1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include "percpu_freelist.h" 14 #include "bpf_lru_list.h" 15 #include "map_in_map.h" 16 17 #define HTAB_CREATE_FLAG_MASK \ 18 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 19 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 20 21 #define BATCH_OPS(_name) \ 22 .map_lookup_batch = \ 23 _name##_map_lookup_batch, \ 24 .map_lookup_and_delete_batch = \ 25 _name##_map_lookup_and_delete_batch, \ 26 .map_update_batch = \ 27 generic_map_update_batch, \ 28 .map_delete_batch = \ 29 generic_map_delete_batch 30 31 /* 32 * The bucket lock has two protection scopes: 33 * 34 * 1) Serializing concurrent operations from BPF programs on different 35 * CPUs 36 * 37 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 38 * 39 * BPF programs can execute in any context including perf, kprobes and 40 * tracing. As there are almost no limits where perf, kprobes and tracing 41 * can be invoked from the lock operations need to be protected against 42 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 43 * the lock held section when functions which acquire this lock are invoked 44 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 45 * variable bpf_prog_active, which prevents BPF programs attached to perf 46 * events, kprobes and tracing to be invoked before the prior invocation 47 * from one of these contexts completed. sys_bpf() uses the same mechanism 48 * by pinning the task to the current CPU and incrementing the recursion 49 * protection across the map operation. 50 * 51 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 52 * operations like memory allocations (even with GFP_ATOMIC) from atomic 53 * contexts. This is required because even with GFP_ATOMIC the memory 54 * allocator calls into code paths which acquire locks with long held lock 55 * sections. To ensure the deterministic behaviour these locks are regular 56 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 57 * true atomic contexts on an RT kernel are the low level hardware 58 * handling, scheduling, low level interrupt handling, NMIs etc. None of 59 * these contexts should ever do memory allocations. 60 * 61 * As regular device interrupt handlers and soft interrupts are forced into 62 * thread context, the existing code which does 63 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*(); 64 * just works. 65 * 66 * In theory the BPF locks could be converted to regular spinlocks as well, 67 * but the bucket locks and percpu_freelist locks can be taken from 68 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 69 * atomic contexts even on RT. These mechanisms require preallocated maps, 70 * so there is no need to invoke memory allocations within the lock held 71 * sections. 72 * 73 * BPF maps which need dynamic allocation are only used from (forced) 74 * thread context on RT and can therefore use regular spinlocks which in 75 * turn allows to invoke memory allocations from the lock held section. 76 * 77 * On a non RT kernel this distinction is neither possible nor required. 78 * spinlock maps to raw_spinlock and the extra code is optimized out by the 79 * compiler. 80 */ 81 struct bucket { 82 struct hlist_nulls_head head; 83 union { 84 raw_spinlock_t raw_lock; 85 spinlock_t lock; 86 }; 87 }; 88 89 #define HASHTAB_MAP_LOCK_COUNT 8 90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 91 92 struct bpf_htab { 93 struct bpf_map map; 94 struct bucket *buckets; 95 void *elems; 96 union { 97 struct pcpu_freelist freelist; 98 struct bpf_lru lru; 99 }; 100 struct htab_elem *__percpu *extra_elems; 101 atomic_t count; /* number of elements in this hashtable */ 102 u32 n_buckets; /* number of hash buckets */ 103 u32 elem_size; /* size of each element in bytes */ 104 u32 hashrnd; 105 struct lock_class_key lockdep_key; 106 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 107 }; 108 109 /* each htab element is struct htab_elem + key + value */ 110 struct htab_elem { 111 union { 112 struct hlist_nulls_node hash_node; 113 struct { 114 void *padding; 115 union { 116 struct bpf_htab *htab; 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 struct rcu_head rcu; 124 struct bpf_lru_node lru_node; 125 }; 126 u32 hash; 127 char key[] __aligned(8); 128 }; 129 130 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 131 { 132 