1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include "percpu_freelist.h" 13 #include "bpf_lru_list.h" 14 #include "map_in_map.h" 15 16 #define HTAB_CREATE_FLAG_MASK \ 17 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 18 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 19 20 #define BATCH_OPS(_name) \ 21 .map_lookup_batch = \ 22 _name##_map_lookup_batch, \ 23 .map_lookup_and_delete_batch = \ 24 _name##_map_lookup_and_delete_batch, \ 25 .map_update_batch = \ 26 generic_map_update_batch, \ 27 .map_delete_batch = \ 28 generic_map_delete_batch 29 30 /* 31 * The bucket lock has two protection scopes: 32 * 33 * 1) Serializing concurrent operations from BPF programs on differrent 34 * CPUs 35 * 36 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 37 * 38 * BPF programs can execute in any context including perf, kprobes and 39 * tracing. As there are almost no limits where perf, kprobes and tracing 40 * can be invoked from the lock operations need to be protected against 41 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 42 * the lock held section when functions which acquire this lock are invoked 43 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 44 * variable bpf_prog_active, which prevents BPF programs attached to perf 45 * events, kprobes and tracing to be invoked before the prior invocation 46 * from one of these contexts completed. sys_bpf() uses the same mechanism 47 * by pinning the task to the current CPU and incrementing the recursion 48 * protection accross the map operation. 49 * 50 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 51 * operations like memory allocations (even with GFP_ATOMIC) from atomic 52 * contexts. This is required because even with GFP_ATOMIC the memory 53 * allocator calls into code pathes which acquire locks with long held lock 54 * sections. To ensure the deterministic behaviour these locks are regular 55 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 56 * true atomic contexts on an RT kernel are the low level hardware 57 * handling, scheduling, low level interrupt handling, NMIs etc. None of 58 * these contexts should ever do memory allocations. 59 * 60 * As regular device interrupt handlers and soft interrupts are forced into 61 * thread context, the existing code which does 62 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*(); 63 * just works. 64 * 65 * In theory the BPF locks could be converted to regular spinlocks as well, 66 * but the bucket locks and percpu_freelist locks can be taken from 67 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 68 * atomic contexts even on RT. These mechanisms require preallocated maps, 69 * so there is no need to invoke memory allocations within the lock held 70 * sections. 71 * 72 * BPF maps which need dynamic allocation are only used from (forced) 73 * thread context on RT and can therefore use regular spinlocks which in 74 * turn allows to invoke memory allocations from the lock held section. 75 * 76 * On a non RT kernel this distinction is neither possible nor required. 77 * spinlock maps to raw_spinlock and the extra code is optimized out by the 78 * compiler. 79 */ 80 struct bucket { 81 struct hlist_nulls_head head; 82 union { 83 raw_spinlock_t raw_lock; 84 spinlock_t lock; 85 }; 86 }; 87 88 struct bpf_htab { 89 struct bpf_map map; 90 struct bucket *buckets; 91 void *elems; 92 union { 93 struct pcpu_freelist freelist; 94 struct bpf_lru lru; 95 }; 96 struct htab_elem *__percpu *extra_elems; 97 atomic_t count; /* number of elements in this hashtable */ 98 u32 n_buckets; /* number of hash buckets */ 99 u32 elem_size; /* size of each element in bytes */ 100 u32 hashrnd; 101 }; 102 103 /* each htab element is struct htab_elem + key + value */ 104 struct htab_elem { 105 union { 106 struct hlist_nulls_node hash_node; 107 struct { 108 void *padding; 109 union { 110 struct bpf_htab *htab; 111 struct pcpu_freelist_node fnode; 112 struct htab_elem *batch_flink; 113 }; 114 }; 115 }; 116 union { 117 struct rcu_head rcu; 118 struct bpf_lru_node lru_node; 119 }; 120 u32 hash; 121 char key[] __aligned(8); 122 }; 123 124 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 125 { 126 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 127 } 128 129 static inline bool htab_use_raw_lock(const struct bpf_htab *htab) 130 { 131 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab)); 132 } 133 134 static void htab_init_buckets(struct bpf_htab *htab) 135 { 136 unsigned i; 137 138 for (i = 0; i < htab->n_buckets; i++) { 139 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 140 if (htab_use_raw_lock(htab)) 141 raw_spin_lock_init(&htab->buckets[i].raw_lock); 142 else 143 spin_lock_init(&htab->buckets[i].lock); 144 } 145 } 146 147 static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab, 148 struct bucket *b) 149 { 150 unsigned long flags; 151 152 if (htab_use_raw_lock(htab)) 153 raw_spin_lock_irqsave(&b->raw_lock, flags); 154 else 155 spin_lock_irqsave(&b->lock, flags); 156 return flags; 157 } 158 159 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 160 struct bucket *b, 161 unsigned long flags) 162 { 163 if (htab_use_raw_lock(htab)) 164 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 165 else 166 spin_unlock_irqrestore(&b->lock, flags); 167 } 168 169 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 170 171 static bool htab_is_lru(const struct bpf_htab *htab) 172 { 173 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 174 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 175 } 176 177 static bool htab_is_percpu(const struct bpf_htab *htab) 178 { 179 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 180 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 181 } 182 183 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 184 void __percpu *pptr) 185 { 186 *(void __percpu **)(l->key + key_size) = pptr; 187 } 188 189 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 190 { 191 return *(void __percpu **)(l->key + key_size); 192 } 193 194 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 195 { 196 return *(void **)(l->key + roundup(map->key_size, 8)); 197 } 198 199 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 200 { 201 return (struct htab_elem *) (htab->elems + i * htab->elem_size); 202 } 203 204 static void htab_free_elems(struct bpf_htab *htab) 205 { 206 int i; 207 208 if (!htab_is_percpu(htab)) 209 goto free_elems; 210 211 for (i = 0; i < htab->map.max_entries; i++) { 212 void __percpu *pptr; 213 214 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 215 htab->map.key_size); 216 free_percpu(pptr); 217 cond_resched(); 218 } 219 free_elems: 220 bpf_map_area_free(htab->elems); 221 } 222 223 