucket(htab, hash); 1459 head = &b->head; 1460 1461 ret = htab_lock_bucket(htab, b, hash, &flags); 1462 if (ret) 1463 return ret; 1464 1465 l = lookup_elem_raw(head, hash, key, key_size); 1466 1467 if (l) 1468 hlist_nulls_del_rcu(&l->hash_node); 1469 else 1470 ret = -ENOENT; 1471 1472 htab_unlock_bucket(htab, b, hash, flags); 1473 if (l) 1474 htab_lru_push_free(htab, l); 1475 return ret; 1476 } 1477 1478 static void delete_all_elements(struct bpf_htab *htab) 1479 { 1480 int i; 1481 1482 /* It's called from a worker thread, so disable migration here, 1483 * since bpf_mem_cache_free() relies on that. 1484 */ 1485 migrate_disable(); 1486 for (i = 0; i < htab->n_buckets; i++) { 1487 struct hlist_nulls_head *head = select_bucket(htab, i); 1488 struct hlist_nulls_node *n; 1489 struct htab_elem *l; 1490 1491 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1492 hlist_nulls_del_rcu(&l->hash_node); 1493 htab_elem_free(htab, l); 1494 } 1495 } 1496 migrate_enable(); 1497 } 1498 1499 static void htab_free_malloced_timers(struct bpf_htab *htab) 1500 { 1501 int i; 1502 1503 rcu_read_lock(); 1504 for (i = 0; i < htab->n_buckets; i++) { 1505 struct hlist_nulls_head *head = select_bucket(htab, i); 1506 struct hlist_nulls_node *n; 1507 struct htab_elem *l; 1508 1509 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1510 /* We only free timer on uref dropping to zero */ 1511 bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8)); 1512 } 1513 cond_resched_rcu(); 1514 } 1515 rcu_read_unlock(); 1516 } 1517 1518 static void htab_map_free_timers(struct bpf_map *map) 1519 { 1520 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1521 1522 /* We only free timer on uref dropping to zero */ 1523 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 1524 return; 1525 if (!htab_is_prealloc(htab)) 1526 htab_free_malloced_timers(htab); 1527 else 1528 htab_free_prealloced_timers(htab); 1529 } 1530 1531 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1532 static void htab_map_free(struct bpf_map *map) 1533 { 1534 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1535 int i; 1536 1537 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1538 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1539 * There is no need to synchronize_rcu() here to protect map elements. 1540 */ 1541 1542 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1543 * underneath and is reponsible for waiting for callbacks to finish 1544 * during bpf_mem_alloc_destroy(). 1545 */ 1546 if (!htab_is_prealloc(htab)) { 1547 delete_all_elements(htab); 1548 } else { 1549 htab_free_prealloced_fields(htab); 1550 prealloc_destroy(htab); 1551 } 1552 1553 bpf_map_free_elem_count(map); 1554 free_percpu(htab->extra_elems); 1555 bpf_map_area_free(htab->buckets); 1556 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1557 bpf_mem_alloc_destroy(&htab->ma); 1558 if (htab->use_percpu_counter) 1559 percpu_counter_destroy(&htab->pcount); 1560 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1561 free_percpu(htab->map_locked[i]); 1562 lockdep_unregister_key(&htab->lockdep_key); 1563 bpf_map_area_free(htab); 1564 } 1565 1566 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1567 struct seq_file *m) 1568 { 1569 void *value; 1570 1571 rcu_read_lock(); 1572 1573 value = htab_map_lookup_elem(map, key); 1574 if (!value) { 1575 rcu_read_unlock(); 1576 return; 1577 } 1578 1579 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1580 seq_puts(m, ": "); 1581 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1582 seq_puts(m, "\n"); 1583 1584 rcu_read_unlock(); 1585 } 1586 1587 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1588 void *value, bool is_lru_map, 1589 bool is_percpu, u64 flags) 1590 { 1591 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1592 struct hlist_nulls_head *head; 1593 unsigned long bflags; 1594 struct htab_elem *l; 1595 u32 hash, key_size; 1596 struct bucket *b; 1597 int ret; 1598 1599 key_size = map->key_size; 1600 1601 hash = htab_map_hash(key, key_size, htab->hashrnd); 1602 b = __select_bucket(htab, hash); 1603 head = &b->head; 1604 1605 