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 133 } 134 135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab) 136 { 137 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab)); 138 } 139 140 static void htab_init_buckets(struct bpf_htab *htab) 141 { 142 unsigned i; 143 144 for (i = 0; i < htab->n_buckets; i++) { 145 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 146 if (htab_use_raw_lock(htab)) { 147 raw_spin_lock_init(&htab->buckets[i].raw_lock); 148 lockdep_set_class(&htab->buckets[i].raw_lock, 149 &htab->lockdep_key); 150 } else { 151 spin_lock_init(&htab->buckets[i].lock); 152 lockdep_set_class(&htab->buckets[i].lock, 153 &htab->lockdep_key); 154 } 155 cond_resched(); 156 } 157 } 158 159 static inline int htab_lock_bucket(const struct bpf_htab *htab, 160 struct bucket *b, u32 hash, 161 unsigned long *pflags) 162 { 163 unsigned long flags; 164 165 hash = hash & HASHTAB_MAP_LOCK_MASK; 166 167 migrate_disable(); 168 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 169 __this_cpu_dec(*(htab->map_locked[hash])); 170 migrate_enable(); 171 return -EBUSY; 172 } 173 174 if (htab_use_raw_lock(htab)) 175 raw_spin_lock_irqsave(&b->raw_lock, flags); 176 else 177 spin_lock_irqsave(&b->lock, flags); 178 *pflags = flags; 179 180 return 0; 181 } 182 183 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 184 struct bucket *b, u32 hash, 185 unsigned long flags) 186 { 187 hash = hash & HASHTAB_MAP_LOCK_MASK; 188 if (htab_use_raw_lock(htab)) 189 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 190 else 191 spin_unlock_irqrestore(&b->lock, flags); 192 __this_cpu_dec(*(htab->map_locked[hash])); 193 migrate_enable(); 194 } 195 196 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 197 198 static bool htab_is_lru(const struct bpf_htab *htab) 199 { 200 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 201 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 202 } 203 204 static bool htab_is_percpu(const struct bpf_htab *htab) 205 { 206 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 207 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 208 } 209 210 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 211 void __percpu *pptr) 212 { 213 *(void __percpu **)(l->key + key_size) = pptr; 214 } 215 216 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 217 { 218 return *(void __percpu **)(l->key + key_size); 219 } 220 221 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 222 { 223 return *(void **)(l->key + roundup(map->key_size, 8)); 224 } 225 226 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 227 { 228 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 229 } 230 231 static bool htab_has_extra_elems(struct bpf_htab *htab) 232 { 233 return !htab_is_percpu(htab) && !htab_is_lru(htab); 234 } 235 236 static void htab_free_prealloced_timers(struct bpf_htab *htab) 237 { 238 u32 num_entries = htab->map.max_entries; 239 int i; 240 241 if (likely(!map_value_has_timer(&htab->map))) 242 return; 243 if (htab_has_extra_elems(htab)) 244 num_entries += num_possible_cpus(); 245 246 for (i = 0; i < num_entries; i++) { 247 struct htab_elem *elem; 248 249 elem = get_htab_elem(htab, i); 250 bpf_timer_cancel_and_free(elem->key + 251 round_up(htab->map.key_size, 8) + 252 htab->map.timer_off); 253 cond_resched(); 254 } 255 } 256 257 static void htab_free_elems(struct bpf_htab *htab) 258 { 259 int i; 260 261 if (!htab_is_percpu(htab)) 262 goto free_elems; 263 264 for (i = 0; i < htab->map.max_entries; i++) { 265 void __percpu *pptr; 266 267 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 268 htab->map.key_size); 269 free_percpu(pptr); 270 cond_resched(); 271 } 272 free_elems: 273 bpf_map_area_free(htab->elems); 274 } 275 276 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 277 * (bucket_lock). If both locks need to be acquired together, the lock 278 * order is always lru_lock -> bucket_lock and this only happens in 279 * bpf_lru_list.c logic. For example, certain code path of 280 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 281 * will acquire lru_lock first followed by acquiring bucket_lock. 282 * 283 * In hashtab.c, to avoid deadlock, lock acquisition of 284 * bucket_lock followed by lru_lock is not allowed. In such cases, 285 * bucket_lock needs to be released first before acquiring lru_lock. 286 */ 287 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 