1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include "percpu_freelist.h" 14 #include "bpf_lru_list.h" 15 #include "map_in_map.h" 16 17 #define HTAB_CREATE_FLAG_MASK \ 18 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 19 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 20 21 #define BATCH_OPS(_name) \ 22 .map_lookup_batch = \ 23 _name##_map_lookup_batch, \ 24 .map_lookup_and_delete_batch = \ 25 _name##_map_lookup_and_delete_batch, \ 26 .map_update_batch = \ 27 generic_map_update_batch, \ 28 .map_delete_batch = \ 29 generic_map_delete_batch 30 31 /* 32 * The bucket lock has two protection scopes: 33 * 34 * 1) Serializing concurrent operations from BPF programs on differrent 35 * CPUs 36 * 37 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 38 * 39 * BPF programs can execute in any context including perf, kprobes and 40 * tracing. As there are almost no limits where perf, kprobes and tracing 41 * can be invoked from the lock operations need to be protected against 42 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 43 * the lock held section when functions which acquire this lock are invoked 44 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 45 * variable bpf_prog_active, which prevents BPF programs attached to perf 46 * events, kprobes and tracing to be invoked before the prior invocation 47 * from one of these contexts completed. sys_bpf() uses the same mechanism 48 * by pinning the task to the current CPU and incrementing the recursion 49 * protection accross the map operation. 50 * 51 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 52 * operations like memory allocations (even with GFP_ATOMIC) from atomic 53 * contexts. This is required because even with GFP_ATOMIC the memory 54 * allocator calls into code pathes which acquire locks with long held lock 55 * sections. To ensure the deterministic behaviour these locks are regular 56 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 57 * true atomic contexts on an RT kernel are the low level hardware 58 * handling, scheduling, low level interrupt handling, NMIs etc. None of 59 * these contexts should ever do memory allocations. 60 * 61 * As regular device interrupt handlers and soft interrupts are forced into 62 * thread context, the existing code which does 63 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*(); 64 * just works. 65 * 66 * In theory the BPF locks could be converted to regular spinlocks as well, 67 * but the bucket locks and percpu_freelist locks can be taken from 68 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 69 * atomic contexts even on RT. These mechanisms require preallocated maps, 70 * so there is no need to invoke memory allocations within the lock held 71 * sections. 72 * 73 * BPF maps which need dynamic allocation are only used from (forced) 74 * thread context on RT and can therefore use regular spinlocks which in 75 * turn allows to invoke memory allocations from the lock held section. 76 * 77 * On a non RT kernel this distinction is neither possible nor required. 78 * spinlock maps to raw_spinlock and the extra code is optimized out by the 79 * compiler. 80 */ 81 struct bucket { 82 struct hlist_nulls_head head; 83 union { 84 raw_spinlock_t raw_lock; 85 spinlock_t lock; 86 }; 87 }; 88 89 struct bpf_htab { 90 struct bpf_map map; 91 struct bucket *buckets; 92 void *elems; 93 union { 94 struct pcpu_freelist freelist; 95 struct bpf_lru lru; 96 }; 97 struct htab_elem *__percpu *extra_elems; 98 atomic_t count; /* number of elements in this hashtable */ 99 u32 n_buckets; /* number of hash buckets */ 100 u32 elem_size; /* size of each element in bytes */ 101 u32 hashrnd; 102 }; 103 104 /* each htab element is struct htab_elem + key + value */ 105 struct htab_elem { 106 union { 107 struct hlist_nulls_node hash_node; 108 struct { 109 void *padding; 110 union { 111 struct bpf_htab *htab; 112 struct pcpu_freelist_node fnode; 113 struct htab_elem *batch_flink; 114 }; 115 }; 116 }; 117 union { 118 struct rcu_head rcu; 119 struct bpf_lru_node lru_node; 120 }; 121 u32 hash; 122 char key[] __aligned(8); 123 }; 124 125 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 126 { 127 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 128 } 129 130 static inline bool htab_use_raw_lock(const struct bpf_htab *htab) 131 { 132 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab)); 133 } 134 135 static void htab_init_buckets(struct bpf_htab *htab) 136 { 137 unsigned i; 138 139 for (i = 0; i < htab->n_buckets; i++) { 140 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 141 if (htab_use_raw_lock(htab)) 142 raw_spin_lock_init(&htab->buckets[i].raw_lock); 143 else 144 spin_lock_init(&htab->buckets[i].lock); 145 } 146 } 147 148 static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab, 149 struct bucket *b) 150 { 151 unsigned long flags; 152 153 if (htab_use_raw_lock(htab)) 154 raw_spin_lock_irqsave(&b->raw_lock, flags); 155 else 156 spin_lock_irqsave(&b->lock, flags); 157 return flags; 158 } 159 160 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 161 struct bucket *b, 162 unsigned long flags) 163 { 164 if (htab_use_raw_lock(htab)) 165 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 166 else 167 spin_unlock_irqrestore(&b->lock, flags); 168 } 169 170 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 171 172 static bool htab_is_lru(const struct bpf_htab *htab) 173 { 174 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 175 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 176 } 177 178 static bool htab_is_percpu(const struct bpf_htab *htab) 179 { 180 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 181 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 182 } 183 184 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 185 void __percpu *pptr) 186 { 187 *(void __percpu **)(l->key + key_size) = pptr; 188 } 189 190 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 191 { 192 return *(void __percpu **)(l->key + key_size); 193 } 194 195 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 196 { 197 return *(void **)(l->key + roundup(map->key_size, 8)); 198 } 199 200 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 201 { 202 return (struct htab_elem *) (htab->elems + i * htab->elem_size); 203 } 204 205 static void htab_free_elems(struct bpf_htab *htab) 206 { 207 int i; 208 209 if (!htab_is_percpu(htab)) 210 goto free_elems; 211 212 for (i = 0; i < htab->map.max_entries; i++) { 213 void __percpu *pptr; 214 215 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 216 htab->map.key_size); 217 free_percpu(pptr); 218 cond_resched(); 219 } 220 free_elems: 221 bpf_map_area_free(htab->elems); 222 } 223 224 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 225 * (bucket_lock). If both locks need to be acquired together, the lock 226 * order is always lru_lock -> bucket_lock and this only happens in 227 * bpf_lru_list.c logic. For example, certain code path of 228 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 229 * will acquire lru_lock first followed by acquiring bucket_lock. 230 * 231 * In hashtab.c, to avoid deadlock, lock acquisition of 232 * bucket_lock followed by lru_lock is not allowed. In such cases, 233 * bucket_lock needs to be released first before acquiring lru_lock. 234 */ 235 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 236 u32 hash) 237 { 238 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 239 struct