ret = htab_lock_bucket(htab, b, hash, &bflags); 1606 if (ret) 1607 return ret; 1608 1609 l = lookup_elem_raw(head, hash, key, key_size); 1610 if (!l) { 1611 ret = -ENOENT; 1612 } else { 1613 if (is_percpu) { 1614 u32 roundup_value_size = round_up(map->value_size, 8); 1615 void __percpu *pptr; 1616 int off = 0, cpu; 1617 1618 pptr = htab_elem_get_ptr(l, key_size); 1619 for_each_possible_cpu(cpu) { 1620 copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); 1621 check_and_init_map_value(&htab->map, value + off); 1622 off += roundup_value_size; 1623 } 1624 } else { 1625 u32 roundup_key_size = round_up(map->key_size, 8); 1626 1627 if (flags & BPF_F_LOCK) 1628 copy_map_value_locked(map, value, l->key + 1629 roundup_key_size, 1630 true); 1631 else 1632 copy_map_value(map, value, l->key + 1633 roundup_key_size); 1634 /* Zeroing special fields in the temp buffer */ 1635 check_and_init_map_value(map, value); 1636 } 1637 1638 hlist_nulls_del_rcu(&l->hash_node); 1639 if (!is_lru_map) 1640 free_htab_elem(htab, l); 1641 } 1642 1643 htab_unlock_bucket(htab, b, hash, bflags); 1644 1645 if (is_lru_map && l) 1646 htab_lru_push_free(htab, l); 1647 1648 return ret; 1649 } 1650 1651 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1652 void *value, u64 flags) 1653 { 1654 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1655 flags); 1656 } 1657 1658 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1659 void *key, void *value, 1660 u64 flags) 1661 { 1662 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1663 flags); 1664 } 1665 1666 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1667 void *value, u64 flags) 1668 { 1669 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1670 flags); 1671 } 1672 1673 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1674 void *key, void *value, 1675 u64 flags) 1676 { 1677 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1678 flags); 1679 } 1680 1681 static int 1682 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1683 const union bpf_attr *attr, 1684 union bpf_attr __user *uattr, 1685 bool do_delete, bool is_lru_map, 1686 bool is_percpu) 1687 { 1688 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1689 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1690 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1691 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1692 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1693 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1694 u32 batch, max_count, size, bucket_size, map_id; 1695 struct htab_elem *node_to_free = NULL; 1696 u64 elem_map_flags, map_flags; 1697 struct hlist_nulls_head *head; 1698 struct hlist_nulls_node *n; 1699 unsigned long flags = 0; 1700 bool locked = false; 1701 struct htab_elem *l; 1702 struct bucket *b; 1703 int ret = 0; 1704 1705 elem_map_flags = attr->batch.elem_flags; 1706 if ((elem_map_flags & ~BPF_F_LOCK) || 1707 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1708 return -EINVAL; 1709 1710 map_flags = attr->batch.flags; 1711 if (map_flags) 1712 return -EINVAL; 1713 1714 max_count = attr->batch.count; 1715 if (!max_count) 1716 return 0; 1717 1718 if (put_user(0, &uattr->batch.count)) 1719 return -EFAULT; 1720 1721 batch = 0; 1722 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1723 return -EFAULT; 1724 1725 if (batch >= htab->n_buckets) 1726 return -ENOENT; 1727 1728 key_size = htab->map.key_size; 1729 roundup_key_size = round_up(htab->map.key_size, 8); 1730 value_size = htab->map.value_size; 1731 size = round_up(value_size, 8); 1732 if (is_percpu) 1733 value_size = size * num_possible_cpus(); 1734 total = 0; 1735 /* while experimenting with hash tables with sizes ranging from 10 to 1736 * 1000, it was observed that a bucket can have up to 5 entries. 