288 u32 hash) 289 { 290 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 291 struct htab_elem *l; 292 293 if (node) { 294 u32 key_size = htab->map.key_size; 295 296 l = container_of(node, struct htab_elem, lru_node); 297 memcpy(l->key, key, key_size); 298 check_and_init_map_value(&htab->map, 299 l->key + round_up(key_size, 8)); 300 return l; 301 } 302 303 return NULL; 304 } 305 306 static int prealloc_init(struct bpf_htab *htab) 307 { 308 u32 num_entries = htab->map.max_entries; 309 int err = -ENOMEM, i; 310 311 if (htab_has_extra_elems(htab)) 312 num_entries += num_possible_cpus(); 313 314 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 315 htab->map.numa_node); 316 if (!htab->elems) 317 return -ENOMEM; 318 319 if (!htab_is_percpu(htab)) 320 goto skip_percpu_elems; 321 322 for (i = 0; i < num_entries; i++) { 323 u32 size = round_up(htab->map.value_size, 8); 324 void __percpu *pptr; 325 326 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 327 GFP_USER | __GFP_NOWARN); 328 if (!pptr) 329 goto free_elems; 330 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 331 pptr); 332 cond_resched(); 333 } 334 335 skip_percpu_elems: 336 if (htab_is_lru(htab)) 337 err = bpf_lru_init(&htab->lru, 338 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 339 offsetof(struct htab_elem, hash) - 340 offsetof(struct htab_elem, lru_node), 341 htab_lru_map_delete_node, 342 htab); 343 else 344 err = pcpu_freelist_init(&htab->freelist); 345 346 if (err) 347 goto free_elems; 348 349 if (htab_is_lru(htab)) 350 bpf_lru_populate(&htab->lru, htab->elems, 351 offsetof(struct htab_elem, lru_node), 352 htab->elem_size, num_entries); 353 else 354 pcpu_freelist_populate(&htab->freelist, 355 htab->elems + offsetof(struct htab_elem, fnode), 356 htab->elem_size, num_entries); 357 358 return 0; 359 360 free_elems: 361 htab_free_elems(htab); 362 return err; 363 } 364 365 static void prealloc_destroy(struct bpf_htab *htab) 366 { 367 htab_free_elems(htab); 368 369 if (htab_is_lru(htab)) 370 bpf_lru_destroy(&htab->lru); 371 else 372 pcpu_freelist_destroy(&htab->freelist); 373 } 374 375 static int alloc_extra_elems(struct bpf_htab *htab) 376 { 377 struct htab_elem *__percpu *pptr, *l_new; 378 struct pcpu_freelist_node *l; 379 int cpu; 380 381 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 382 GFP_USER | __GFP_NOWARN); 383 if (!pptr) 384 return -ENOMEM; 385 386 for_each_possible_cpu(cpu) { 387 l = pcpu_freelist_pop(&htab->freelist); 388 /* pop will succeed, since prealloc_init() 389 * preallocated extra num_possible_cpus elements 390 */ 391 l_new = container_of(l, struct htab_elem, fnode); 392 *per_cpu_ptr(pptr, cpu) = l_new; 393 } 394 htab->extra_elems = pptr; 395 return 0; 396 } 397 398 /* Called from syscall */ 399 static int htab_map_alloc_check(union bpf_attr *attr) 400 { 401 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 402 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 403 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 404 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 405 /* percpu_lru means each cpu has its own LRU list. 406 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 407 * the map's value itself is percpu. percpu_lru has 408 * nothing to do with the map's value. 409 */ 410 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 411 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 412 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 413 int numa_node = bpf_map_attr_numa_node(attr); 414 415 BUILD_BUG_ON(offsetof(struct htab_elem, htab) != 416 offsetof(struct htab_elem, hash_node.pprev)); 417 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 418 offsetof(struct htab_elem, hash_node.pprev)); 419 420 if (lru && !bpf_capable()) 421 /* LRU implementation is much complicated than other 422 * maps. Hence, limit to CAP_BPF. 423 */ 424 return -EPERM; 425 426 if (zero_seed && !capable(CAP_SYS_ADMIN)) 427 /* Guard against local DoS, and discourage production use. */ 428 return -EPERM; 429 430 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 431 !bpf_map_flags_access_ok(attr->map_flags)) 432 return -EINVAL; 433 434 if (!lru && percpu_lru) 435 return -EINVAL; 436 437 if (lru && !prealloc) 438 return -ENOTSUPP; 439 440 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 441 return -EINVAL; 442 443 /* check sanity of attributes. 