htab_elem *l; 240 241 if (node) { 242 l = container_of(node, struct htab_elem, lru_node); 243 memcpy(l->key, key, htab->map.key_size); 244 return l; 245 } 246 247 return NULL; 248 } 249 250 static int prealloc_init(struct bpf_htab *htab) 251 { 252 u32 num_entries = htab->map.max_entries; 253 int err = -ENOMEM, i; 254 255 if (!htab_is_percpu(htab) && !htab_is_lru(htab)) 256 num_entries += num_possible_cpus(); 257 258 htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries, 259 htab->map.numa_node); 260 if (!htab->elems) 261 return -ENOMEM; 262 263 if (!htab_is_percpu(htab)) 264 goto skip_percpu_elems; 265 266 for (i = 0; i < num_entries; i++) { 267 u32 size = round_up(htab->map.value_size, 8); 268 void __percpu *pptr; 269 270 pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN); 271 if (!pptr) 272 goto free_elems; 273 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 274 pptr); 275 cond_resched(); 276 } 277 278 skip_percpu_elems: 279 if (htab_is_lru(htab)) 280 err = bpf_lru_init(&htab->lru, 281 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 282 offsetof(struct htab_elem, hash) - 283 offsetof(struct htab_elem, lru_node), 284 htab_lru_map_delete_node, 285 htab); 286 else 287 err = pcpu_freelist_init(&htab->freelist); 288 289 if (err) 290 goto free_elems; 291 292 if (htab_is_lru(htab)) 293 bpf_lru_populate(&htab->lru, htab->elems, 294 offsetof(struct htab_elem, lru_node), 295 htab->elem_size, num_entries); 296 else 297 pcpu_freelist_populate(&htab->freelist, 298 htab->elems + offsetof(struct htab_elem, fnode), 299 htab->elem_size, num_entries); 300 301 return 0; 302 303 free_elems: 304 htab_free_elems(htab); 305 return err; 306 } 307 308 static void prealloc_destroy(struct bpf_htab *htab) 309 { 310 htab_free_elems(htab); 311 312 if (htab_is_lru(htab)) 313 bpf_lru_destroy(&htab->lru); 314 else 315 pcpu_freelist_destroy(&htab->freelist); 316 } 317 318 static int alloc_extra_elems(struct bpf_htab *htab) 319 { 320 struct htab_elem *__percpu *pptr, *l_new; 321 struct pcpu_freelist_node *l; 322 int cpu; 323 324 pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8, 325 GFP_USER | __GFP_NOWARN); 326 if (!pptr) 327 return -ENOMEM; 328 329 for_each_possible_cpu(cpu) { 330 l = pcpu_freelist_pop(&htab->freelist); 331 /* pop will succeed, since prealloc_init() 332 * preallocated extra num_possible_cpus elements 333 */ 334 l_new = container_of(l, struct htab_elem, fnode); 335 *per_cpu_ptr(pptr, cpu) = l_new; 336 } 337 htab->extra_elems = pptr; 338 return 0; 339 } 340 341 /* Called from syscall */ 342 static int htab_map_alloc_check(union bpf_attr *attr) 343 { 344 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 345 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 346 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 347 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 348 /* percpu_lru means each cpu has its own LRU list. 349 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 350 * the map's value itself is percpu. percpu_lru has 351 * nothing to do with the map's value. 352 */ 353 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 354 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 355 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 356 int numa_node = bpf_map_attr_numa_node(attr); 357 358 BUILD_BUG_ON(offsetof(struct htab_elem, htab) != 359 offsetof(struct htab_elem, hash_node.pprev)); 360 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 361 offsetof(struct htab_elem, hash_node.pprev)); 362 363 if (lru && !bpf_capable()) 364 /* LRU implementation is much complicated than other 365 * maps. Hence, limit to CAP_BPF. 366 */ 367 return -EPERM; 368 369 if (zero_seed && !capable(CAP_SYS_ADMIN)) 370 /* Guard against local DoS, and discourage production use. */ 371 return -EPERM; 372 373 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 374 !bpf_map_flags_access_ok(attr->map_flags)) 375 return -EINVAL; 376 377 if (!lru && percpu_lru) 378 return -EINVAL; 379 380 if (lru && !prealloc) 381 return -ENOTSUPP; 382 383 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 384 return -EINVAL; 385 386 /* check sanity of attributes. 387 * value_size == 0 may be allowed in the future to use map as a set 388 */ 389 if (attr->max_entries == 0 || attr->key_size == 0 || 390 attr->value_size == 0) 391 return -EINVAL; 392 393 if (attr->key_size > MAX_BPF_STACK) 394 /* eBPF programs initialize keys on stack, so they cannot be 395 * larger than max stack size 396 */ 397 return -E2BIG; 398 399 if (attr->value_size >= KMALLOC_MAX_SIZE - 400 MAX_BPF_STACK - sizeof(struct htab_elem)) 401 /* if value_size is bigger, the user space won't be able to 402 * access the elements via bpf syscall. This check also makes 403 * sure that the elem_size doesn't overflow and it's 404 * kmalloc-able later in htab_map_update_elem() 405 */ 406 return -E2BIG; 407 408 return 0; 409 } 410 411 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 412 { 413 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 414 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 415 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 416 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 417 /* percpu_lru means each cpu has its own LRU list. 418 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 419 * the map's value itself is percpu. percpu_lru has 420 * nothing to do with the map's value. 421 */ 422 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 423 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 424 struct bpf_htab *htab; 425 u64 cost; 426 int err; 427 428 htab = kzalloc(sizeof(*htab), GFP_USER); 429 if (!htab) 430 return ERR_PTR(-ENOMEM); 431 432 bpf_map_init_from_attr(&htab->map, attr); 433 434 if (percpu_lru) { 435 /* ensure each CPU's lru list has >=1 elements. 436 * since we are at it, make each lru list has the same 437 * number of elements. 438 */ 439 htab->map.max_entries = roundup(attr->max_entries, 440 num_possible_cpus()); 441 if (htab->map.max_entries < attr->max_entries) 442 htab->map.max_entries = rounddown(attr->max_entries, 443 num_possible_cpus()); 444 } 445 446 /* hash table size must be power of 2 */ 447 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 448 449 htab->elem_size = sizeof(struct htab_elem) + 450 round_up(htab->map.key_size, 8); 451 if (percpu) 452 htab->elem_size += sizeof(void *); 453 else 454 htab->elem_size += round_up(htab->map.value_size, 8); 455 456 err = -E2BIG; 457 /* prevent zero size kmalloc and check for u32 overflow */ 458 if (htab->n_buckets == 0 || 459 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 460 goto free_htab; 461 462 cost = (u64) htab->n_buckets * sizeof(struct bucket) + 463 (u64) htab->elem_size * htab->map.max_entries; 464 465 if (percpu) 466 cost += (u64) round_up(htab->map.value_size, 8) * 467 num_possible_cpus() * htab->map.max_entries; 468 else 469 cost += (u64) htab->elem_size * num_possible_cpus(); 470 471 /* if map size is larger than memlock limit, reject it */ 472 err = bpf_map_charge_init(&htab->map.memory, cost); 473 if (err) 474 goto free_htab; 475 476 err = -ENOMEM; 477 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 478 sizeof(struct bucket), 479 htab->map.numa_node); 480 if (!htab->buckets) 481 goto free_charge; 482 483 if (htab->map.map_flags & BPF_F_ZERO_SEED) 484 htab->hashrnd = 0; 485 else 486 htab->hashrnd = get_random_int(); 487 488 htab_init_buckets(htab); 489 490 if (prealloc) { 491 err = prealloc_init(htab); 492 if (err) 493 goto free_buckets; 494 495 if (!percpu && !lru) { 496 /* lru itself can remove the least used element, so 497 * there is no need for an extra elem during map_update. 