1737 */ 1738 bucket_size = 5; 1739 1740 alloc: 1741 /* We cannot do copy_from_user or copy_to_user inside 1742 * the rcu_read_lock. Allocate enough space here. 1743 */ 1744 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1745 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1746 if (!keys || !values) { 1747 ret = -ENOMEM; 1748 goto after_loop; 1749 } 1750 1751 again: 1752 bpf_disable_instrumentation(); 1753 rcu_read_lock(); 1754 again_nocopy: 1755 dst_key = keys; 1756 dst_val = values; 1757 b = &htab->buckets[batch]; 1758 head = &b->head; 1759 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1760 if (locked) { 1761 ret = htab_lock_bucket(htab, b, batch, &flags); 1762 if (ret) { 1763 rcu_read_unlock(); 1764 bpf_enable_instrumentation(); 1765 goto after_loop; 1766 } 1767 } 1768 1769 bucket_cnt = 0; 1770 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1771 bucket_cnt++; 1772 1773 if (bucket_cnt && !locked) { 1774 locked = true; 1775 goto again_nocopy; 1776 } 1777 1778 if (bucket_cnt > (max_count - total)) { 1779 if (total == 0) 1780 ret = -ENOSPC; 1781 /* Note that since bucket_cnt > 0 here, it is implicit 1782 * that the locked was grabbed, so release it. 1783 */ 1784 htab_unlock_bucket(htab, b, batch, flags); 1785 rcu_read_unlock(); 1786 bpf_enable_instrumentation(); 1787 goto after_loop; 1788 } 1789 1790 if (bucket_cnt > bucket_size) { 1791 bucket_size = bucket_cnt; 1792 /* Note that since bucket_cnt > 0 here, it is implicit 1793 * that the locked was grabbed, so release it. 1794 */ 1795 htab_unlock_bucket(htab, b, batch, flags); 1796 rcu_read_unlock(); 1797 bpf_enable_instrumentation(); 1798 kvfree(keys); 1799 kvfree(values); 1800 goto alloc; 1801 } 1802 1803 /* Next block is only safe to run if you have grabbed the lock */ 1804 if (!locked) 1805 goto next_batch; 1806 1807 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1808 memcpy(dst_key, l->key, key_size); 1809 1810 if (is_percpu) { 1811 int off = 0, cpu; 1812 void __percpu *pptr; 1813 1814 pptr = htab_elem_get_ptr(l, map->key_size); 1815 for_each_possible_cpu(cpu) { 1816 copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); 1817 check_and_init_map_value(&htab->map, dst_val + off); 1818 off += size; 1819 } 1820 } else { 1821 value = l->key + roundup_key_size; 1822 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1823 struct bpf_map **inner_map = value; 1824 1825 /* Actual value is the id of the inner map */ 1826 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1827 value = &map_id; 1828 } 1829 1830 if (elem_map_flags & BPF_F_LOCK) 1831 copy_map_value_locked(map, dst_val, value, 1832 true); 1833 else 1834 copy_map_value(map, dst_val, value); 1835 /* Zeroing special fields in the temp buffer */ 1836 check_and_init_map_value(map, dst_val); 1837 } 1838 if (do_delete) { 1839 hlist_nulls_del_rcu(&l->hash_node); 1840 1841 /* bpf_lru_push_free() will acquire lru_lock, which 1842 * may cause deadlock. See comments in function 1843 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1844 * after releasing the bucket lock. 1845 */ 1846 if (is_lru_map) { 1847 l->batch_flink = node_to_free; 1848 node_to_free = l; 1849 } else { 1850 free_htab_elem(htab, l); 1851 } 1852 } 1853 dst_key += key_size; 1854 dst_val += value_size; 1855 } 1856 1857 htab_unlock_bucket(htab, b, batch, flags); 1858 locked = false; 1859 1860 while (node_to_free) { 1861 l = node_to_free; 1862 node_to_free = node_to_free->batch_flink; 1863 htab_lru_push_free(htab, l); 1864 } 1865 1866 next_batch: 1867 /* If we are not copying data, we can go to next bucket and avoid 1868 * unlocking the rcu. 1869 */ 1870 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1871 batch++; 1872 goto again_nocopy; 1873 } 1874 1875 rcu_read_unlock(); 1876 bpf_enable_instrumentation(); 1877 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1878 key_size * bucket_cnt) || 1879 copy_to_user(uvalues + total * value_size, values, 1880 value_size * bucket_cnt))) { 1881 ret = -EFAULT; 1882 goto after_loop; 1883 } 1884 1885 total += bucket_cnt; 1886 batch++; 1887 if (batch >= htab->n_buckets) { 1888 ret = -ENOENT; 1889 goto after_loop; 1890 } 1891 goto again; 1892 1893 after_loop: 1894 if (ret == -EFAULT) 1895 goto out; 1896 1897 /* copy # of entries and next batch */ 1898 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1899 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1900 put_user(total, &uattr->batch.count)) 