444 * value_size == 0 may be allowed in the future to use map as a set 445 */ 446 if (attr->max_entries == 0 || attr->key_size == 0 || 447 attr->value_size == 0) 448 return -EINVAL; 449 450 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 451 sizeof(struct htab_elem)) 452 /* if key_size + value_size is bigger, the user space won't be 453 * able to access the elements via bpf syscall. This check 454 * also makes sure that the elem_size doesn't overflow and it's 455 * kmalloc-able later in htab_map_update_elem() 456 */ 457 return -E2BIG; 458 459 return 0; 460 } 461 462 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 463 { 464 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 465 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 466 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 467 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 468 /* percpu_lru means each cpu has its own LRU list. 469 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 470 * the map's value itself is percpu. percpu_lru has 471 * nothing to do with the map's value. 472 */ 473 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 474 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 475 struct bpf_htab *htab; 476 int err, i; 477 478 htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT); 479 if (!htab) 480 return ERR_PTR(-ENOMEM); 481 482 lockdep_register_key(&htab->lockdep_key); 483 484 bpf_map_init_from_attr(&htab->map, attr); 485 486 if (percpu_lru) { 487 /* ensure each CPU's lru list has >=1 elements. 488 * since we are at it, make each lru list has the same 489 * number of elements. 490 */ 491 htab->map.max_entries = roundup(attr->max_entries, 492 num_possible_cpus()); 493 if (htab->map.max_entries < attr->max_entries) 494 htab->map.max_entries = rounddown(attr->max_entries, 495 num_possible_cpus()); 496 } 497 498 /* hash table size must be power of 2 */ 499 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 500 501 htab->elem_size = sizeof(struct htab_elem) + 502 round_up(htab->map.key_size, 8); 503 if (percpu) 504 htab->elem_size += sizeof(void *); 505 else 506 htab->elem_size += round_up(htab->map.value_size, 8); 507 508 err = -E2BIG; 509 /* prevent zero size kmalloc and check for u32 overflow */ 510 if (htab->n_buckets == 0 || 511 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 512 goto free_htab; 513 514 err = -ENOMEM; 515 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 516 sizeof(struct bucket), 517 htab->map.numa_node); 518 if (!htab->buckets) 519 goto free_htab; 520 521 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 522 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 523 sizeof(int), 524 sizeof(int), 525 GFP_USER); 526 if (!htab->map_locked[i]) 527 goto free_map_locked; 528 } 529 530 if (htab->map.map_flags & BPF_F_ZERO_SEED) 531 htab->hashrnd = 0; 532 else 533 htab->hashrnd = get_random_int(); 534 535 htab_init_buckets(htab); 536 537 if (prealloc) { 538 err = prealloc_init(htab); 539 if (err) 540 goto free_map_locked; 541 542 if (!percpu && !lru) { 543 /* lru itself can remove the least used element, so 544 * there is no need for an extra elem during map_update. 545 */ 546 err = alloc_extra_elems(htab); 547 if (err) 548 goto free_prealloc; 549 } 550 } 551 552 return &htab->map; 553 554 free_prealloc: 555 prealloc_destroy(htab); 556 free_map_locked: 557 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 558 free_percpu(htab->map_locked[i]); 559 bpf_map_area_free(htab->buckets); 560 free_htab: 561 lockdep_unregister_key(&htab->lockdep_key); 562 kfree(htab); 563 return ERR_PTR(err); 564 } 565 566 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 567 { 568 return jhash(key, key_len, hashrnd); 569 } 570 571 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 572 { 573 return &htab->buckets[hash & (htab->n_buckets - 1)]; 574 } 575 576 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 577 { 578 return &__select_bucket(htab, hash)->head; 579 } 580 581 /* this lookup function can only be called with bucket lock taken */ 582 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 583 void *key, u32 key_size) 584 { 585 struct hlist_nulls_node *n; 586 struct htab_elem *l; 587 588 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 589 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 