498 */ 499 err = alloc_extra_elems(htab); 500 if (err) 501 goto free_prealloc; 502 } 503 } 504 505 return &htab->map; 506 507 free_prealloc: 508 prealloc_destroy(htab); 509 free_buckets: 510 bpf_map_area_free(htab->buckets); 511 free_charge: 512 bpf_map_charge_finish(&htab->map.memory); 513 free_htab: 514 kfree(htab); 515 return ERR_PTR(err); 516 } 517 518 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 519 { 520 return jhash(key, key_len, hashrnd); 521 } 522 523 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 524 { 525 return &htab->buckets[hash & (htab->n_buckets - 1)]; 526 } 527 528 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 529 { 530 return &__select_bucket(htab, hash)->head; 531 } 532 533 /* this lookup function can only be called with bucket lock taken */ 534 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 535 void *key, u32 key_size) 536 { 537 struct hlist_nulls_node *n; 538 struct htab_elem *l; 539 540 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 541 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 542 return l; 543 544 return NULL; 545 } 546 547 /* can be called without bucket lock. it will repeat the loop in 548 * the unlikely event when elements moved from one bucket into another 549 * while link list is being walked 550 */ 551 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 552 u32 hash, void *key, 553 u32 key_size, u32 n_buckets) 554 { 555 struct hlist_nulls_node *n; 556 struct htab_elem *l; 557 558 again: 559 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 560 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 561 return l; 562 563 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 564 goto again; 565 566 return NULL; 567 } 568 569 /* Called from syscall or from eBPF program directly, so 570 * arguments have to match bpf_map_lookup_elem() exactly. 571 * The return value is adjusted by BPF instructions 572 * in htab_map_gen_lookup(). 573 */ 574 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 575 { 576 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 577 struct hlist_nulls_head *head; 578 struct htab_elem *l; 579 u32 hash, key_size; 580 581 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 582 583 key_size = map->key_size; 584 585 hash = htab_map_hash(key, key_size, htab->hashrnd); 586 587 head = select_bucket(htab, hash); 588 589 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 590 591 return l; 592 } 593 594 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 595 { 596 struct htab_elem *l = __htab_map_lookup_elem(map, key); 597 598 if (l) 599 return l->key + round_up(map->key_size, 8); 600 601 return NULL; 602 } 603 604 /* inline bpf_map_lookup_elem() call. 605 * Instead of: 606 * bpf_prog 607 * bpf_map_lookup_elem 608 * map->ops->map_lookup_elem 609 * htab_map_lookup_elem 610 * __htab_map_lookup_elem 611 * do: 612 * bpf_prog 613 * __htab_map_lookup_elem 614 */ 615 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 616 { 617 struct bpf_insn *insn = insn_buf; 618 const int ret = BPF_REG_0; 619 620 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 621 (void *(*)(struct bpf_map *map, void *key))NULL)); 622 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 623 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 624 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 625 offsetof(struct htab_elem, key) + 626 round_up(map->key_size, 8)); 627 return insn - insn_buf; 628 } 629 630 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 631 void *key, const bool mark) 632 { 633 struct htab_elem *l = __htab_map_lookup_elem(map, key); 634 635 if (l) { 636 if (mark) 637 bpf_lru_node_set_ref(&l->lru_node); 638 return l->key + round_up(map->key_size, 8); 639 } 640 641 return NULL; 642 } 643 644 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 645 { 646 return __htab_lru_map_lookup_elem(map, key, true); 647 } 648 649 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 650 { 651 return __htab_lru_map_lookup_elem(map, key, false); 652 } 653 654 static int htab_lru_map_gen_lookup(struct bpf_map *map, 655 struct bpf_insn *insn_buf) 656 { 657 struct bpf_insn *insn = insn_buf; 658 const int ret = BPF_REG_0; 659 const int ref_reg = BPF_REG_1; 660 661 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 662 (void *(*)(struct bpf_map *map, void *key))NULL)); 663 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 664 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 665 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 666 offsetof(struct htab_elem, lru_node) + 667 offsetof(struct bpf_lru_node, ref)); 668 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 669 *insn++ = BPF_ST_MEM(BPF_B, ret, 670 offsetof(struct htab_elem, lru_node) + 671 offsetof(struct bpf_lru_node, ref), 672 1); 673 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 674 offsetof(struct htab_elem, key) + 675 round_up(map->key_size, 8)); 676 return insn - insn_buf; 677 } 678 679 /* It is called from the bpf_lru_list when the LRU needs to delete 680 * older elements from the htab. 681 */ 682 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 683 { 684 struct bpf_htab *htab = (struct bpf_htab *)arg; 685 struct htab_elem *l = NULL, *tgt_l; 686 struct hlist_nulls_head *head; 687 struct hlist_nulls_node *n; 688 unsigned long flags; 689 struct bucket *b; 690 691 tgt_l = container_of(node, struct htab_elem, lru_node); 692 b = __select_bucket(htab, tgt_l->hash); 693 head = &b->head; 694 695 flags = htab_lock_bucket(htab, b); 696 697 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 698 if (l == tgt_l) { 699 hlist_nulls_del_rcu(&l->hash_node); 700 break; 701 } 702 703 htab_unlock_bucket(htab, b, flags); 704 705 return l == tgt_l; 706 } 707 708 /* Called from syscall */ 709 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 710 { 711 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 712 struct hlist_nulls_head *head; 713 struct htab_elem *l, *next_l; 714 u32 hash, key_size; 715 int i = 0; 716 717 WARN_ON_ONCE(!rcu_read_lock_held()); 718 719 key_size = map->key_size; 720 721 if (!key) 722 goto find_first_elem; 723 724 hash = htab_map_hash(key, key_size, htab->hashrnd); 725 726 head = select_bucket(htab, hash); 727 728 /* lookup the key */ 729 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 730 731 if (!l) 732 goto find_first_elem; 733 734 /* key was found, get next key in the same bucket */ 735 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 736 struct htab_elem, hash_node); 737 738 if (next_l) { 739 /* if next elem in this hash list is non-zero, just return it */ 740 memcpy(next_key, next_l->key, key_size); 741 return 0; 742 } 743 744 /* no more elements in this hash list, go to the next bucket */ 745 i = hash & (htab->n_buckets - 1); 746 i++; 747 748 find_first_elem: 749 /* iterate over buckets */ 750 for (; i < htab->n_buckets; i++) { 751 head = select_bucket(htab, i); 752 753 /* pick first element in the bucket */ 754 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 755 struct htab_elem, hash_node); 756 if (next_l) { 757 /* if it's not empty, just return it */ 758 memcpy(next_key, next_l->key, key_size); 759 return 0; 760 } 761 } 762 763 /* iterated over all buckets and all elements */ 