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 224 * (bucket_lock). If both locks need to be acquired together, the lock 225 * order is always lru_lock -> bucket_lock and this only happens in 226 * bpf_lru_list.c logic. For example, certain code path of 227 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 228 * will acquire lru_lock first followed by acquiring bucket_lock. 229 * 230 * In hashtab.c, to avoid deadlock, lock acquisition of 231 * bucket_lock followed by lru_lock is not allowed. In such cases, 232 * bucket_lock needs to be released first before acquiring lru_lock. 233 */ 234 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 235 u32 hash) 236 { 237 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 238 struct htab_elem *l; 239 240 if (node) { 241 l = container_of(node, struct htab_elem, lru_node); 242 memcpy(l->key, key, htab->map.key_size); 243 return l; 244 } 245 246 return NULL; 247 } 248 249 static int prealloc_init(struct bpf_htab *htab) 250 { 251 u32 num_entries = htab->map.max_entries; 252 int err = -ENOMEM, i; 253 254 if (!htab_is_percpu(htab) && !htab_is_lru(htab)) 255 num_entries += num_possible_cpus(); 256 257 htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries, 258 htab->map.numa_node); 259 if (!htab->elems) 260 return -ENOMEM; 261 262 if (!htab_is_percpu(htab)) 263 goto skip_percpu_elems; 264 265 for (i = 0; i < num_entries; i++) { 266 u32 size = round_up(htab->map.value_size, 8); 267 void __percpu *pptr; 268 269 pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN); 270 if (!pptr) 271 goto free_elems; 272 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 273 pptr); 274 cond_resched(); 275 } 276 277 skip_percpu_elems: 278 if (htab_is_lru(htab)) 279 err = bpf_lru_init(&htab->lru, 280 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 281 offsetof(struct htab_elem, hash) - 282 offsetof(struct htab_elem, lru_node), 283 htab_lru_map_delete_node, 284 htab); 285 else 286 err = pcpu_freelist_init(&htab->freelist); 287 288 if (err) 289 goto free_elems; 290 291 if (htab_is_lru(htab)) 292 bpf_lru_populate(&htab->lru, htab->elems, 293 offsetof(struct htab_elem, lru_node), 294 htab->elem_size, num_entries); 295 else 296 pcpu_freelist_populate(&htab->freelist, 297 htab->elems + offsetof(struct htab_elem, fnode), 298 htab->elem_size, num_entries); 299 300 return 0; 301 302 free_elems: 303 htab_free_elems(htab); 304 return err; 305 } 306 307 static void prealloc_destroy(struct bpf_htab *htab) 308 { 309 htab_free_elems(htab); 310 311 if (htab_is_lru(htab)) 312 bpf_lru_destroy(&htab->lru); 313 else 314 pcpu_freelist_destroy(&htab->freelist); 315 } 316 317 static int alloc_extra_elems(struct bpf_htab *htab) 318 { 319 struct htab_elem *__percpu *pptr, *l_new; 320 struct pcpu_freelist_node *l; 321 int cpu; 322 323 pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8, 324 GFP_USER | __GFP_NOWARN); 325 if (!pptr) 326 return -ENOMEM; 327 328 for_each_possible_cpu(cpu) { 329 l = pcpu_freelist_pop(&htab->freelist); 330 /* pop will succeed, since prealloc_init() 331 * preallocated extra num_possible_cpus elements 332 */ 333 l_new = container_of(l, struct htab_elem, fnode); 334 *per_cpu_ptr(pptr, cpu) = l_new; 335 } 336 htab->extra_elems = pptr; 337 return 0; 338 } 339 340 /* Called from syscall */ 341 static int htab_map_alloc_check(union bpf_attr *attr) 342 { 343 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 344 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 345 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 346 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 347 /* percpu_lru means each cpu has its own LRU list. 348 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 349 * the map's value itself is percpu. percpu_lru has 350 * nothing to do with the map's value. 351 */ 352 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 353 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 354 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 355 int numa_node = bpf_map_attr_numa_node(attr); 356 357 BUILD_BUG_ON(offsetof(struct htab_elem, htab) != 358 offsetof(struct htab_elem, hash_node.pprev)); 359 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 360 offsetof(struct htab_elem, hash_node.pprev)); 361 362 if (lru && !bpf_capable()) 363 /* LRU implementation is much complicated than other 364 * maps. Hence, limit to CAP_BPF. 365 */ 366 return -EPERM; 367 368 if (zero_seed && !capable(CAP_SYS_ADMIN)) 369 /* Guard against local DoS, and discourage production use. */ 370 return -EPERM; 371 372 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 373 !bpf_map_flags_access_ok(attr->map_flags)) 374 return -EINVAL; 375 376 if (!lru && percpu_lru) 377 return -EINVAL; 378 379 if (lru && !prealloc) 380 return -ENOTSUPP; 381 382 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 383 return -EINVAL; 384 385 /* check sanity of attributes. 386 * value_size == 0 may be allowed in the future to use map as a set 387 */ 388 if (attr->max_entries == 0 || attr->key_size == 0 || 389 attr->value_size == 0) 390 return -EINVAL; 391 392 if (attr->key_size > MAX_BPF_STACK) 393 /* eBPF programs initialize keys on stack, so they cannot be 394 * larger than max stack size 395 */ 396 return -E2BIG; 397 398 if (attr->value_size >= KMALLOC_MAX_SIZE - 399 MAX_BPF_STACK - sizeof(struct htab_elem)) 400 /* if value_size is bigger, the user space won't be able to 401 * access the elements via bpf syscall. This check also makes 402 * sure that the elem_size doesn't overflow and it's 403 * kmalloc-able later in htab_map_update_elem() 404 */ 405 return -E2BIG; 406 407 return 0; 408 } 409 410 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 411 { 412 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 413 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 414 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 415 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 416 /* percpu_lru means each cpu has its own LRU list. 417 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 418 * the map's value itself is percpu. percpu_lru has 419 * nothing to do with the map's value. 420 */ 421 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 422 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 423 struct bpf_htab *htab; 424 u64 cost; 425 int err; 426 427 htab = kzalloc(sizeof(*htab), GFP_USER); 428 if (!htab) 429 return ERR_PTR(-ENOMEM); 430 431 bpf_map_init_from_attr(&htab->map, attr); 432 433 if (percpu_lru) { 434 /* ensure each CPU's lru list has >=1 elements. 435 * since we are at it, make each lru list has the same 436 * number of elements. 