590 return l; 591 592 return NULL; 593 } 594 595 /* can be called without bucket lock. it will repeat the loop in 596 * the unlikely event when elements moved from one bucket into another 597 * while link list is being walked 598 */ 599 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 600 u32 hash, void *key, 601 u32 key_size, u32 n_buckets) 602 { 603 struct hlist_nulls_node *n; 604 struct htab_elem *l; 605 606 again: 607 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 608 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 609 return l; 610 611 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 612 goto again; 613 614 return NULL; 615 } 616 617 /* Called from syscall or from eBPF program directly, so 618 * arguments have to match bpf_map_lookup_elem() exactly. 619 * The return value is adjusted by BPF instructions 620 * in htab_map_gen_lookup(). 621 */ 622 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 623 { 624 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 625 struct hlist_nulls_head *head; 626 struct htab_elem *l; 627 u32 hash, key_size; 628 629 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 630 !rcu_read_lock_bh_held()); 631 632 key_size = map->key_size; 633 634 hash = htab_map_hash(key, key_size, htab->hashrnd); 635 636 head = select_bucket(htab, hash); 637 638 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 639 640 return l; 641 } 642 643 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 644 { 645 struct htab_elem *l = __htab_map_lookup_elem(map, key); 646 647 if (l) 648 return l->key + round_up(map->key_size, 8); 649 650 return NULL; 651 } 652 653 /* inline bpf_map_lookup_elem() call. 654 * Instead of: 655 * bpf_prog 656 * bpf_map_lookup_elem 657 * map->ops->map_lookup_elem 658 * htab_map_lookup_elem 659 * __htab_map_lookup_elem 660 * do: 661 * bpf_prog 662 * __htab_map_lookup_elem 663 */ 664 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 665 { 666 struct bpf_insn *insn = insn_buf; 667 const int ret = BPF_REG_0; 668 669 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 670 (void *(*)(struct bpf_map *map, void *key))NULL)); 671 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 672 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 673 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 674 offsetof(struct htab_elem, key) + 675 round_up(map->key_size, 8)); 676 return insn - insn_buf; 677 } 678 679 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 680 void *key, const bool mark) 681 { 682 struct htab_elem *l = __htab_map_lookup_elem(map, key); 683 684 if (l) { 685 if (mark) 686 bpf_lru_node_set_ref(&l->lru_node); 687 return l->key + round_up(map->key_size, 8); 688 } 689 690 return NULL; 691 } 692 693 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 694 { 695 return __htab_lru_map_lookup_elem(map, key, true); 696 } 697 698 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 699 { 700 return __htab_lru_map_lookup_elem(map, key, false); 701 } 702 703 static int htab_lru_map_gen_lookup(struct bpf_map *map, 704 struct bpf_insn *insn_buf) 705 { 706 struct bpf_insn *insn = insn_buf; 707 const int ret = BPF_REG_0; 708 const int ref_reg = BPF_REG_1; 709 710 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 711 (void *(*)(struct bpf_map *map, void *key))NULL)); 712 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 713 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 714 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 715 offsetof(struct htab_elem, lru_node) + 716 offsetof(struct bpf_lru_node, ref)); 717 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 718 *insn++ = BPF_ST_MEM(BPF_B, ret, 719 offsetof(struct htab_elem, lru_node) + 720 offsetof(struct bpf_lru_node, ref), 721 1); 722 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 723 offsetof(struct htab_elem, key) + 724 round_up(map->key_size, 8)); 725 return insn - insn_buf; 726 } 727 728 static void check_and_free_timer(struct bpf_htab *htab, struct htab_elem *elem) 729 { 730 if (unlikely(map_value_has_timer(&htab->map))) 731 bpf_timer_cancel_and_free(elem->key + 732 round_up(htab->map.key_size, 8) + 733 htab->map.timer_off); 734 } 735 736 /* It is called from the bpf_lru_list when the LRU needs to delete 737 * older elements from the htab. 738 */ 739 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 