764 return -ENOENT; 765 } 766 767 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 768 { 769 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 770 free_percpu(htab_elem_get_ptr(l, htab->map.key_size)); 771 kfree(l); 772 } 773 774 static void htab_elem_free_rcu(struct rcu_head *head) 775 { 776 struct htab_elem *l = container_of(head, struct htab_elem, rcu); 777 struct bpf_htab *htab = l->htab; 778 779 htab_elem_free(htab, l); 780 } 781 782 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 783 { 784 struct bpf_map *map = &htab->map; 785 void *ptr; 786 787 if (map->ops->map_fd_put_ptr) { 788 ptr = fd_htab_map_get_ptr(map, l); 789 map->ops->map_fd_put_ptr(ptr); 790 } 791 } 792 793 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 794 { 795 htab_put_fd_value(htab, l); 796 797 if (htab_is_prealloc(htab)) { 798 __pcpu_freelist_push(&htab->freelist, &l->fnode); 799 } else { 800 atomic_dec(&htab->count); 801 l->htab = htab; 802 call_rcu(&l->rcu, htab_elem_free_rcu); 803 } 804 } 805 806 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 807 void *value, bool onallcpus) 808 { 809 if (!onallcpus) { 810 /* copy true value_size bytes */ 811 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 812 } else { 813 u32 size = round_up(htab->map.value_size, 8); 814 int off = 0, cpu; 815 816 for_each_possible_cpu(cpu) { 817 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 818 value + off, size); 819 off += size; 820 } 821 } 822 } 823 824 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 825 { 826 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 827 BITS_PER_LONG == 64; 828 } 829 830 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 831 void *value, u32 key_size, u32 hash, 832 bool percpu, bool onallcpus, 833 struct htab_elem *old_elem) 834 { 835 u32 size = htab->map.value_size; 836 bool prealloc = htab_is_prealloc(htab); 837 struct htab_elem *l_new, **pl_new; 838 void __percpu *pptr; 839 840 if (prealloc) { 841 if (old_elem) { 842 /* if we're updating the existing element, 843 * use per-cpu extra elems to avoid freelist_pop/push 844 */ 845 pl_new = this_cpu_ptr(htab->extra_elems); 846 l_new = *pl_new; 847 htab_put_fd_value(htab, old_elem); 848 *pl_new = old_elem; 849 } else { 850 struct pcpu_freelist_node *l; 851 852 l = __pcpu_freelist_pop(&htab->freelist); 853 if (!l) 854 return ERR_PTR(-E2BIG); 855 l_new = container_of(l, struct htab_elem, fnode); 856 } 857 } else { 858 if (atomic_inc_return(&htab->count) > htab->map.max_entries) 859 if (!old_elem) { 860 /* when map is full and update() is replacing 861 * old element, it's ok to allocate, since 862 * old element will be freed immediately. 863 * Otherwise return an error 864 */ 865 l_new = ERR_PTR(-E2BIG); 866 goto dec_count; 867 } 868 l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN, 869 htab->map.numa_node); 870 if (!l_new) { 871 l_new = ERR_PTR(-ENOMEM); 872 goto dec_count; 873 } 874 check_and_init_map_lock(&htab->map, 875 l_new->key + round_up(key_size, 8)); 876 } 877 878 memcpy(l_new->key, key, key_size); 879 if (percpu) { 880 size = round_up(size, 8); 881 if (prealloc) { 882 pptr = htab_elem_get_ptr(l_new, key_size); 883 } else { 884 /* alloc_percpu zero-fills */ 885 pptr = __alloc_percpu_gfp(size, 8, 886 GFP_ATOMIC | __GFP_NOWARN); 887 if (!pptr) { 888 kfree(l_new); 889 l_new = ERR_PTR(-ENOMEM); 890 goto dec_count; 891 } 892 } 893 894 pcpu_copy_value(htab, pptr, value, onallcpus); 895 896 if (!prealloc) 897 htab_elem_set_ptr(l_new, key_size, pptr); 898 } else if (fd_htab_map_needs_adjust(htab)) { 899 size = round_up(size, 8); 900 memcpy(l_new->key + round_up(key_size, 8), value, size); 901 } else { 902 copy_map_value(&htab->map, 903 l_new->key + round_up(key_size, 8), 904 value); 905 } 906 907 l_new->hash = hash; 908 return l_new; 909 dec_count: 910 atomic_dec(&htab->count); 911 return l_new; 912 } 913 914 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 915 u64 map_flags) 916 { 917 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 918 /* elem already exists */ 919 return -EEXIST; 920 921 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 922 /* elem doesn't exist, cannot update it */ 923 return -ENOENT; 924 925 return 0; 926 } 927 928 /* Called from syscall or from eBPF program */ 929 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 930 u64 map_flags) 931 { 932 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 933 struct htab_elem *l_new = NULL, *l_old; 934 struct hlist_nulls_head *head; 935 unsigned long flags; 936 struct bucket *b; 937 u32 key_size, hash; 938 int ret; 939 940 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 941 /* unknown flags */ 942 return -EINVAL; 943 944 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 945 946 key_size = map->key_size; 947 948 hash = htab_map_hash(key, key_size, htab->hashrnd); 949 950 b = __select_bucket(htab, hash); 951 head = &b->head; 952 953 if (unlikely(map_flags & BPF_F_LOCK)) { 954 if (unlikely(!map_value_has_spin_lock(map))) 955 return -EINVAL; 956 /* find an element without taking the bucket lock */ 957 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 958 htab->n_buckets); 959 ret = check_flags(htab, l_old, map_flags); 960 if (ret) 961 return ret; 962 if (l_old) { 963 /* grab the element lock and update value in place */ 964 copy_map_value_locked(map, 965 l_old->key + round_up(key_size, 8), 966 value, false); 967 return 0; 968 } 969 /* fall through, grab the bucket lock and lookup again. 970 * 99.9% chance that the element won't be found, 971 * but second lookup under lock has to be done. 972 */ 973 } 974 975 flags = htab_lock_bucket(htab, b); 976 977 l_old = lookup_elem_raw(head, hash, key, key_size); 978 979 ret = check_flags(htab, l_old, map_flags); 980 if (ret) 981 goto err; 982 983 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 984 /* first lookup without the bucket lock didn't find the element, 985 * but second lookup with the bucket lock found it. 986 * This case is highly unlikely, but has to be dealt with: 987 * grab the element lock in addition to the bucket lock 988 * and update element in place 989 */ 990 copy_map_value_locked(map, 991 l_old->key + round_up(key_size, 8), 992 value, false); 993 ret = 0; 994 goto err; 995 } 996 997 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 998 l_old); 999 if (IS_ERR(l_new)) { 1000 /* all pre-allocated elements are in use or memory exhausted */ 1001 ret = PTR_ERR(l_new); 1002 goto err; 1003 } 1004 1005 /* add new element to the head of the list, so that 1006 * concurrent search will find it before old elem 1007 */ 1008 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1009 if (l_old) { 1010 hlist_nulls_del_rcu(&l_old->hash_node); 1011 if (!htab_is_prealloc(htab)) 1012 free_htab_elem(htab, l_old); 1013 } 1014 ret = 0; 1015 err: 1016 htab_unlock_bucket(htab, b, flags); 1017 return ret; 1018 } 1019 1020 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1021 u64 map_flags) 1022 { 1023 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1024 struct htab_elem *l_new, *l_old = NULL; 1025 struct hlist_nulls_head *head; 1026 unsigned long flags; 1027 struct bucket *b; 1028 u32 key_size, hash; 1029 int ret; 1030 1031 if (unlikely(map_flags > BPF_EXIST)) 1032 /* unknown flags */ 1033 return -EINVAL; 1034 1035 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 1036 1037 key_size = map->key_size; 1038 1039 hash = htab_map_hash(key, key_size, htab->hashrnd); 1040 