437 */ 438 htab->map.max_entries = roundup(attr->max_entries, 439 num_possible_cpus()); 440 if (htab->map.max_entries < attr->max_entries) 441 htab->map.max_entries = rounddown(attr->max_entries, 442 num_possible_cpus()); 443 } 444 445 /* hash table size must be power of 2 */ 446 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 447 448 htab->elem_size = sizeof(struct htab_elem) + 449 round_up(htab->map.key_size, 8); 450 if (percpu) 451 htab->elem_size += sizeof(void *); 452 else 453 htab->elem_size += round_up(htab->map.value_size, 8); 454 455 err = -E2BIG; 456 /* prevent zero size kmalloc and check for u32 overflow */ 457 if (htab->n_buckets == 0 || 458 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 459 goto free_htab; 460 461 cost = (u64) htab->n_buckets * sizeof(struct bucket) + 462 (u64) htab->elem_size * htab->map.max_entries; 463 464 if (percpu) 465 cost += (u64) round_up(htab->map.value_size, 8) * 466 num_possible_cpus() * htab->map.max_entries; 467 else 468 cost += (u64) htab->elem_size * num_possible_cpus(); 469 470 /* if map size is larger than memlock limit, reject it */ 471 err = bpf_map_charge_init(&htab->map.memory, cost); 472 if (err) 473 goto free_htab; 474 475 err = -ENOMEM; 476 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 477 sizeof(struct bucket), 478 htab->map.numa_node); 479 if (!htab->buckets) 480 goto free_charge; 481 482 if (htab->map.map_flags & BPF_F_ZERO_SEED) 483 htab->hashrnd = 0; 484 else 485 htab->hashrnd = get_random_int(); 486 487 htab_init_buckets(htab); 488 489 if (prealloc) { 490 err = prealloc_init(htab); 491 if (err) 492 goto free_buckets; 493 494 if (!percpu && !lru) { 495 /* lru itself can remove the least used element, so 496 * there is no need for an extra elem during map_update. 497 */ 498 err = alloc_extra_elems(htab); 499 if (err) 500 goto free_prealloc; 501 } 502 } 503 504 return &htab->map; 505 506 free_prealloc: 507 prealloc_destroy(htab); 508 free_buckets: 509 bpf_map_area_free(htab->buckets); 510 free_charge: 511 bpf_map_charge_finish(&htab->map.memory); 512 free_htab: 513 kfree(htab); 514 return ERR_PTR(err); 515 } 516 517 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 518 { 519 return jhash(key, key_len, hashrnd); 520 } 521 522 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 523 { 524 return &htab->buckets[hash & (htab->n_buckets - 1)]; 525 } 526 527 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 528 { 529 return &__select_bucket(htab, hash)->head; 530 } 531 532 /* this lookup function can only be called with bucket lock taken */ 533 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 534 void *key, u32 key_size) 535 { 536 struct hlist_nulls_node *n; 537 struct htab_elem *l; 538 539 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 540 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 541 return l; 542 543 return NULL; 544 } 545 546 /* can be called without bucket lock. it will repeat the loop in 547 * the unlikely event when elements moved from one bucket into another 548 * while link list is being walked 549 */ 550 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 551 u32 hash, void *key, 552 u32 key_size, u32 n_buckets) 553 { 554 struct hlist_nulls_node *n; 555 struct htab_elem *l; 556 557 again: 558 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 559 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 560 return l; 561 562 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 563 goto again; 564 565 return NULL; 566 } 567 568 /* Called from syscall or from eBPF program directly, so 569 * arguments have to match bpf_map_lookup_elem() exactly. 570 * The return value is adjusted by BPF instructions 571 * in htab_map_gen_lookup(). 572 */ 573 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 574 { 575 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 576 struct hlist_nulls_head *head; 577 struct htab_elem *l; 578 u32 hash, key_size; 579 580 /* Must be called with rcu_read_lock. */ 581 WARN_ON_ONCE(!rcu_read_lock_held()); 582 583 key_size = map->key_size; 584 585 hash = htab_map_hash(key, key_size, htab->hashrnd); 586 587 head = select_bucket(htab, hash); 588 589 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 590 591 return l; 592 } 593 594 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 595 { 596 struct htab_elem *l = __htab_map_lookup_elem(map, key); 597 598 if (l) 599 return l->key + round_up(map->key_size, 8); 600 601 return NULL; 602 } 603 604 /* inline bpf_map_lookup_elem() call. 605 * Instead of: 606 * bpf_prog 607 * bpf_map_lookup_elem 608 * map->ops->map_lookup_elem 609 * htab_map_lookup_elem 610 * __htab_map_lookup_elem 611 * do: 612 * bpf_prog 613 * __htab_map_lookup_elem 614 */ 615 static u32 htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 616 { 617 struct bpf_insn *insn = insn_buf; 618 const int ret = BPF_REG_0; 619 620 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 621 (void *(*)(struct bpf_map *map, void *key))NULL)); 622 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 623 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 624 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 625 offsetof(struct htab_elem, key) + 626 round_up(map->key_size, 8)); 627 return insn - insn_buf; 628 } 629 630 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 631 void *key, const bool mark) 632 { 633 struct htab_elem *l = __htab_map_lookup_elem(map, key); 634 635 if (l) { 636 if (mark) 637 bpf_lru_node_set_ref(&l->lru_node); 638 return l->key + round_up(map->key_size, 8); 639 } 640 641 return NULL; 642 } 643 644 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 645 { 646 return __htab_lru_map_lookup_elem(map, key, true); 647 } 648 649 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 650 { 651 return __htab_lru_map_lookup_elem(map, key, false); 652 } 653 654 static u32 htab_lru_map_gen_lookup(struct bpf_map *map, 655 struct bpf_insn *insn_buf) 656 { 657 struct bpf_insn *insn = insn_buf; 658 const int ret = BPF_REG_0; 659 const int ref_reg = BPF_REG_1; 660 661 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 662 (void *(*)(struct bpf_map *map, void *key))NULL)); 663 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 664 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 665 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 666 offsetof(struct htab_elem, lru_node) + 667 offsetof(struct bpf_lru_node, ref)); 668 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 669 *insn++ = BPF_ST_MEM(BPF_B, ret, 670 offsetof(struct htab_elem, lru_node) + 671 offsetof(struct bpf_lru_node, ref), 672 1); 673 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 674 offsetof(struct htab_elem, key) + 675 round_up(map->key_size, 8)); 676 return insn - insn_buf; 