1901 ret = -EFAULT; 1902 1903 out: 1904 kvfree(keys); 1905 kvfree(values); 1906 return ret; 1907 } 1908 1909 static int 1910 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1911 union bpf_attr __user *uattr) 1912 { 1913 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1914 false, true); 1915 } 1916 1917 static int 1918 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1919 const union bpf_attr *attr, 1920 union bpf_attr __user *uattr) 1921 { 1922 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1923 false, true); 1924 } 1925 1926 static int 1927 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1928 union bpf_attr __user *uattr) 1929 { 1930 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1931 false, false); 1932 } 1933 1934 static int 1935 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1936 const union bpf_attr *attr, 1937 union bpf_attr __user *uattr) 1938 { 1939 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1940 false, false); 1941 } 1942 1943 static int 1944 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1945 const union bpf_attr *attr, 1946 union bpf_attr __user *uattr) 1947 { 1948 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1949 true, true); 1950 } 1951 1952 static int 1953 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1954 const union bpf_attr *attr, 1955 union bpf_attr __user *uattr) 1956 { 1957 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1958 true, true); 1959 } 1960 1961 static int 1962 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1963 union bpf_attr __user *uattr) 1964 { 1965 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1966 true, false); 1967 } 1968 1969 static int 1970 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1971 const union bpf_attr *attr, 1972 union bpf_attr __user *uattr) 1973 { 1974 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1975 true, false); 1976 } 1977 1978 struct bpf_iter_seq_hash_map_info { 1979 struct bpf_map *map; 1980 struct bpf_htab *htab; 1981 void *percpu_value_buf; // non-zero means percpu hash 1982 u32 bucket_id; 1983 u32 skip_elems; 1984 }; 1985 1986 static struct htab_elem * 1987 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1988 struct htab_elem *prev_elem) 1989 { 1990 const struct bpf_htab *htab = info->htab; 1991 u32 skip_elems = info->skip_elems; 1992 u32 bucket_id = info->bucket_id; 1993 struct hlist_nulls_head *head; 1994 struct hlist_nulls_node *n; 1995 struct htab_elem *elem; 1996 struct bucket *b; 1997 u32 i, count; 1998 1999 if (bucket_id >= htab->n_buckets) 2000 return NULL; 2001 2002 /* try to find next elem in the same bucket */ 2003 if (prev_elem) { 2004 /* no update/deletion on this bucket, prev_elem should be still valid 2005 * and we won't skip elements. 2006 */ 2007 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 2008 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 2009 if (elem) 2010 return elem; 2011 2012 /* not found, unlock and go to the next bucket */ 2013 b = &htab->buckets[bucket_id++]; 2014 rcu_read_unlock(); 2015 skip_elems = 0; 2016 } 2017 2018 for (i = bucket_id; i < htab->n_buckets; i++) { 2019 b = &htab->buckets[i]; 2020 rcu_read_lock(); 2021 2022 count = 0; 2023 head = &b->head; 2024 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2025 if (count >= skip_elems) { 2026 info->bucket_id = i; 2027 info->skip_elems = count; 2028 return elem; 2029 } 2030 count++; 2031 } 2032 2033 rcu_read_unlock(); 2034 skip_elems = 0; 2035 } 2036 2037 info->bucket_id = i; 2038 info->skip_elems = 0; 2039 return NULL; 2040 } 2041 2042 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2043 { 2044 struct bpf_iter_seq_hash_map_info *info = seq->private; 2045 struct htab_elem *elem; 2046 2047 elem = bpf_hash_map_seq_find_next(info, NULL); 2048 if (!elem) 2049 return NULL; 2050 2051 if (*pos == 0) 2052 ++*pos; 2053 return elem; 2054 } 2055 2056 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2057 { 2058 struct bpf_iter_seq_hash_map_info *info = seq->private; 2059 2060 ++*pos; 2061 ++info->skip_elems; 2062 return