1041 b = __select_bucket(htab, hash); 1042 head = &b->head; 1043 1044 /* For LRU, we need to alloc before taking bucket's 1045 * spinlock because getting free nodes from LRU may need 1046 * to remove older elements from htab and this removal 1047 * operation will need a bucket lock. 1048 */ 1049 l_new = prealloc_lru_pop(htab, key, hash); 1050 if (!l_new) 1051 return -ENOMEM; 1052 memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size); 1053 1054 flags = htab_lock_bucket(htab, b); 1055 1056 l_old = lookup_elem_raw(head, hash, key, key_size); 1057 1058 ret = check_flags(htab, l_old, map_flags); 1059 if (ret) 1060 goto err; 1061 1062 /* add new element to the head of the list, so that 1063 * concurrent search will find it before old elem 1064 */ 1065 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1066 if (l_old) { 1067 bpf_lru_node_set_ref(&l_new->lru_node); 1068 hlist_nulls_del_rcu(&l_old->hash_node); 1069 } 1070 ret = 0; 1071 1072 err: 1073 htab_unlock_bucket(htab, b, flags); 1074 1075 if (ret) 1076 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1077 else if (l_old) 1078 bpf_lru_push_free(&htab->lru, &l_old->lru_node); 1079 1080 return ret; 1081 } 1082 1083 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1084 void *value, u64 map_flags, 1085 bool onallcpus) 1086 { 1087 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1088 struct htab_elem *l_new = NULL, *l_old; 1089 struct hlist_nulls_head *head; 1090 unsigned long flags; 1091 struct bucket *b; 1092 u32 key_size, hash; 1093 int ret; 1094 1095 if (unlikely(map_flags > BPF_EXIST)) 1096 /* unknown flags */ 1097 return -EINVAL; 1098 1099 WARN_ON_ONCE(!rcu_read_lock_held()); 1100 1101 key_size = map->key_size; 1102 1103 hash = htab_map_hash(key, key_size, htab->hashrnd); 1104 1105 b = __select_bucket(htab, hash); 1106 head = &b->head; 1107 1108 flags = htab_lock_bucket(htab, b); 1109 1110 l_old = lookup_elem_raw(head, hash, key, key_size); 1111 1112 ret = check_flags(htab, l_old, map_flags); 1113 if (ret) 1114 goto err; 1115 1116 if (l_old) { 1117 /* per-cpu hash map can update value in-place */ 1118 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1119 value, onallcpus); 1120 } else { 1121 l_new = alloc_htab_elem(htab, key, value, key_size, 1122 hash, true, onallcpus, NULL); 1123 if (IS_ERR(l_new)) { 1124 ret = PTR_ERR(l_new); 1125 goto err; 1126 } 1127 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1128 } 1129 ret = 0; 1130 err: 1131 htab_unlock_bucket(htab, b, flags); 1132 return ret; 1133 } 1134 1135 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1136 void *value, u64 map_flags, 1137 bool onallcpus) 1138 { 1139 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1140 struct htab_elem *l_new = NULL, *l_old; 1141 struct hlist_nulls_head *head; 1142 unsigned long flags; 1143 struct bucket *b; 1144 u32 key_size, hash; 1145 int ret; 1146 1147 if (unlikely(map_flags > BPF_EXIST)) 1148 /* unknown flags */ 1149 return -EINVAL; 1150 1151 WARN_ON_ONCE(!rcu_read_lock_held()); 1152 1153 key_size = map->key_size; 1154 1155 hash = htab_map_hash(key, key_size, htab->hashrnd); 1156 1157 b = __select_bucket(htab, hash); 1158 head = &b->head; 1159 1160 /* For LRU, we need to alloc before taking bucket's 1161 * spinlock because LRU's elem alloc may need 1162 * to remove older elem from htab and this removal 1163 * operation will need a bucket lock. 1164 */ 1165 if (map_flags != BPF_EXIST) { 1166 l_new = prealloc_lru_pop(htab, key, hash); 1167 if (!l_new) 1168 return -ENOMEM; 1169 } 1170 1171 flags = htab_lock_bucket(htab, b); 1172 1173 l_old = lookup_elem_raw(head, hash, key, key_size); 1174 1175 ret = check_flags(htab, l_old, map_flags); 1176 if (ret) 1177 goto err; 1178 1179 if (l_old) { 1180 bpf_lru_node_set_ref(&l_old->lru_node); 1181 1182 /* per-cpu hash map can update value in-place */ 1183 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1184 value, onallcpus); 1185 } else { 1186 pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size), 1187 value, onallcpus); 1188 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1189 l_new = NULL; 1190 } 1191 ret = 0; 1192 err: 1193 htab_unlock_bucket(htab, b, flags); 1194 if (l_new) 1195 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1196 return ret; 1197 } 1198 1199 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1200 void *value, u64 map_flags) 1201 { 1202 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1203 } 1204 1205 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1206 void *value, u64 map_flags) 1207 { 1208 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1209 false); 1210 } 1211 1212 /* Called from syscall or from eBPF program */ 1213 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1214 { 1215 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1216 struct hlist_nulls_head *head; 1217 struct bucket *b; 1218 struct htab_elem *l; 1219 unsigned long flags; 1220 u32 hash, key_size; 1221 int ret = -ENOENT; 1222 1223 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 1224 1225 key_size = map->key_size; 1226 1227 hash = htab_map_hash(key, key_size, htab->hashrnd); 1228 b = __select_bucket(htab, hash); 1229 head = &b->head; 1230 1231 flags = htab_lock_bucket(htab, b); 1232 1233 l = lookup_elem_raw(head, hash, key, key_size); 1234 1235 if (l) { 1236 hlist_nulls_del_rcu(&l->hash_node); 1237 free_htab_elem(htab, l); 1238 ret = 0; 1239 } 1240 1241 htab_unlock_bucket(htab, b, flags); 1242 return ret; 1243 } 1244 1245 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1246 { 1247 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1248 struct hlist_nulls_head *head; 1249 struct bucket *b; 1250 struct htab_elem *l; 1251 unsigned long flags; 1252 u32 hash, key_size; 1253 int ret = -ENOENT; 1254 1255 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held()); 1256 1257 key_size = map->key_size; 1258 1259 hash = htab_map_hash(key, key_size, htab->hashrnd); 1260 b = __select_bucket(htab, hash); 1261 head = &b->head; 1262 1263 flags = htab_lock_bucket(htab, b); 1264 1265 l = lookup_elem_raw(head, hash, key, key_size); 1266 1267 if (l) { 1268 hlist_nulls_del_rcu(&l->hash_node); 1269 ret = 0; 1270 } 1271 1272 htab_unlock_bucket(htab, b, flags); 1273 if (l) 1274 bpf_lru_push_free(&htab->lru, &l->lru_node); 1275 return ret; 1276 } 1277 1278 static void delete_all_elements(struct bpf_htab *htab) 1279 { 1280 int i; 1281 1282 for (i = 0; i < htab->n_buckets; i++) { 1283 struct hlist_nulls_head *head = select_bucket(htab, i); 1284 struct hlist_nulls_node *n; 1285 struct htab_elem *l; 1286 1287 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1288 hlist_nulls_del_rcu(&l->hash_node); 1289 htab_elem_free(htab, l); 1290 } 1291 } 1292 } 1293 1294 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1295 static void htab_map_free(struct bpf_map *map) 1296 { 1297 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1298 1299 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1300 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1301 * There is no need to synchronize_rcu() here to protect map elements. 