740 { 741 struct bpf_htab *htab = (struct bpf_htab *)arg; 742 struct htab_elem *l = NULL, *tgt_l; 743 struct hlist_nulls_head *head; 744 struct hlist_nulls_node *n; 745 unsigned long flags; 746 struct bucket *b; 747 int ret; 748 749 tgt_l = container_of(node, struct htab_elem, lru_node); 750 b = __select_bucket(htab, tgt_l->hash); 751 head = &b->head; 752 753 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 754 if (ret) 755 return false; 756 757 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 758 if (l == tgt_l) { 759 hlist_nulls_del_rcu(&l->hash_node); 760 check_and_free_timer(htab, l); 761 break; 762 } 763 764 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 765 766 return l == tgt_l; 767 } 768 769 /* Called from syscall */ 770 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 771 { 772 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 773 struct hlist_nulls_head *head; 774 struct htab_elem *l, *next_l; 775 u32 hash, key_size; 776 int i = 0; 777 778 WARN_ON_ONCE(!rcu_read_lock_held()); 779 780 key_size = map->key_size; 781 782 if (!key) 783 goto find_first_elem; 784 785 hash = htab_map_hash(key, key_size, htab->hashrnd); 786 787 head = select_bucket(htab, hash); 788 789 /* lookup the key */ 790 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 791 792 if (!l) 793 goto find_first_elem; 794 795 /* key was found, get next key in the same bucket */ 796 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 797 struct htab_elem, hash_node); 798 799 if (next_l) { 800 /* if next elem in this hash list is non-zero, just return it */ 801 memcpy(next_key, next_l->key, key_size); 802 return 0; 803 } 804 805 /* no more elements in this hash list, go to the next bucket */ 806 i = hash & (htab->n_buckets - 1); 807 i++; 808 809 find_first_elem: 810 /* iterate over buckets */ 811 for (; i < htab->n_buckets; i++) { 812 head = select_bucket(htab, i); 813 814 /* pick first element in the bucket */ 815 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 816 struct htab_elem, hash_node); 817 if (next_l) { 818 /* if it's not empty, just return it */ 819 memcpy(next_key, next_l->key, key_size); 820 return 0; 821 } 822 } 823 824 /* iterated over all buckets and all elements */ 825 return -ENOENT; 826 } 827 828 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 829 { 830 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 831 free_percpu(htab_elem_get_ptr(l, htab->map.key_size)); 832 check_and_free_timer(htab, l); 833 kfree(l); 834 } 835 836 static void htab_elem_free_rcu(struct rcu_head *head) 837 { 838 struct htab_elem *l = container_of(head, struct htab_elem, rcu); 839 struct bpf_htab *htab = l->htab; 840 841 htab_elem_free(htab, l); 842 } 843 844 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 845 { 846 struct bpf_map *map = &htab->map; 847 void *ptr; 848 849 if (map->ops->map_fd_put_ptr) { 850 ptr = fd_htab_map_get_ptr(map, l); 851 map->ops->map_fd_put_ptr(ptr); 852 } 853 } 854 855 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 856 { 857 htab_put_fd_value(htab, l); 858 859 if (htab_is_prealloc(htab)) { 860 check_and_free_timer(htab, l); 861 __pcpu_freelist_push(&htab->freelist, &l->fnode); 862 } else { 863 atomic_dec(&htab->count); 864 l->htab = htab; 865 call_rcu(&l->rcu, htab_elem_free_rcu); 866 } 867 } 868 869 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 870 void *value, bool onallcpus) 871 { 872 if (!onallcpus) { 873 /* copy true value_size bytes */ 874 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 875 } else { 876 u32 size = round_up(htab->map.value_size, 8); 877 int off = 0, cpu; 878 879 for_each_possible_cpu(cpu) { 880 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 881 value + off, size); 882 off += size; 883 } 884 } 885 } 886 887 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 888 void *value, bool onallcpus) 889 { 890 /* When using prealloc and not setting the initial value on all cpus, 891 * zero-fill element values for other cpus (just as what happens when 892 * not using prealloc). Otherwise, bpf program has no way to ensure 893 * known initial values for cpus other than current one 894 * (onallcpus=false always when coming from bpf prog). 