bpf_hash_map_seq_find_next(info, v); 2063 } 2064 2065 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2066 { 2067 struct bpf_iter_seq_hash_map_info *info = seq->private; 2068 u32 roundup_key_size, roundup_value_size; 2069 struct bpf_iter__bpf_map_elem ctx = {}; 2070 struct bpf_map *map = info->map; 2071 struct bpf_iter_meta meta; 2072 int ret = 0, off = 0, cpu; 2073 struct bpf_prog *prog; 2074 void __percpu *pptr; 2075 2076 meta.seq = seq; 2077 prog = bpf_iter_get_info(&meta, elem == NULL); 2078 if (prog) { 2079 ctx.meta = &meta; 2080 ctx.map = info->map; 2081 if (elem) { 2082 roundup_key_size = round_up(map->key_size, 8); 2083 ctx.key = elem->key; 2084 if (!info->percpu_value_buf) { 2085 ctx.value = elem->key + roundup_key_size; 2086 } else { 2087 roundup_value_size = round_up(map->value_size, 8); 2088 pptr = htab_elem_get_ptr(elem, map->key_size); 2089 for_each_possible_cpu(cpu) { 2090 copy_map_value_long(map, info->percpu_value_buf + off, 2091 per_cpu_ptr(pptr, cpu)); 2092 check_and_init_map_value(map, info->percpu_value_buf + off); 2093 off += roundup_value_size; 2094 } 2095 ctx.value = info->percpu_value_buf; 2096 } 2097 } 2098 ret = bpf_iter_run_prog(prog, &ctx); 2099 } 2100 2101 return ret; 2102 } 2103 2104 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2105 { 2106 return __bpf_hash_map_seq_show(seq, v); 2107 } 2108 2109 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2110 { 2111 if (!v) 2112 (void)__bpf_hash_map_seq_show(seq, NULL); 2113 else 2114 rcu_read_unlock(); 2115 } 2116 2117 static int bpf_iter_init_hash_map(void *priv_data, 2118 struct bpf_iter_aux_info *aux) 2119 { 2120 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2121 struct bpf_map *map = aux->map; 2122 void *value_buf; 2123 u32 buf_size; 2124 2125 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2126 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2127 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2128 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2129 if (!value_buf) 2130 return -ENOMEM; 2131 2132 seq_info->percpu_value_buf = value_buf; 2133 } 2134 2135 bpf_map_inc_with_uref(map); 2136 seq_info->map = map; 2137 seq_info->htab = container_of(map, struct bpf_htab, map); 2138 return 0; 2139 } 2140 2141 static void bpf_iter_fini_hash_map(void *priv_data) 2142 { 2143 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2144 2145 bpf_map_put_with_uref(seq_info->map); 2146 kfree(seq_info->percpu_value_buf); 2147 } 2148 2149 static const struct seq_operations bpf_hash_map_seq_ops = { 2150 .start = bpf_hash_map_seq_start, 2151 .next = bpf_hash_map_seq_next, 2152 .stop = bpf_hash_map_seq_stop, 2153 .show = bpf_hash_map_seq_show, 2154 }; 2155 2156 static const struct bpf_iter_seq_info iter_seq_info = { 2157 .seq_ops = &bpf_hash_map_seq_ops, 2158 .init_seq_private = bpf_iter_init_hash_map, 2159 .fini_seq_private = bpf_iter_fini_hash_map, 2160 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2161 }; 2162 2163 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2164 void *callback_ctx, u64 flags) 2165 { 2166 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2167 struct hlist_nulls_head *head; 2168 struct hlist_nulls_node *n; 2169 struct htab_elem *elem; 2170 u32 roundup_key_size; 2171 int i, num_elems = 0; 2172 void __percpu *pptr; 2173 struct bucket *b; 2174 void *key, *val; 2175 bool is_percpu; 2176 u64 ret = 0; 2177 2178 if (flags != 0) 2179 return -EINVAL; 2180 2181 is_percpu = htab_is_percpu(htab); 2182 2183 roundup_key_size = round_up(map->key_size, 8); 2184 /* disable migration so percpu value prepared here will be the 2185 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2186 */ 2187 if (is_percpu) 2188 migrate_disable(); 2189 for (i = 0; i < htab->n_buckets; i++) { 2190 b = &htab->buckets[i]; 2191 rcu_read_lock(); 2192 head = &b->head; 2193 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2194 key = elem->key; 2195 if (is_percpu) { 2196 /* current cpu value for percpu map */ 2197 pptr = htab_elem_get_ptr(elem, map->key_size); 2198 val = this_cpu_ptr(pptr); 2199 } else { 2200 val = elem->key + roundup_key_size; 2201 } 2202 num_elems++; 2203 ret = callback_fn((u64)(long)map, (u64)(long)key, 2204 (u64)(long)val, (u64)(long)callback_ctx, 0); 2205 /* return value: 0 - continue, 1 - stop and return */ 2206 if (ret) { 2207 rcu_read_unlock(); 2208 goto out; 2209 } 2210 } 2211 rcu_read_unlock(); 2212 } 2213 out: 2214 if (is_percpu) 2215 migrate_enable(); 2216 return num_elems; 2217 } 2218 2219 static u64 htab_map_mem_usage(const struct bpf_map *map) 2220 { 2221 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2222 u32 value_size = round_up(htab->map.value_size, 8); 2223 bool prealloc = htab_is_prealloc(htab); 2224 bool percpu = htab_is_percpu(htab); 2225 bool lru = htab_is_lru(htab); 2226 u64 num_entries; 2227 u64 usage = sizeof(struct bpf_htab); 2228 2229 usage += sizeof(struct bucket) * htab->n_buckets; 2230 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; 2231 if (prealloc) { 2232 num_entries = map->max_entries; 2233 if (htab_has_extra_elems(htab)) 2234 num_entries += num_possible_cpus(); 2235 2236 usage += htab->elem_size * num_entries; 2237 2238 if (percpu) 2239 usage += value_size * num_possible_cpus() * num_entries; 2240 else if (!lru) 2241 usage += sizeof(struct htab_elem *) * num_possible_cpus(); 2242 } else { 2243 #define LLIST_NODE_SZ sizeof(struct llist_node) 2244 2245 num_entries = htab->use_percpu_counter ? 2246 percpu_counter_sum(&htab->pcount) : 2247 atomic_read(&htab->count); 2248 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; 2249 if (percpu) { 2250 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; 2251 usage += value_size * num_possible_cpus() * num_entries; 2252 } 2253 } 2254 return usage; 2255 } 2256 2257 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2258 const struct bpf_map_ops htab_map_ops = { 2259 .map_meta_equal = bpf_map_meta_equal, 2260 .map_alloc_check = htab_map_alloc_check, 2261 .map_alloc = htab_map_alloc, 2262 .map_free = htab_map_free, 2263 .map_get_next_key = htab_map_get_next_key, 2264 .map_release_uref = htab_map_free_timers, 2265 .map_lookup_elem = htab_map_lookup_elem, 2266 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2267 .map_update_elem = htab_map_update_elem, 2268 .map_delete_elem = htab_map_delete_elem, 2269 .map_gen_lookup = htab_map_gen_lookup, 2270 .map_seq_show_elem = htab_map_seq_show_elem, 2271 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2272 .map_for_each_callback = bpf_for_each_hash_elem, 2273 .map_mem_usage = htab_map_mem_usage, 2274 BATCH_OPS(htab), 2275 .map_btf_id = &htab_map_btf_ids[0], 2276 .iter_seq_info = &iter_seq_info, 2277 }; 2278 2279 const struct bpf_map_ops htab_lru_map_ops = { 2280 .map_meta_equal = bpf_map_meta_equal, 2281 .map_alloc_check = htab_map_alloc_check, 2282 .map_alloc = htab_map_alloc, 2283 .map_free = htab_map_free, 2284 .map_get_next_key = htab_map_get_next_key, 2285 .map_release_uref = htab_map_free_timers, 2286 .map_lookup_elem = htab_lru_map_lookup_elem, 2287 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2288 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2289 .map_update_elem = htab_lru_map_update_elem, 2290 .map_delete_elem = htab_lru_map_delete_elem, 2291 .map_gen_lookup = htab_lru_map_gen_lookup, 2292 .map_seq_show_elem = htab_map_seq_show_elem, 2293 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2294 .map_for_each_callback = bpf_for_each_hash_elem, 2295 .map_mem_usage = htab_map_mem_usage, 2296 BATCH_OPS(htab_lru), 2297 .map_btf_id = &htab_map_btf_ids[0], 2298 .iter_seq_info = &iter_seq_info, 2299 }; 2300 2301 /* Called from eBPF program */ 2302 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2303 { 2304 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2305 2306 if (l) 2307 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2308 else 2309 return NULL; 2310 } 2311 2312 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2313 { 2314 struct htab_elem *l; 2315 2316 if (cpu >= nr_cpu_ids) 2317 return NULL; 2318 2319 l = __htab_map_lookup_elem(map, key); 2320 if (l) 2321 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2322 else 2323 return NULL; 2324 } 