1302 */ 1303 1304 /* some of free_htab_elem() callbacks for elements of this map may 1305 * not have executed. Wait for them. 1306 */ 1307 rcu_barrier(); 1308 if (!htab_is_prealloc(htab)) 1309 delete_all_elements(htab); 1310 else 1311 prealloc_destroy(htab); 1312 1313 free_percpu(htab->extra_elems); 1314 bpf_map_area_free(htab->buckets); 1315 kfree(htab); 1316 } 1317 1318 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1319 struct seq_file *m) 1320 { 1321 void *value; 1322 1323 rcu_read_lock(); 1324 1325 value = htab_map_lookup_elem(map, key); 1326 if (!value) { 1327 rcu_read_unlock(); 1328 return; 1329 } 1330 1331 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1332 seq_puts(m, ": "); 1333 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1334 seq_puts(m, "\n"); 1335 1336 rcu_read_unlock(); 1337 } 1338 1339 static int 1340 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1341 const union bpf_attr *attr, 1342 union bpf_attr __user *uattr, 1343 bool do_delete, bool is_lru_map, 1344 bool is_percpu) 1345 { 1346 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1347 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1348 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1349 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1350 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1351 void *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1352 u32 batch, max_count, size, bucket_size; 1353 struct htab_elem *node_to_free = NULL; 1354 u64 elem_map_flags, map_flags; 1355 struct hlist_nulls_head *head; 1356 struct hlist_nulls_node *n; 1357 unsigned long flags = 0; 1358 bool locked = false; 1359 struct htab_elem *l; 1360 struct bucket *b; 1361 int ret = 0; 1362 1363 elem_map_flags = attr->batch.elem_flags; 1364 if ((elem_map_flags & ~BPF_F_LOCK) || 1365 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 1366 return -EINVAL; 1367 1368 map_flags = attr->batch.flags; 1369 if (map_flags) 1370 return -EINVAL; 1371 1372 max_count = attr->batch.count; 1373 if (!max_count) 1374 return 0; 1375 1376 if (put_user(0, &uattr->batch.count)) 1377 return -EFAULT; 1378 1379 batch = 0; 1380 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1381 return -EFAULT; 1382 1383 if (batch >= htab->n_buckets) 1384 return -ENOENT; 1385 1386 key_size = htab->map.key_size; 1387 roundup_key_size = round_up(htab->map.key_size, 8); 1388 value_size = htab->map.value_size; 1389 size = round_up(value_size, 8); 1390 if (is_percpu) 1391 value_size = size * num_possible_cpus(); 1392 total = 0; 1393 /* while experimenting with hash tables with sizes ranging from 10 to 1394 * 1000, it was observed that a bucket can have upto 5 entries. 1395 */ 1396 bucket_size = 5; 1397 1398 alloc: 1399 /* We cannot do copy_from_user or copy_to_user inside 1400 * the rcu_read_lock. Allocate enough space here. 1401 */ 1402 keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN); 1403 values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN); 1404 if (!keys || !values) { 1405 ret = -ENOMEM; 1406 goto after_loop; 1407 } 1408 1409 again: 1410 bpf_disable_instrumentation(); 1411 rcu_read_lock(); 1412 again_nocopy: 1413 dst_key = keys; 1414 dst_val = values; 1415 b = &htab->buckets[batch]; 1416 head = &b->head; 1417 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1418 if (locked) 1419 flags = htab_lock_bucket(htab, b); 1420 1421 bucket_cnt = 0; 1422 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1423 bucket_cnt++; 1424 1425 if (bucket_cnt && !locked) { 1426 locked = true; 1427 goto again_nocopy; 1428 } 1429 1430 if (bucket_cnt > (max_count - total)) { 1431 if (total == 0) 1432 ret = -ENOSPC; 1433 /* Note that since bucket_cnt > 0 here, it is implicit 1434 * that the locked was grabbed, so release it. 1435 */ 1436 htab_unlock_bucket(htab, b, flags); 1437 rcu_read_unlock(); 1438 bpf_enable_instrumentation(); 1439 goto after_loop; 1440 } 1441 1442 if (bucket_cnt > bucket_size) { 1443 bucket_size = bucket_cnt; 1444 /* Note that since bucket_cnt > 0 here, it is implicit 1445 * that the locked was grabbed, so release it. 1446 */ 1447 htab_unlock_bucket(htab, b, flags); 1448 rcu_read_unlock(); 1449 bpf_enable_instrumentation(); 1450 kvfree(keys); 1451 kvfree(values); 1452 goto alloc; 1453 } 1454 1455 /* Next block is only safe to run if you have grabbed the lock */ 1456 if (!locked) 1457 goto next_batch; 1458 1459 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1460 memcpy(dst_key, l->key, key_size); 1461 1462 if (is_percpu) { 1463 int off = 0, cpu; 1464 void __percpu *pptr; 1465 1466 pptr = htab_elem_get_ptr(l, map->key_size); 1467 for_each_possible_cpu(cpu) { 1468 bpf_long_memcpy(dst_val + off, 1469 per_cpu_ptr(pptr, cpu), size); 1470 off += size; 1471 } 1472 } else { 1473 value = l->key + roundup_key_size; 1474 if (elem_map_flags & BPF_F_LOCK) 1475 copy_map_value_locked(map, dst_val, value, 1476 true); 1477 else 1478 copy_map_value(map, dst_val, value); 1479 check_and_init_map_lock(map, dst_val); 1480 } 1481 if (do_delete) { 1482 hlist_nulls_del_rcu(&l->hash_node); 1483 1484 /* bpf_lru_push_free() will acquire lru_lock, which 1485 * may cause deadlock. See comments in function 1486 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1487 * after releasing the bucket lock. 1488 */ 1489 if (is_lru_map) { 1490 l->batch_flink = node_to_free; 1491 node_to_free = l; 1492 } else { 1493 free_htab_elem(htab, l); 1494 } 1495 } 1496 dst_key += key_size; 1497 dst_val += value_size; 1498 } 1499 1500 htab_unlock_bucket(htab, b, flags); 1501 locked = false; 1502 1503 while (node_to_free) { 1504 l = node_to_free; 1505 node_to_free = node_to_free->batch_flink; 1506 bpf_lru_push_free(&htab->lru, &l->lru_node); 1507 } 1508 1509 next_batch: 1510 /* If we are not copying data, we can go to next bucket and avoid 1511 * unlocking the rcu. 1512 */ 1513 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1514 batch++; 1515 goto again_nocopy; 1516 } 1517 1518 rcu_read_unlock(); 1519 bpf_enable_instrumentation(); 1520 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1521 key_size * bucket_cnt) || 1522 copy_to_user(uvalues + total * value_size, values, 1523 value_size * bucket_cnt))) { 1524 ret = -EFAULT; 1525 goto after_loop; 1526 } 1527 1528 total += bucket_cnt; 1529 batch++; 1530 if (batch >= htab->n_buckets) { 1531 ret = -ENOENT; 1532 goto after_loop; 1533 } 1534 goto again; 1535 1536 after_loop: 1537 if (ret == -EFAULT) 1538 goto out; 1539 1540 /* copy # of entries and next batch */ 1541 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1542 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1543 put_user(total, &uattr->batch.count)) 1544 ret = -EFAULT; 1545 1546 out: 1547 kvfree(keys); 1548 kvfree(values); 1549 return ret; 1550 } 1551 1552 static int 1553 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1554 union bpf_attr __user *uattr) 1555 { 1556 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1557 false, true); 1558 } 1559 1560 static int 1561 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1562 const union bpf_attr *attr, 1563 union bpf_attr __user *uattr) 1564 { 1565 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1566 false, true); 1567 } 1568 1569 static int 1570 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1571 union bpf_attr __user *uattr) 1572 { 1573 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1574 false, false); 1575 } 1576 1577 static int 1578 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1579 const union bpf_attr *attr, 1580 union bpf_attr __user *uattr) 1581 { 1582 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1583 false, false); 1584 } 1585 1586 static int 1587 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1588 const union bpf_attr *attr, 1589 union bpf_attr __user *uattr) 1590 { 1591 