895 */ 896 if (htab_is_prealloc(htab) && !onallcpus) { 897 u32 size = round_up(htab->map.value_size, 8); 898 int current_cpu = raw_smp_processor_id(); 899 int cpu; 900 901 for_each_possible_cpu(cpu) { 902 if (cpu == current_cpu) 903 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value, 904 size); 905 else 906 memset(per_cpu_ptr(pptr, cpu), 0, size); 907 } 908 } else { 909 pcpu_copy_value(htab, pptr, value, onallcpus); 910 } 911 } 912 913 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 914 { 915 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 916 BITS_PER_LONG == 64; 917 } 918 919 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 920 void *value, u32 key_size, u32 hash, 921 bool percpu, bool onallcpus, 922 struct htab_elem *old_elem) 923 { 924 u32 size = htab->map.value_size; 925 bool prealloc = htab_is_prealloc(htab); 926 struct htab_elem *l_new, **pl_new; 927 void __percpu *pptr; 928 929 if (prealloc) { 930 if (old_elem) { 931 /* if we're updating the existing element, 932 * use per-cpu extra elems to avoid freelist_pop/push 933 */ 934 pl_new = this_cpu_ptr(htab->extra_elems); 935 l_new = *pl_new; 936 htab_put_fd_value(htab, old_elem); 937 *pl_new = old_elem; 938 } else { 939 struct pcpu_freelist_node *l; 940 941 l = __pcpu_freelist_pop(&htab->freelist); 942 if (!l) 943 return ERR_PTR(-E2BIG); 944 l_new = container_of(l, struct htab_elem, fnode); 945 } 946 } else { 947 if (atomic_inc_return(&htab->count) > htab->map.max_entries) 948 if (!old_elem) { 949 /* when map is full and update() is replacing 950 * old element, it's ok to allocate, since 951 * old element will be freed immediately. 952 * Otherwise return an error 953 */ 954 l_new = ERR_PTR(-E2BIG); 955 goto dec_count; 956 } 957 l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size, 958 GFP_ATOMIC | __GFP_NOWARN, 959 htab->map.numa_node); 960 if (!l_new) { 961 l_new = ERR_PTR(-ENOMEM); 962 goto dec_count; 963 } 964 check_and_init_map_value(&htab->map, 965 l_new->key + round_up(key_size, 8)); 966 } 967 968 memcpy(l_new->key, key, key_size); 969 if (percpu) { 970 size = round_up(size, 8); 971 if (prealloc) { 972 pptr = htab_elem_get_ptr(l_new, key_size); 973 } else { 974 /* alloc_percpu zero-fills */ 975 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 976 GFP_ATOMIC | __GFP_NOWARN); 977 if (!pptr) { 978 kfree(l_new); 979 l_new = ERR_PTR(-ENOMEM); 980 goto dec_count; 981 } 982 } 983 984 pcpu_init_value(htab, pptr, value, onallcpus); 985 986 if (!prealloc) 987 htab_elem_set_ptr(l_new, key_size, pptr); 988 } else if (fd_htab_map_needs_adjust(htab)) { 989 size = round_up(size, 8); 990 memcpy(l_new->key + round_up(key_size, 8), value, size); 991 } else { 992 copy_map_value(&htab->map, 993 l_new->key + round_up(key_size, 8), 994 value); 995 } 996 997 l_new->hash = hash; 998 return l_new; 999 dec_count: 1000 atomic_dec(&htab->count); 1001 return l_new; 1002 } 1003 1004 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1005 u64 map_flags) 1006 { 1007 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1008 /* elem already exists */ 1009 return -EEXIST; 1010 1011 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1012 /* elem doesn't exist, cannot update it */ 1013 return -ENOENT; 1014 1015 return 0; 1016 } 1017 1018 /* Called from syscall or from eBPF program */ 1019 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1020 u64 map_flags) 1021 { 1022 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1023 struct htab_elem *l_new = NULL, *l_old; 1024 struct hlist_nulls_head *head; 1025 unsigned long flags; 1026 struct bucket *b; 1027 u32 key_size, hash; 1028 int ret; 1029 1030 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1031 /* unknown flags */ 1032 return -EINVAL; 1033 1034 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1035 !rcu_read_lock_bh_held()); 1036 1037 key_size = map->key_size; 1038 1039 hash = htab_map_hash(key, key_size, htab->hashrnd); 1040 1041 b = __select_bucket(htab, hash); 1042 head = &b->head; 1043 1044 if (unlikely(map_flags & BPF_F_LOCK)) { 1045 if (unlikely(!map_value_has_spin_lock(map))) 1046 return -EINVAL; 1047 /* find an element without taking the bucket lock */ 1048 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1049 htab->n_buckets); 1050 ret = check_flags(htab, l_old, map_flags); 1051 if (ret) 1052 return ret; 1053 if (l_old) { 1054 /* grab the element lock and update value in place */ 1055 copy_map_value_locked(map, 1056 l_old->key + round_up(key_size, 8), 1057 value, false); 1058 return 0; 1059 } 1060 /* fall through, grab the bucket lock and lookup again. 