2325 2326 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2327 { 2328 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2329 2330 if (l) { 2331 bpf_lru_node_set_ref(&l->lru_node); 2332 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2333 } 2334 2335 return NULL; 2336 } 2337 2338 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2339 { 2340 struct htab_elem *l; 2341 2342 if (cpu >= nr_cpu_ids) 2343 return NULL; 2344 2345 l = __htab_map_lookup_elem(map, key); 2346 if (l) { 2347 bpf_lru_node_set_ref(&l->lru_node); 2348 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2349 } 2350 2351 return NULL; 2352 } 2353 2354 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2355 { 2356 struct htab_elem *l; 2357 void __percpu *pptr; 2358 int ret = -ENOENT; 2359 int cpu, off = 0; 2360 u32 size; 2361 2362 /* per_cpu areas are zero-filled and bpf programs can only 2363 * access 'value_size' of them, so copying rounded areas 2364 * will not leak any kernel data 2365 */ 2366 size = round_up(map->value_size, 8); 2367 rcu_read_lock(); 2368 l = __htab_map_lookup_elem(map, key); 2369 if (!l) 2370 goto out; 2371 /* We do not mark LRU map element here in order to not mess up 2372 * eviction heuristics when user space does a map walk. 2373 */ 2374 pptr = htab_elem_get_ptr(l, map->key_size); 2375 for_each_possible_cpu(cpu) { 2376 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 2377 check_and_init_map_value(map, value + off); 2378 off += size; 2379 } 2380 ret = 0; 2381 out: 2382 rcu_read_unlock(); 2383 return ret; 2384 } 2385 2386 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2387 u64 map_flags) 2388 { 2389 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2390 int ret; 2391 2392 rcu_read_lock(); 2393 if (htab_is_lru(htab)) 2394 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2395 map_flags, true); 2396 else 2397 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2398 true); 2399 rcu_read_unlock(); 2400 2401 return ret; 2402 } 2403 2404 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2405 struct seq_file *m) 2406 { 2407 struct htab_elem *l; 2408 void __percpu *pptr; 2409 int cpu; 2410 2411 rcu_read_lock(); 2412 2413 l = __htab_map_lookup_elem(map, key); 2414 if (!l) { 2415 rcu_read_unlock(); 2416 return; 2417 } 2418 2419 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2420 seq_puts(m, ": {\n"); 2421 pptr = htab_elem_get_ptr(l, map->key_size); 2422 for_each_possible_cpu(cpu) { 2423 seq_printf(m, "\tcpu%d: ", cpu); 2424 btf_type_seq_show(map->btf, map->btf_value_type_id, 2425 per_cpu_ptr(pptr, cpu), m); 2426 seq_puts(m, "\n"); 2427 } 2428 seq_puts(m, "}\n"); 2429 2430 rcu_read_unlock(); 2431 } 2432 2433 const struct bpf_map_ops htab_percpu_map_ops = { 2434 .map_meta_equal = bpf_map_meta_equal, 2435 .map_alloc_check = htab_map_alloc_check, 2436 .map_alloc = htab_map_alloc, 2437 .map_free = htab_map_free, 2438 .map_get_next_key = htab_map_get_next_key, 2439 .map_lookup_elem = htab_percpu_map_lookup_elem, 2440 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2441 .map_update_elem = htab_percpu_map_update_elem, 2442 .map_delete_elem = htab_map_delete_elem, 2443 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2444 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2445 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2446 .map_for_each_callback = bpf_for_each_hash_elem, 2447 .map_mem_usage = htab_map_mem_usage, 2448 BATCH_OPS(htab_percpu), 2449 .map_btf_id = &htab_map_btf_ids[0], 2450 .iter_seq_info = &iter_seq_info, 2451 }; 2452 2453 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2454 .map_meta_equal = bpf_map_meta_equal, 2455 .map_alloc_check = htab_map_alloc_check, 2456 .map_alloc = htab_map_alloc, 2457 .map_free = htab_map_free, 2458 .map_get_next_key = htab_map_get_next_key, 2459 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2460 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2461 .map_update_elem = htab_lru_percpu_map_update_elem, 2462 .map_delete_elem = htab_lru_map_delete_elem, 2463 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2464 