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1592 true, true); 1593 } 1594 1595 static int 1596 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1597 const union bpf_attr *attr, 1598 union bpf_attr __user *uattr) 1599 { 1600 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1601 true, true); 1602 } 1603 1604 static int 1605 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1606 union bpf_attr __user *uattr) 1607 { 1608 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1609 true, false); 1610 } 1611 1612 static int 1613 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1614 const union bpf_attr *attr, 1615 union bpf_attr __user *uattr) 1616 { 1617 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1618 true, false); 1619 } 1620 1621 struct bpf_iter_seq_hash_map_info { 1622 struct bpf_map *map; 1623 struct bpf_htab *htab; 1624 void *percpu_value_buf; // non-zero means percpu hash 1625 u32 bucket_id; 1626 u32 skip_elems; 1627 }; 1628 1629 static struct htab_elem * 1630 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1631 struct htab_elem *prev_elem) 1632 { 1633 const struct bpf_htab *htab = info->htab; 1634 u32 skip_elems = info->skip_elems; 1635 u32 bucket_id = info->bucket_id; 1636 struct hlist_nulls_head *head; 1637 struct hlist_nulls_node *n; 1638 struct htab_elem *elem; 1639 struct bucket *b; 1640 u32 i, count; 1641 1642 if (bucket_id >= htab->n_buckets) 1643 return NULL; 1644 1645 /* try to find next elem in the same bucket */ 1646 if (prev_elem) { 1647 /* no update/deletion on this bucket, prev_elem should be still valid 1648 * and we won't skip elements. 1649 */ 1650 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1651 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1652 if (elem) 1653 return elem; 1654 1655 /* not found, unlock and go to the next bucket */ 1656 b = &htab->buckets[bucket_id++]; 1657 rcu_read_unlock(); 1658 skip_elems = 0; 1659 } 1660 1661 for (i = bucket_id; i < htab->n_buckets; i++) { 1662 b = &htab->buckets[i]; 1663 rcu_read_lock(); 1664 1665 count = 0; 1666 head = &b->head; 1667 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 1668 if (count >= skip_elems) { 1669 info->bucket_id = i; 1670 info->skip_elems = count; 1671 return elem; 1672 } 1673 count++; 1674 } 1675 1676 rcu_read_unlock(); 1677 skip_elems = 0; 1678 } 1679 1680 info->bucket_id = i; 1681 info->skip_elems = 0; 1682 return NULL; 1683 } 1684 1685 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 1686 { 1687 struct bpf_iter_seq_hash_map_info *info = seq->private; 1688 struct htab_elem *elem; 1689 1690 elem = bpf_hash_map_seq_find_next(info, NULL); 1691 if (!elem) 1692 return NULL; 1693 1694 if (*pos == 0) 1695 ++*pos; 1696 return elem; 1697 } 1698 1699 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1700 { 1701 struct bpf_iter_seq_hash_map_info *info = seq->private; 1702 1703 ++*pos; 1704 ++info->skip_elems; 1705 return bpf_hash_map_seq_find_next(info, v); 1706 } 1707 1708 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 1709 { 1710 struct bpf_iter_seq_hash_map_info *info = seq->private; 1711 u32 roundup_key_size, roundup_value_size; 1712 struct bpf_iter__bpf_map_elem ctx = {}; 1713 struct bpf_map *map = info->map; 1714 struct bpf_iter_meta meta; 1715 int ret = 0, off = 0, cpu; 1716 struct bpf_prog *prog; 1717 void __percpu *pptr; 1718 1719 meta.seq = seq; 1720 prog = bpf_iter_get_info(&meta, elem == NULL); 1721 if (prog) { 1722 ctx.meta = &meta; 1723 ctx.map = info->map; 1724 if (elem) { 1725 roundup_key_size = round_up(map->key_size, 8); 1726 ctx.key = elem->key; 1727 if (!info->percpu_value_buf) { 1728 ctx.value = elem->key + roundup_key_size; 1729 } else { 1730 roundup_value_size = round_up(map->value_size, 8); 1731 pptr = htab_elem_get_ptr(elem, map->key_size); 1732 for_each_possible_cpu(cpu) { 1733 bpf_long_memcpy(info->percpu_value_buf + off, 1734 per_cpu_ptr(pptr, cpu), 1735 roundup_value_size); 1736 off += roundup_value_size; 1737 } 1738 ctx.value = info->percpu_value_buf; 1739 } 1740 } 1741 ret = bpf_iter_run_prog(prog, &ctx); 1742 } 1743 1744 return ret; 1745 } 1746 1747 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 1748 { 1749 return __bpf_hash_map_seq_show(seq, v); 1750 } 1751 1752 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 1753 { 1754 if (!v) 1755 (void)__bpf_hash_map_seq_show(seq, NULL); 1756 else 1757 rcu_read_unlock(); 1758 } 1759 1760 static int bpf_iter_init_hash_map(void *priv_data, 1761 struct bpf_iter_aux_info *aux) 1762 { 1763 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 1764 struct bpf_map *map = aux->map; 1765 void *value_buf; 1766 u32 buf_size; 1767 1768 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 1769 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 1770 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 1771 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 1772 if (!value_buf) 1773 return -ENOMEM; 1774 1775 seq_info->percpu_value_buf = value_buf; 1776 } 1777 1778 seq_info->map = map; 1779 seq_info->htab = container_of(map, struct bpf_htab, map); 1780 return 0; 1781 } 1782 1783 static void bpf_iter_fini_hash_map(void *priv_data) 1784 { 1785 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 1786 1787 kfree(seq_info->percpu_value_buf); 1788 } 1789 1790 static const struct seq_operations bpf_hash_map_seq_ops = { 1791 .start = bpf_hash_map_seq_start, 1792 .next = bpf_hash_map_seq_next, 1793 .stop = bpf_hash_map_seq_stop, 1794 .show = bpf_hash_map_seq_show, 1795 }; 1796 1797 static const struct bpf_iter_seq_info iter_seq_info = { 1798 .seq_ops = &bpf_hash_map_seq_ops, 1799 .init_seq_private = bpf_iter_init_hash_map, 1800 .fini_seq_private = bpf_iter_fini_hash_map, 1801 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 1802 }; 1803 1804 static int htab_map_btf_id; 1805 const struct bpf_map_ops htab_map_ops = { 1806 .map_meta_equal = bpf_map_meta_equal, 1807 .map_alloc_check = htab_map_alloc_check, 1808 .map_alloc = htab_map_alloc, 1809 .map_free = htab_map_free, 1810 .map_get_next_key = htab_map_get_next_key, 1811 .map_lookup_elem = htab_map_lookup_elem, 1812 .map_update_elem = htab_map_update_elem, 1813 .map_delete_elem = htab_map_delete_elem, 1814 .map_gen_lookup = htab_map_gen_lookup, 1815 .map_seq_show_elem = htab_map_seq_show_elem, 1816 BATCH_OPS(htab), 1817 .map_btf_name = "bpf_htab", 1818 .map_btf_id = &htab_map_btf_id, 1819 .iter_seq_info = &iter_seq_info, 1820 }; 1821 1822 static int htab_lru_map_btf_id; 1823 const struct bpf_map_ops htab_lru_map_ops = { 1824 .map_meta_equal = bpf_map_meta_equal, 1825 .map_alloc_check = htab_map_alloc_check, 1826 .map_alloc = htab_map_alloc, 1827 .map_free = htab_map_free, 1828 .map_get_next_key = htab_map_get_next_key, 1829 .map_lookup_elem = htab_lru_map_lookup_elem, 1830 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 1831 .map_update_elem = htab_lru_map_update_elem, 1832 .map_delete_elem = htab_lru_map_delete_elem, 1833 .map_gen_lookup = htab_lru_map_gen_lookup, 1834 .map_seq_show_elem = htab_map_seq_show_elem, 1835 BATCH_OPS(htab_lru), 1836 .map_btf_name = "bpf_htab", 1837 .map_btf_id = &htab_lru_map_btf_id, 1838 .iter_seq_info = &iter_seq_info, 1839 }; 1840 1841 /* Called from eBPF program */ 1842 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 1843 { 1844 struct htab_elem *l = __htab_map_lookup_elem(map, key); 1845 1846 if (l) 1847 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 1848 else 1849 return NULL; 