677 } 678 679 /* It is called from the bpf_lru_list when the LRU needs to delete 680 * older elements from the htab. 681 */ 682 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 683 { 684 struct bpf_htab *htab = (struct bpf_htab *)arg; 685 struct htab_elem *l = NULL, *tgt_l; 686 struct hlist_nulls_head *head; 687 struct hlist_nulls_node *n; 688 unsigned long flags; 689 struct bucket *b; 690 691 tgt_l = container_of(node, struct htab_elem, lru_node); 692 b = __select_bucket(htab, tgt_l->hash); 693 head = &b->head; 694 695 flags = htab_lock_bucket(htab, b); 696 697 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 698 if (l == tgt_l) { 699 hlist_nulls_del_rcu(&l->hash_node); 700 break; 701 } 702 703 htab_unlock_bucket(htab, b, flags); 704 705 return l == tgt_l; 706 } 707 708 /* Called from syscall */ 709 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 710 { 711 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 712 struct hlist_nulls_head *head; 713 struct htab_elem *l, *next_l; 714 u32 hash, key_size; 715 int i = 0; 716 717 WARN_ON_ONCE(!rcu_read_lock_held()); 718 719 key_size = map->key_size; 720 721 if (!key) 722 goto find_first_elem; 723 724 hash = htab_map_hash(key, key_size, htab->hashrnd); 725 726 head = select_bucket(htab, hash); 727 728 /* lookup the key */ 729 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 730 731 if (!l) 732 goto find_first_elem; 733 734 /* key was found, get next key in the same bucket */ 735 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 736 struct htab_elem, hash_node); 737 738 if (next_l) { 739 /* if next elem in this hash list is non-zero, just return it */ 740 memcpy(next_key, next_l->key, key_size); 741 return 0; 742 } 743 744 /* no more elements in this hash list, go to the next bucket */ 745 i = hash & (htab->n_buckets - 1); 746 i++; 747 748 find_first_elem: 749 /* iterate over buckets */ 750 for (; i < htab->n_buckets; i++) { 751 head = select_bucket(htab, i); 752 753 /* pick first element in the bucket */ 754 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 755 struct htab_elem, hash_node); 756 if (next_l) { 757 /* if it's not empty, just return it */ 758 memcpy(next_key, next_l->key, key_size); 759 return 0; 760 } 761 } 762 763 /* iterated over all buckets and all elements */ 764 return -ENOENT; 765 } 766 767 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 768 { 769 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 770 free_percpu(htab_elem_get_ptr(l, htab->map.key_size)); 771 kfree(l); 772 } 773 774 static void htab_elem_free_rcu(struct rcu_head *head) 775 { 776 struct htab_elem *l = container_of(head, struct htab_elem, rcu); 777 struct bpf_htab *htab = l->htab; 778 779 htab_elem_free(htab, l); 780 } 781 782 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 783 { 784 struct bpf_map *map = &htab->map; 785 786 if (map->ops->map_fd_put_ptr) { 787 void *ptr = fd_htab_map_get_ptr(map, l); 788 789 map->ops->map_fd_put_ptr(ptr); 790 } 791 792 if (htab_is_prealloc(htab)) { 793 __pcpu_freelist_push(&htab->freelist, &l->fnode); 794 } else { 795 atomic_dec(&htab->count); 796 l->htab = htab; 797 call_rcu(&l->rcu, htab_elem_free_rcu); 798 } 799 } 800 801 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 802 void *value, bool onallcpus) 803 { 804 if (!onallcpus) { 805 /* copy true value_size bytes */ 806 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 807 } else { 808 u32 size = round_up(htab->map.value_size, 8); 809 int off = 0, cpu; 810 811 for_each_possible_cpu(cpu) { 812 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 813 value + off, size); 814 off += size; 815 } 816 } 817 } 818 819 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 820 { 821 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 822 BITS_PER_LONG == 64; 823 } 824 825 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 826 void *value, u32 key_size, u32 hash, 827 bool percpu, bool onallcpus, 828 struct htab_elem *old_elem) 829 { 830 u32 size = htab->map.value_size; 831 bool prealloc = htab_is_prealloc(htab); 832 struct htab_elem *l_new, **pl_new; 833 void __percpu *pptr; 834 835 if (prealloc) { 836 if (old_elem) { 837 /* if we're updating the existing element, 838 * use per-cpu extra elems to avoid freelist_pop/push 839 */ 840 pl_new = this_cpu_ptr(htab->extra_elems); 841 l_new = *pl_new; 842 *pl_new = old_elem; 843 } else { 844 struct pcpu_freelist_node *l; 845 846 l = __pcpu_freelist_pop(&htab->freelist); 847 if (!l) 848 return ERR_PTR(-E2BIG); 849 l_new = container_of(l, struct htab_elem, fnode); 850 } 851 } else { 852 if (atomic_inc_return(&htab->count) > htab->map.max_entries) 853 if (!old_elem) { 854 /* when map is full and update() is replacing 855 * old element, it's ok to allocate, since 856 * old element will be freed immediately. 857 * Otherwise return an error 858 */ 859 l_new = ERR_PTR(-E2BIG); 860 goto dec_count; 861 } 862 l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN, 863 htab->map.numa_node); 864 if (!l_new) { 865 l_new = ERR_PTR(-ENOMEM); 866 goto dec_count; 867 } 868 check_and_init_map_lock(&htab->map, 869 l_new->key + round_up(key_size, 8)); 870 } 871 872 memcpy(l_new->key, key, key_size); 873 if (percpu) { 874 size = round_up(size, 8); 875 if (prealloc) { 876 pptr = htab_elem_get_ptr(l_new, key_size); 877 } else { 878 /* alloc_percpu zero-fills */ 879 pptr = __alloc_percpu_gfp(size, 8, 880 GFP_ATOMIC | __GFP_NOWARN); 881 if (!pptr) { 882 kfree(l_new); 883 l_new = ERR_PTR(-ENOMEM); 884 goto dec_count; 885 } 886 } 887 888 pcpu_copy_value(htab, pptr, value, onallcpus); 889 890 if (!prealloc) 891 htab_elem_set_ptr(l_new, key_size, pptr); 892 } else if (fd_htab_map_needs_adjust(htab)) { 893 size = round_up(size, 8); 894 memcpy(l_new->key + round_up(key_size, 8), value, size); 895 } else { 896 copy_map_value(&htab->map, 897 l_new->key + round_up(key_size, 8), 898 value); 899 } 900 901 l_new->hash = hash; 902 return l_new; 903 dec_count: 904 atomic_dec(&htab->count); 905 return l_new; 906 } 907 908 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 909 u64 map_flags) 910 { 911 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 912 /* elem already exists */ 913 return -EEXIST; 914 915 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 916 /* elem doesn't exist, cannot update it */ 917 return -ENOENT; 918 919 return 0; 920 } 921 922 /* Called from syscall or from eBPF program */ 923 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 924 u64 map_flags) 925 { 926 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 927 struct htab_elem *l_new = NULL, *l_old; 928 struct hlist_nulls_head *head; 929 unsigned long flags; 930 struct bucket *b; 931 u32 key_size, hash; 932 int ret; 933 934 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 935 /* unknown flags */ 936 return -EINVAL; 937 938 WARN_ON_ONCE(!rcu_read_lock_held()); 939 940 key_size = map->key_size; 941 942 hash = htab_map_hash(key, key_size, htab->hashrnd); 943 944 b = __select_bucket(htab, hash); 945 head = &b->head; 946 947 if (unlikely(map_flags & BPF_F_LOCK)) { 948 if (unlikely(!map_value_has_spin_lock(map))) 949 return -EINVAL; 950 /* find an element without taking the bucket lock */ 951 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 952 htab->n_buckets); 953 ret = check_flags(htab, l_old, map_flags); 954 if (ret) 955 return ret; 956 if (l_old) { 957 /* grab the element lock and update value in place */ 958 copy_map_value_locked(map, 959 l_old->key + round_up(key_size, 8), 960 value, false); 961 return 0; 962 } 963 /* fall through, grab the bucket lock and lookup again. 