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2465 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2466 .map_for_each_callback = bpf_for_each_hash_elem, 2467 .map_mem_usage = htab_map_mem_usage, 2468 BATCH_OPS(htab_lru_percpu), 2469 .map_btf_id = &htab_map_btf_ids[0], 2470 .iter_seq_info = &iter_seq_info, 2471 }; 2472 2473 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2474 { 2475 if (attr->value_size != sizeof(u32)) 2476 return -EINVAL; 2477 return htab_map_alloc_check(attr); 2478 } 2479 2480 static void fd_htab_map_free(struct bpf_map *map) 2481 { 2482 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2483 struct hlist_nulls_node *n; 2484 struct hlist_nulls_head *head; 2485 struct htab_elem *l; 2486 int i; 2487 2488 for (i = 0; i < htab->n_buckets; i++) { 2489 head = select_bucket(htab, i); 2490 2491 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2492 void *ptr = fd_htab_map_get_ptr(map, l); 2493 2494 map->ops->map_fd_put_ptr(map, ptr, false); 2495 } 2496 } 2497 2498 htab_map_free(map); 2499 } 2500 2501 /* only called from syscall */ 2502 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2503 { 2504 void **ptr; 2505 int ret = 0; 2506 2507 if (!map->ops->map_fd_sys_lookup_elem) 2508 return -ENOTSUPP; 2509 2510 rcu_read_lock(); 2511 ptr = htab_map_lookup_elem(map, key); 2512 if (ptr) 2513 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2514 else 2515 ret = -ENOENT; 2516 rcu_read_unlock(); 2517 2518 return ret; 2519 } 2520 2521 /* only called from syscall */ 2522 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2523 void *key, void *value, u64 map_flags) 2524 { 2525 void *ptr; 2526 int ret; 2527 u32 ufd = *(u32 *)value; 2528 2529 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2530 if (IS_ERR(ptr)) 2531 return PTR_ERR(ptr); 2532 2533 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2534 if (ret) 2535 map->ops->map_fd_put_ptr(map, ptr, false); 2536 2537 return ret; 2538 } 2539 2540 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2541 { 2542 struct bpf_map *map, *inner_map_meta; 2543 2544 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2545 if (IS_ERR(inner_map_meta)) 2546 return inner_map_meta; 2547 2548 map = htab_map_alloc(attr); 2549 if (IS_ERR(map)) { 2550 bpf_map_meta_free(inner_map_meta); 2551 return map; 2552 } 2553 2554 map->inner_map_meta = inner_map_meta; 2555 2556 return map; 2557 } 2558 2559 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2560 { 2561 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2562 2563 if (!inner_map) 2564 return NULL; 2565 2566 return READ_ONCE(*inner_map); 2567 } 2568 2569 static int htab_of_map_gen_lookup(struct bpf_map *map, 2570 struct bpf_insn *insn_buf) 2571 { 2572 struct bpf_insn *insn = insn_buf; 2573 const int ret = BPF_REG_0; 2574 2575 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2576 (void *(*)(struct bpf_map *map, void *key))NULL)); 2577 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2578 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2579 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2580 offsetof(struct htab_elem, key) + 2581 round_up(map->key_size, 8)); 2582 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2583 2584 return insn - insn_buf; 2585 } 2586 2587 static void htab_of_map_free(struct bpf_map *map) 2588 { 2589 bpf_map_meta_free(map->inner_map_meta); 2590 fd_htab_map_free(map); 2591 } 2592 2593 const struct bpf_map_ops htab_of_maps_map_ops = { 2594 .map_alloc_check = fd_htab_map_alloc_check, 2595 .map_alloc = htab_of_map_alloc, 2596 .map_free = htab_of_map_free, 2597 .map_get_next_key = htab_map_get_next_key, 2598 .map_lookup_elem = htab_of_map_lookup_elem, 2599 .map_delete_elem = htab_map_delete_elem, 2600 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2601 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2602 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2603 .map_gen_lookup = htab_of_map_gen_lookup, 2604 .map_check_btf = map_check_no_btf, 2605 .map_mem_usage = htab_map_mem_usage, 2606 BATCH_OPS(htab), 2607 .map_btf_id = &htab_map_btf_ids[0], 2608 }; 2609