1850 } 1851 1852 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 1853 { 1854 struct htab_elem *l = __htab_map_lookup_elem(map, key); 1855 1856 if (l) { 1857 bpf_lru_node_set_ref(&l->lru_node); 1858 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 1859 } 1860 1861 return NULL; 1862 } 1863 1864 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 1865 { 1866 struct htab_elem *l; 1867 void __percpu *pptr; 1868 int ret = -ENOENT; 1869 int cpu, off = 0; 1870 u32 size; 1871 1872 /* per_cpu areas are zero-filled and bpf programs can only 1873 * access 'value_size' of them, so copying rounded areas 1874 * will not leak any kernel data 1875 */ 1876 size = round_up(map->value_size, 8); 1877 rcu_read_lock(); 1878 l = __htab_map_lookup_elem(map, key); 1879 if (!l) 1880 goto out; 1881 /* We do not mark LRU map element here in order to not mess up 1882 * eviction heuristics when user space does a map walk. 1883 */ 1884 pptr = htab_elem_get_ptr(l, map->key_size); 1885 for_each_possible_cpu(cpu) { 1886 bpf_long_memcpy(value + off, 1887 per_cpu_ptr(pptr, cpu), size); 1888 off += size; 1889 } 1890 ret = 0; 1891 out: 1892 rcu_read_unlock(); 1893 return ret; 1894 } 1895 1896 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 1897 u64 map_flags) 1898 { 1899 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1900 int ret; 1901 1902 rcu_read_lock(); 1903 if (htab_is_lru(htab)) 1904 ret = __htab_lru_percpu_map_update_elem(map, key, value, 1905 map_flags, true); 1906 else 1907 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 1908 true); 1909 rcu_read_unlock(); 1910 1911 return ret; 1912 } 1913 1914 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 1915 struct seq_file *m) 1916 { 1917 struct htab_elem *l; 1918 void __percpu *pptr; 1919 int cpu; 1920 1921 rcu_read_lock(); 1922 1923 l = __htab_map_lookup_elem(map, key); 1924 if (!l) { 1925 rcu_read_unlock(); 1926 return; 1927 } 1928 1929 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1930 seq_puts(m, ": {\n"); 1931 pptr = htab_elem_get_ptr(l, map->key_size); 1932 for_each_possible_cpu(cpu) { 1933 seq_printf(m, "\tcpu%d: ", cpu); 1934 btf_type_seq_show(map->btf, map->btf_value_type_id, 1935 per_cpu_ptr(pptr, cpu), m); 1936 seq_puts(m, "\n"); 1937 } 1938 seq_puts(m, "}\n"); 1939 1940 rcu_read_unlock(); 1941 } 1942 1943 static int htab_percpu_map_btf_id; 1944 const struct bpf_map_ops htab_percpu_map_ops = { 1945 .map_meta_equal = bpf_map_meta_equal, 1946 .map_alloc_check = htab_map_alloc_check, 1947 .map_alloc = htab_map_alloc, 1948 .map_free = htab_map_free, 1949 .map_get_next_key = htab_map_get_next_key, 1950 .map_lookup_elem = htab_percpu_map_lookup_elem, 1951 .map_update_elem = htab_percpu_map_update_elem, 1952 .map_delete_elem = htab_map_delete_elem, 1953 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 1954 BATCH_OPS(htab_percpu), 1955 .map_btf_name = "bpf_htab", 1956 .map_btf_id = &htab_percpu_map_btf_id, 1957 .iter_seq_info = &iter_seq_info, 1958 }; 1959 1960 static int htab_lru_percpu_map_btf_id; 1961 const struct bpf_map_ops htab_lru_percpu_map_ops = { 1962 .map_meta_equal = bpf_map_meta_equal, 1963 .map_alloc_check = htab_map_alloc_check, 1964 .map_alloc = htab_map_alloc, 1965 .map_free = htab_map_free, 1966 .map_get_next_key = htab_map_get_next_key, 1967 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 1968 .map_update_elem = htab_lru_percpu_map_update_elem, 1969 .map_delete_elem = htab_lru_map_delete_elem, 1970 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 1971 BATCH_OPS(htab_lru_percpu), 1972 .map_btf_name = "bpf_htab", 1973 .map_btf_id = &htab_lru_percpu_map_btf_id, 1974 .iter_seq_info = &iter_seq_info, 1975 }; 1976 1977 static int fd_htab_map_alloc_check(union bpf_attr *attr) 1978 { 1979 if (attr->value_size != sizeof(u32)) 1980 return -EINVAL; 1981 return htab_map_alloc_check(attr); 1982 } 1983 1984 static void fd_htab_map_free(struct bpf_map *map) 1985 { 1986 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1987 struct hlist_nulls_node *n; 1988 struct hlist_nulls_head *head; 1989 struct htab_elem *l; 1990 int i; 1991 1992 for (i = 0; i < htab->n_buckets; i++) { 1993 head = select_bucket(htab, i); 1994 1995 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1996 void *ptr = fd_htab_map_get_ptr(map, l); 1997 1998 map->ops->map_fd_put_ptr(ptr); 1999 } 2000 } 2001 2002 htab_map_free(map); 2003 } 2004 2005 /* only called from syscall */ 2006 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2007 { 2008 void **ptr; 2009 int ret = 0; 2010 2011 if (!map->ops->map_fd_sys_lookup_elem) 2012 return -ENOTSUPP; 2013 2014 rcu_read_lock(); 2015 ptr = htab_map_lookup_elem(map, key); 2016 if (ptr) 2017 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2018 else 2019 ret = -ENOENT; 2020 rcu_read_unlock(); 2021 2022 return ret; 2023 } 2024 2025 /* only called from syscall */ 2026 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2027 void *key, void *value, u64 map_flags) 2028 { 2029 void *ptr; 2030 int ret; 2031 u32 ufd = *(u32 *)value; 2032 2033 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2034 if (IS_ERR(ptr)) 2035 return PTR_ERR(ptr); 2036 2037 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2038 if (ret) 2039 map->ops->map_fd_put_ptr(ptr); 2040 2041 return ret; 2042 } 2043 2044 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2045 { 2046 struct bpf_map *map, *inner_map_meta; 2047 2048 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2049 if (IS_ERR(inner_map_meta)) 2050 return inner_map_meta; 2051 2052 map = htab_map_alloc(attr); 2053 if (IS_ERR(map)) { 2054 bpf_map_meta_free(inner_map_meta); 2055 return map; 2056 } 2057 2058 map->inner_map_meta = inner_map_meta; 2059 2060 return map; 2061 } 2062 2063 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2064 { 2065 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2066 2067 if (!inner_map) 2068 return NULL; 2069 2070 return READ_ONCE(*inner_map); 2071 } 2072 2073 static int htab_of_map_gen_lookup(struct bpf_map *map, 2074 struct bpf_insn *insn_buf) 2075 { 2076 struct bpf_insn *insn = insn_buf; 2077 const int ret = BPF_REG_0; 2078 2079 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2080 (void *(*)(struct bpf_map *map, void *key))NULL)); 2081 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 2082 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2083 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2084 offsetof(struct htab_elem, key) + 2085 round_up(map->key_size, 8)); 2086 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2087 2088 return insn - insn_buf; 2089 } 2090 2091 static void htab_of_map_free(struct bpf_map *map) 2092 { 2093 bpf_map_meta_free(map->inner_map_meta); 2094 fd_htab_map_free(map); 2095 } 2096 2097 static int htab_of_maps_map_btf_id; 2098 const struct bpf_map_ops htab_of_maps_map_ops = { 2099 .map_alloc_check = fd_htab_map_alloc_check, 2100 .map_alloc = htab_of_map_alloc, 2101 .map_free = htab_of_map_free, 2102 .map_get_next_key = htab_map_get_next_key, 2103 .map_lookup_elem = htab_of_map_lookup_elem, 2104 .map_delete_elem = htab_map_delete_elem, 2105 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2106 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2107 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2108 .map_gen_lookup = htab_of_map_gen_lookup, 2109 .map_check_btf = map_check_no_btf, 2110 .map_btf_name = "bpf_htab", 2111 .map_btf_id = &htab_of_maps_map_btf_id, 2112 }; 2113