964 * 99.9% chance that the element won't be found, 965 * but second lookup under lock has to be done. 966 */ 967 } 968 969 flags = htab_lock_bucket(htab, b); 970 971 l_old = lookup_elem_raw(head, hash, key, key_size); 972 973 ret = check_flags(htab, l_old, map_flags); 974 if (ret) 975 goto err; 976 977 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 978 /* first lookup without the bucket lock didn't find the element, 979 * but second lookup with the bucket lock found it. 980 * This case is highly unlikely, but has to be dealt with: 981 * grab the element lock in addition to the bucket lock 982 * and update element in place 983 */ 984 copy_map_value_locked(map, 985 l_old->key + round_up(key_size, 8), 986 value, false); 987 ret = 0; 988 goto err; 989 } 990 991 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 992 l_old); 993 if (IS_ERR(l_new)) { 994 /* all pre-allocated elements are in use or memory exhausted */ 995 ret = PTR_ERR(l_new); 996 goto err; 997 } 998 999 /* add new element to the head of the list, so that 1000 * concurrent search will find it before old elem 1001 */ 1002 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1003 if (l_old) { 1004 hlist_nulls_del_rcu(&l_old->hash_node); 1005 if (!htab_is_prealloc(htab)) 1006 free_htab_elem(htab, l_old); 1007 } 1008 ret = 0; 1009 err: 1010 htab_unlock_bucket(htab, b, flags); 1011 return ret; 1012 } 1013 1014 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1015 u64 map_flags) 1016 { 1017 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1018 struct htab_elem *l_new, *l_old = NULL; 1019 struct hlist_nulls_head *head; 1020 unsigned long flags; 1021 struct bucket *b; 1022 u32 key_size, hash; 1023 int ret; 1024 1025 if (unlikely(map_flags > BPF_EXIST)) 1026 /* unknown flags */ 1027 return -EINVAL; 1028 1029 WARN_ON_ONCE(!rcu_read_lock_held()); 1030 1031 key_size = map->key_size; 1032 1033 hash = htab_map_hash(key, key_size, htab->hashrnd); 1034 1035 b = __select_bucket(htab, hash); 1036 head = &b->head; 1037 1038 /* For LRU, we need to alloc before taking bucket's 1039 * spinlock because getting free nodes from LRU may need 1040 * to remove older elements from htab and this removal 1041 * operation will need a bucket lock. 1042 */ 1043 l_new = prealloc_lru_pop(htab, key, hash); 1044 if (!l_new) 1045 return -ENOMEM; 1046 memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size); 1047 1048 flags = htab_lock_bucket(htab, b); 1049 1050 l_old = lookup_elem_raw(head, hash, key, key_size); 1051 1052 ret = check_flags(htab, l_old, map_flags); 1053 if (ret) 1054 goto err; 1055 1056 /* add new element to the head of the list, so that 1057 * concurrent search will find it before old elem 1058 */ 1059 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1060 if (l_old) { 1061 bpf_lru_node_set_ref(&l_new->lru_node); 1062 hlist_nulls_del_rcu(&l_old->hash_node); 1063 } 1064 ret = 0; 1065 1066 err: 1067 htab_unlock_bucket(htab, b, flags); 1068 1069 if (ret) 1070 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1071 else if (l_old) 1072 bpf_lru_push_free(&htab->lru, &l_old->lru_node); 1073 1074 return ret; 1075 } 1076 1077 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1078 void *value, u64 map_flags, 1079 bool onallcpus) 1080 { 1081 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1082 struct htab_elem *l_new = NULL, *l_old; 1083 struct hlist_nulls_head *head; 1084 unsigned long flags; 1085 struct bucket *b; 1086 u32 key_size, hash; 1087 int ret; 1088 1089 if (unlikely(map_flags > BPF_EXIST)) 1090 /* unknown flags */ 1091 return -EINVAL; 1092 1093 WARN_ON_ONCE(!rcu_read_lock_held()); 1094 1095 key_size = map->key_size; 1096 1097 hash = htab_map_hash(key, key_size, htab->hashrnd); 1098 1099 b = __select_bucket(htab, hash); 1100 head = &b->head; 1101 1102 flags = htab_lock_bucket(htab, b); 1103 1104 l_old = lookup_elem_raw(head, hash, key, key_size); 1105 1106 ret = check_flags(htab, l_old, map_flags); 1107 if (ret) 1108 goto err; 1109 1110 if (l_old) { 1111 /* per-cpu hash map can update value in-place */ 1112 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1113 value, onallcpus); 1114 } else { 1115 l_new = alloc_htab_elem(htab, key, value, key_size, 1116 hash, true, onallcpus, NULL); 1117 if (IS_ERR(l_new)) { 1118 ret = PTR_ERR(l_new); 1119 goto err; 1120 } 1121 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1122 } 1123 ret = 0; 1124 err: 1125 htab_unlock_bucket(htab, b, flags); 1126 return ret; 1127 } 1128 1129 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1130 void *value, u64 map_flags, 1131 bool onallcpus) 1132 { 1133 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1134 struct htab_elem *l_new = NULL, *l_old; 1135 struct hlist_nulls_head *head; 1136 unsigned long flags; 1137 struct bucket *b; 1138 u32 key_size, hash; 1139 int ret; 1140 1141 if (unlikely(map_flags > BPF_EXIST)) 1142 /* unknown flags */ 1143 return -EINVAL; 1144 1145 WARN_ON_ONCE(!rcu_read_lock_held()); 1146 1147 key_size = map->key_size; 1148 1149 hash = htab_map_hash(key, key_size, htab->hashrnd); 1150 1151 b = __select_bucket(htab, hash); 1152 head = &b->head; 1153 1154 /* For LRU, we need to alloc before taking bucket's 1155 * spinlock because LRU's elem alloc may need 1156 * to remove older elem from htab and this removal 1157 * operation will need a bucket lock. 1158 */ 1159 if (map_flags != BPF_EXIST) { 1160 l_new = prealloc_lru_pop(htab, key, hash); 1161 if (!l_new) 1162 return -ENOMEM; 1163 } 1164 1165 flags = htab_lock_bucket(htab, b); 1166 1167 l_old = lookup_elem_raw(head, hash, key, key_size); 1168 1169 ret = check_flags(htab, l_old, map_flags); 1170 if (ret) 1171 goto err; 1172 1173 if (l_old) { 1174 bpf_lru_node_set_ref(&l_old->lru_node); 1175 1176 /* per-cpu hash map can update value in-place */ 1177 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1178 value, onallcpus); 1179 } else { 1180 pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size), 1181 value, onallcpus); 1182 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1183 l_new = NULL; 1184 } 1185 ret = 0; 1186 err: 1187 htab_unlock_bucket(htab, b, flags); 1188 if (l_new) 1189 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1190 return ret; 1191 } 1192 1193 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1194 void *value, u64 map_flags) 1195 { 1196 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1197 } 1198 1199 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1200 void *value, u64 map_flags) 1201 { 1202 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1203 false); 1204 } 1205 1206 /* Called from syscall or from eBPF program */ 1207 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1208 { 1209 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1210 struct hlist_nulls_head *head; 1211 struct bucket *b; 1212 struct htab_elem *l; 1213 unsigned long flags; 1214 u32 hash, key_size; 1215 int ret = -ENOENT; 1216 1217 WARN_ON_ONCE(!rcu_read_lock_held()); 1218 1219 key_size = map->key_size; 1220 1221 hash = htab_map_hash(key, key_size, htab->hashrnd); 1222 b = __select_bucket(htab, hash); 1223 head = &b->head; 1224 1225 flags = htab_lock_bucket(htab, b); 1226 1227 l = lookup_elem_raw(head, hash, key, key_size); 1228 1229 if (l) { 1230 hlist_nulls_del_rcu(&l->hash_node); 1231 free_htab_elem(htab, l); 1232 ret = 0; 1233 } 1234 1235 htab_unlock_bucket(htab, b, flags); 1236 return ret; 1237 } 1238 1239 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1240 { 1241 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1242 struct hlist_nulls_head *head; 1243 struct bucket *b; 1244 struct htab_elem *l; 1245 unsigned long flags; 1246 u32 hash, key_size; 1247 int ret = -ENOENT; 1248 1249 WARN_ON_ONCE(!rcu_read_lock_held()); 1250 1251 key_size = map->key_size; 1252 1253 hash = htab_map_hash(key, key_size, htab->hashrnd); 1254 b = __select_bucket(htab, hash); 1255 head = &b->head; 1256 1257 flags = htab_lock_bucket(htab, b); 1258 1259 l = lookup_elem_raw(head, hash, key, key_size); 1260 1261 if (l) { 1262 hlist_nulls_del_rcu(&l->hash_node); 1263 ret = 0; 1264 } 1265 1266 htab_unlock_bucket(htab, b, flags); 1267 if (l) 1268 bpf_lru_push_free(&htab->lru, &l->lru_node); 1269 return ret; 1270 } 1271 1272 static void delete_all_elements(struct bpf_htab *htab) 1273 { 1274 int i; 1275 1276 for (i = 0; i < htab->n_buckets; i++) { 1277 struct hlist_nulls_head *head = select_bucket(htab, i); 1278 struct hlist_nulls_node *n; 1279 struct htab_elem *l; 1280 1281 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1282 hlist_nulls_del_rcu(&l->hash_node); 1283 htab_elem_free(htab, l); 1284 } 1285 } 1286 } 1287 1288 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1289 static void htab_map_free(struct bpf_map *map) 1290 { 1291 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1292 1293 /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 1294 * so the programs (can be more than one that used this map) were 1295 * disconnected from events. Wait for outstanding critical sections in 1296 * these programs to complete 1297 */ 1298 synchronize_rcu(); 1299 1300 /* some of free_htab_elem() callbacks for elements of this map may 1301 * not have executed. Wait for them. 1302 */ 1303 rcu_barrier(); 1304 if (!htab_is_prealloc(htab)) 1305 delete_all_elements(htab); 1306 else 1307 prealloc_destroy(htab); 1308 1309 free_percpu(htab->extra_elems); 1310 bpf_map_area_free(htab->buckets); 1311 kfree(htab); 1312 } 1313 1314 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1315 struct seq_file *m) 1316 { 1317 void *value; 1318 1319 rcu_read_lock(); 1320 1321 value = htab_map_lookup_elem(map, key); 1322 if (!value) { 1323 rcu_read_unlock(); 1324 return; 1325 } 1326 1327 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1328 seq_puts(m, ": "); 1329 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1330 seq_puts(m, "\n"); 1331 1332 rcu_read_unlock(); 1333 } 1334 1335 static int 1336 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1337 const union bpf_attr *attr, 1338 union bpf_attr __user *uattr, 1339 bool do_delete, bool is_lru_map, 1340 bool is_percpu) 1341 { 1342 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1343 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1344 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1345 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1346 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1347 void *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1348 u32 batch, max_count, size, bucket_size; 1349 struct htab_elem *node_to_free = NULL; 1350 u64 elem_map_flags, map_flags; 1351 struct hlist_nulls_head *head; 1352 struct hlist_nulls_node *n; 1353 unsigned long flags = 0; 1354 bool locked = false; 1355 struct htab_elem *l; 1356 struct bucket *b; 1357 int ret = 0; 1358 1359 elem_map_flags = attr->batch.elem_flags; 1360 if ((elem_map_flags & ~BPF_F_LOCK) || 1361 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 1362 return -EINVAL; 1363 1364 map_flags = attr->batch.flags; 1365 if (map_flags) 1366 return -EINVAL; 1367 1368 max_count = attr->batch.count; 1369 if (!max_count) 1370 return 0; 1371 1372 if (put_user(0, &uattr->batch.count)) 1373 return -EFAULT; 1374 1375 batch = 0; 1376 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1377 return -EFAULT; 1378 1379 if (batch >= htab->n_buckets) 1380 return -ENOENT; 1381 1382 key_size = htab->map.key_size; 1383 roundup_key_size = round_up(htab->map.key_size, 8); 1384 value_size = htab->map.value_size; 1385 size = round_up(value_size, 8); 1386 if (is_percpu) 1387 value_size = size * num_possible_cpus(); 1388 total = 0; 1389 /* while experimenting with hash tables with sizes ranging from 10 to 1390 * 1000, it was observed that a bucket can have upto 5 entries. 1391 */ 1392 bucket_size = 5; 1393 1394 alloc: 1395 /* We cannot do copy_from_user or copy_to_user inside 1396 * the rcu_read_lock. Allocate enough space here. 1397 */ 1398 keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN); 1399 values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN); 1400 if (!keys || !values) { 1401 ret = -ENOMEM; 1402 goto after_loop; 1403 } 1404 1405 again: 1406 bpf_disable_instrumentation(); 1407 rcu_read_lock(); 1408 again_nocopy: 1409 dst_key = keys; 1410 dst_val = values; 1411 b = &htab->buckets[batch]; 1412 head = &b->head; 1413 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1414 if (locked) 1415 flags = htab_lock_bucket(htab, b); 1416 1417 bucket_cnt = 0; 1418 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1419 bucket_cnt++; 1420 1421 if (bucket_cnt && !locked) { 1422 locked = true; 1423 goto again_nocopy; 1424 } 1425 1426 if (bucket_cnt > (max_count - total)) { 1427 if (total == 0) 1428 ret = -ENOSPC; 1429 /* Note that since bucket_cnt > 0 here, it is implicit 1430 * that the locked was grabbed, so release it. 1431 */ 1432 htab_unlock_bucket(htab, b, flags); 1433 rcu_read_unlock(); 1434 bpf_enable_instrumentation(); 1435 goto after_loop; 1436 } 1437 1438 if (bucket_cnt > bucket_size) { 1439 bucket_size = bucket_cnt; 1440 /* Note that since bucket_cnt > 0 here, it is implicit 1441 * that the locked was grabbed, so release it. 1442 */ 1443 htab_unlock_bucket(htab, b, flags); 1444 rcu_read_unlock(); 1445 bpf_enable_instrumentation(); 1446 kvfree(keys); 1447 kvfree(values); 1448 goto alloc; 1449 } 1450 1451 /* Next block is only safe to run if you have grabbed the lock */ 1452 if (!locked) 1453 goto next_batch; 1454 1455 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1456 memcpy(dst_key, l->key, key_size); 1457 1458 if (is_percpu) { 1459 int off = 0, cpu; 1460 void __percpu *pptr; 1461 1462 pptr = htab_elem_get_ptr(l, map->key_size); 1463 for_each_possible_cpu(cpu) { 1464 bpf_long_memcpy(dst_val + off, 1465 per_cpu_ptr(pptr, cpu), size); 1466 off += size; 1467 } 1468 } else { 1469 value = l->key + roundup_key_size; 1470 if (elem_map_flags & BPF_F_LOCK) 1471 copy_map_value_locked(map, dst_val, value, 1472 true); 1473 else 1474 copy_map_value(map, dst_val, value); 1475 check_and_init_map_lock(map, dst_val); 1476 } 1477 if (do_delete) { 1478 hlist_nulls_del_rcu(&l->hash_node); 1479 1480 /* bpf_lru_push_free() will acquire lru_lock, which 1481 * may cause deadlock. See comments in function 1482 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1483 * after releasing the bucket lock. 1484 */ 1485 if (is_lru_map) { 1486 l->batch_flink = node_to_free; 1487 node_to_free = l; 1488 } else { 1489 free_htab_elem(htab, l); 1490 } 1491 } 1492 dst_key += key_size; 1493 dst_val += value_size; 1494 } 1495 1496 htab_unlock_bucket(htab, b, flags); 1497 locked = false; 1498 1499 while (node_to_free) { 1500 l = node_to_free; 1501 node_to_free = node_to_free->batch_flink; 1502 bpf_lru_push_free(&htab->lru, &l->lru_node); 1503 } 1504 1505 next_batch: 1506 /* If we are not copying data, we can go to next bucket and avoid 1507 * unlocking the rcu. 1508 */ 1509 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1510 batch++; 1511 goto again_nocopy; 1512 } 1513 1514 rcu_read_unlock(); 1515 bpf_enable_instrumentation(); 1516 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1517 key_size * bucket_cnt) || 1518 copy_to_user(uvalues + total * value_size, values, 1519 value_size * bucket_cnt))) { 1520 ret = -EFAULT; 1521 goto after_loop; 1522 } 1523 1524 total += bucket_cnt; 1525 batch++; 1526 if (batch >= htab->n_buckets) { 1527 ret = -ENOENT; 1528 goto after_loop; 1529 } 1530 goto again; 1531 1532 after_loop: 1533 if (ret == -EFAULT) 1534 goto out; 1535 1536 /* copy # of entries and next batch */ 1537 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1538 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1539 put_user(total, &uattr->batch.count)) 1540 ret = -EFAULT; 1541 1542 out: 1543 kvfree(keys); 1544 kvfree(values); 1545 return ret; 1546 } 1547 1548 static int 1549 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1550 union bpf_attr __user *uattr) 1551 { 1552 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1553 false, true); 1554 } 1555 1556 static int 1557 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1558 const union bpf_attr *attr, 1559 union bpf_attr __user *uattr) 1560 { 1561 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1562 false, true); 1563 } 1564 1565 static int 1566 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1567 union bpf_attr __user *uattr) 1568 { 1569 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1570 false, false); 1571 } 1572 1573 static int 1574 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1575 const union bpf_attr *attr, 1576 union bpf_attr __user *uattr) 1577 { 1578 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1579 false, false); 1580 } 1581 1582 static int 1583 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1584 const union bpf_attr *attr, 1585 union bpf_attr __user *uattr) 1586 { 1587 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1588 true, true); 1589 } 1590 1591 static int 1592 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1593 const union bpf_attr *attr, 1594 union bpf_attr __user *uattr) 1595 { 1596 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1597 true, true); 1598 } 1599 1600 static int 1601 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1602 union bpf_attr __user *uattr) 1603 { 1604 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1605 true, false); 1606 } 1607 1608 static int 1609 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1610 const union bpf_attr *attr, 1611 union bpf_attr __user *uattr) 1612 { 1613 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1614 true, false); 1615 } 1616 1617 const struct bpf_map_ops htab_map_ops = { 1618 .map_alloc_check = htab_map_alloc_check, 1619 .map_alloc = htab_map_alloc, 1620 .map_free = htab_map_free, 1621 .map_get_next_key = htab_map_get_next_key, 1622 .map_lookup_elem = htab_map_lookup_elem, 1623 .map_update_elem = htab_map_update_elem, 1624 .map_delete_elem = htab_map_delete_elem, 1625 .map_gen_lookup = htab_map_gen_lookup, 1626 .map_seq_show_elem = htab_map_seq_show_elem, 1627 BATCH_OPS(htab), 1628 }; 1629 1630 const struct bpf_map_ops htab_lru_map_ops = { 1631 .map_alloc_check = htab_map_alloc_check, 1632 .map_alloc = htab_map_alloc, 1633 .map_free = htab_map_free, 1634 .map_get_next_key = htab_map_get_next_key, 1635 .map_lookup_elem = htab_lru_map_lookup_elem, 1636 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 1637 .map_update_elem = htab_lru_map_update_elem, 1638 .map_delete_elem = htab_lru_map_delete_elem, 1639 .map_gen_lookup = htab_lru_map_gen_lookup, 1640 .map_seq_show_elem = htab_map_seq_show_elem, 1641 BATCH_OPS(htab_lru), 1642 }; 1643 1644 /* Called from eBPF program */ 1645 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 1646 { 1647 struct htab_elem *l = __htab_map_lookup_elem(map, key); 1648 1649 if (l) 1650 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 1651 else 1652 return NULL; 1653 } 1654 1655 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 1656 { 1657 struct htab_elem *l = __htab_map_lookup_elem(map, key); 1658 1659 if (l) { 1660 bpf_lru_node_set_ref(&l->lru_node); 1661 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 1662 } 1663 1664 return NULL; 1665 } 1666 1667 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 1668 { 1669 struct htab_elem *l; 1670 void __percpu *pptr; 1671 int ret = -ENOENT; 1672 int cpu, off = 0; 1673 u32 size; 1674 1675 /* per_cpu areas are zero-filled and bpf programs can only 1676 * access 'value_size' of them, so copying rounded areas 1677 * will not leak any kernel data 1678 */ 1679 size = round_up(map->value_size, 8); 1680 rcu_read_lock(); 1681 l = __htab_map_lookup_elem(map, key); 1682 if (!l) 1683 goto out; 1684 /* We do not mark LRU map element here in order to not mess up 1685 * eviction heuristics when user space does a map walk. 1686 */ 1687 pptr = htab_elem_get_ptr(l, map->key_size); 1688 for_each_possible_cpu(cpu) { 1689 bpf_long_memcpy(value + off, 1690 per_cpu_ptr(pptr, cpu), size); 1691 off += size; 1692 } 1693 ret = 0; 1694 out: 1695 rcu_read_unlock(); 1696 return ret; 1697 } 1698 1699 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 1700 u64 map_flags) 1701 { 1702 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1703 int ret; 1704 1705 rcu_read_lock(); 1706 if (htab_is_lru(htab)) 1707 ret = __htab_lru_percpu_map_update_elem(map, key, value, 1708 map_flags, true); 1709 else 1710 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 1711 true); 1712 rcu_read_unlock(); 1713 1714 return ret; 1715 } 1716 1717 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 1718 struct seq_file *m) 1719 { 1720 struct htab_elem *l; 1721 void __percpu *pptr; 1722 int cpu; 1723 1724 rcu_read_lock(); 1725 1726 l = __htab_map_lookup_elem(map, key); 1727 if (!l) { 1728 rcu_read_unlock(); 1729 return; 1730 } 1731 1732 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1733 seq_puts(m, ": {\n"); 1734 pptr = htab_elem_get_ptr(l, map->key_size); 1735 for_each_possible_cpu(cpu) { 1736 seq_printf(m, "\tcpu%d: ", cpu); 1737 btf_type_seq_show(map->btf, map->btf_value_type_id, 1738 per_cpu_ptr(pptr, cpu), m); 1739 seq_puts(m, "\n"); 1740 } 1741 seq_puts(m, "}\n"); 1742 1743 rcu_read_unlock(); 1744 } 1745 1746 const struct bpf_map_ops htab_percpu_map_ops = { 1747 .map_alloc_check = htab_map_alloc_check, 1748 .map_alloc = htab_map_alloc, 1749 .map_free = htab_map_free, 1750 .map_get_next_key = htab_map_get_next_key, 1751 .map_lookup_elem = htab_percpu_map_lookup_elem, 1752 .map_update_elem = htab_percpu_map_update_elem, 1753 .map_delete_elem = htab_map_delete_elem, 1754 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 1755 BATCH_OPS(htab_percpu), 1756 }; 1757 1758 const struct bpf_map_ops htab_lru_percpu_map_ops = { 1759 .map_alloc_check = htab_map_alloc_check, 1760 .map_alloc = htab_map_alloc, 1761 .map_free = htab_map_free, 1762 .map_get_next_key = htab_map_get_next_key, 1763 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 1764 .map_update_elem = htab_lru_percpu_map_update_elem, 1765 .map_delete_elem = htab_lru_map_delete_elem, 1766 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 1767 BATCH_OPS(htab_lru_percpu), 1768 }; 1769 1770 static int fd_htab_map_alloc_check(union bpf_attr *attr) 1771 { 1772 if (attr->value_size != sizeof(u32)) 1773 return -EINVAL; 1774 return htab_map_alloc_check(attr); 1775 } 1776 1777 static void fd_htab_map_free(struct bpf_map *map) 1778 { 1779 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1780 struct hlist_nulls_node *n; 1781 struct hlist_nulls_head *head; 1782 struct htab_elem *l; 1783 int i; 1784 1785 for (i = 0; i < htab->n_buckets; i++) { 1786 head = select_bucket(htab, i); 1787 1788 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1789 void *ptr = fd_htab_map_get_ptr(map, l); 1790 1791 map->ops->map_fd_put_ptr(ptr); 1792 } 1793 } 1794 1795 htab_map_free(map); 1796 } 1797 1798 /* only called from syscall */ 1799 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 1800 { 1801 void **ptr; 1802 int ret = 0; 1803 1804 if (!map->ops->map_fd_sys_lookup_elem) 1805 return -ENOTSUPP; 1806 1807 rcu_read_lock(); 1808 ptr = htab_map_lookup_elem(map, key); 1809 if (ptr) 1810 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 1811 else 1812 ret = -ENOENT; 1813 rcu_read_unlock(); 1814 1815 return ret; 1816 } 1817 1818 /* only called from syscall */ 1819 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 1820 void *key, void *value, u64 map_flags) 1821 { 1822 void *ptr; 1823 int ret; 1824 u32 ufd = *(u32 *)value; 1825 1826 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 1827 if (IS_ERR(ptr)) 1828 return PTR_ERR(ptr); 1829 1830 ret = htab_map_update_elem(map, key, &ptr, map_flags); 1831 if (ret) 1832 map->ops->map_fd_put_ptr(ptr); 1833 1834 return ret; 1835 } 1836 1837 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 1838 { 1839 struct bpf_map *map, *inner_map_meta; 1840 1841 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1842 if (IS_ERR(inner_map_meta)) 1843 return inner_map_meta; 1844 1845 map = htab_map_alloc(attr); 1846 if (IS_ERR(map)) { 1847 bpf_map_meta_free(inner_map_meta); 1848 return map; 1849 } 1850 1851 map->inner_map_meta = inner_map_meta; 1852 1853 return map; 1854 } 1855 1856 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 1857 { 1858 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 1859 1860 if (!inner_map) 1861 return NULL; 1862 1863 return READ_ONCE(*inner_map); 1864 } 1865 1866 static u32 htab_of_map_gen_lookup(struct bpf_map *map, 1867 struct bpf_insn *insn_buf) 1868 { 1869 struct bpf_insn *insn = insn_buf; 1870 const int ret = BPF_REG_0; 1871 1872 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 1873 (void *(*)(struct bpf_map *map, void *key))NULL)); 1874 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 1875 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 1876 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 1877 offsetof(struct htab_elem, key) + 1878 round_up(map->key_size, 8)); 1879 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1880 1881 return insn - insn_buf; 1882 } 1883 1884 static void htab_of_map_free(struct bpf_map *map) 1885 { 1886 bpf_map_meta_free(map->inner_map_meta); 1887 fd_htab_map_free(map); 1888 } 1889 1890 const struct bpf_map_ops htab_of_maps_map_ops = { 1891 .map_alloc_check = fd_htab_map_alloc_check, 1892 .map_alloc = htab_of_map_alloc, 1893 .map_free = htab_of_map_free, 1894 .map_get_next_key = htab_map_get_next_key, 1895 .map_lookup_elem = htab_of_map_lookup_elem, 1896 .map_delete_elem = htab_map_delete_elem, 1897 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1898 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1899 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1900 .map_gen_lookup = htab_of_map_gen_lookup, 1901 .map_check_btf = map_check_no_btf, 1902 }; 1903