1061 * 99.9% chance that the element won't be found, 1062 * but second lookup under lock has to be done. 1063 */ 1064 } 1065 1066 ret = htab_lock_bucket(htab, b, hash, &flags); 1067 if (ret) 1068 return ret; 1069 1070 l_old = lookup_elem_raw(head, hash, key, key_size); 1071 1072 ret = check_flags(htab, l_old, map_flags); 1073 if (ret) 1074 goto err; 1075 1076 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1077 /* first lookup without the bucket lock didn't find the element, 1078 * but second lookup with the bucket lock found it. 1079 * This case is highly unlikely, but has to be dealt with: 1080 * grab the element lock in addition to the bucket lock 1081 * and update element in place 1082 */ 1083 copy_map_value_locked(map, 1084 l_old->key + round_up(key_size, 8), 1085 value, false); 1086 ret = 0; 1087 goto err; 1088 } 1089 1090 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1091 l_old); 1092 if (IS_ERR(l_new)) { 1093 /* all pre-allocated elements are in use or memory exhausted */ 1094 ret = PTR_ERR(l_new); 1095 goto err; 1096 } 1097 1098 /* add new element to the head of the list, so that 1099 * concurrent search will find it before old elem 1100 */ 1101 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1102 if (l_old) { 1103 hlist_nulls_del_rcu(&l_old->hash_node); 1104 if (!htab_is_prealloc(htab)) 1105 free_htab_elem(htab, l_old); 1106 else 1107 check_and_free_timer(htab, l_old); 1108 } 1109 ret = 0; 1110 err: 1111 htab_unlock_bucket(htab, b, hash, flags); 1112 return ret; 1113 } 1114 1115 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1116 { 1117 check_and_free_timer(htab, elem); 1118 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1119 } 1120 1121 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1122 u64 map_flags) 1123 { 1124 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1125 struct htab_elem *l_new, *l_old = NULL; 1126 struct hlist_nulls_head *head; 1127 unsigned long flags; 1128 struct bucket *b; 1129 u32 key_size, hash; 1130 int ret; 1131 1132 if (unlikely(map_flags > BPF_EXIST)) 1133 /* unknown flags */ 1134 return -EINVAL; 1135 1136 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1137 !rcu_read_lock_bh_held()); 1138 1139 key_size = map->key_size; 1140 1141 hash = htab_map_hash(key, key_size, htab->hashrnd); 1142 1143 b = __select_bucket(htab, hash); 1144 head = &b->head; 1145 1146 /* For LRU, we need to alloc before taking bucket's 1147 * spinlock because getting free nodes from LRU may need 1148 * to remove older elements from htab and this removal 1149 * operation will need a bucket lock. 1150 */ 1151 l_new = prealloc_lru_pop(htab, key, hash); 1152 if (!l_new) 1153 return -ENOMEM; 1154 copy_map_value(&htab->map, 1155 l_new->key + round_up(map->key_size, 8), value); 1156 1157 ret = htab_lock_bucket(htab, b, hash, &flags); 1158 if (ret) 1159 return ret; 1160 1161 l_old = lookup_elem_raw(head, hash, key, key_size); 1162 1163 ret = check_flags(htab, l_old, map_flags); 1164 if (ret) 1165 goto err; 1166 1167 /* add new element to the head of the list, so that 1168 * concurrent search will find it before old elem 1169 */ 1170 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1171 if (l_old) { 1172 bpf_lru_node_set_ref(&l_new->lru_node); 1173 hlist_nulls_del_rcu(&l_old->hash_node); 1174 } 1175 ret = 0; 1176 1177 err: 1178 htab_unlock_bucket(htab, b, hash, flags); 1179 1180 if (ret) 1181 htab_lru_push_free(htab, l_new); 1182 else if (l_old) 1183 htab_lru_push_free(htab, l_old); 1184 1185 return ret; 1186 } 1187 1188 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1189 void *value, u64 map_flags, 1190 bool onallcpus) 1191 { 1192 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1193 struct htab_elem *l_new = NULL, *l_old; 1194 struct hlist_nulls_head *head; 1195 unsigned long flags; 1196 struct bucket *b; 1197 u32 key_size, hash; 1198 int ret; 1199 1200 if (unlikely(map_flags > BPF_EXIST)) 1201 /* unknown flags */ 1202 return -EINVAL; 1203 1204 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1205 !rcu_read_lock_bh_held()); 1206 1207 key_size = map->key_size; 1208 1209 hash = htab_map_hash(key, key_size, htab->hashrnd); 1210 1211 b = __select_bucket(htab, hash); 1212 head = &b->head; 1213 1214 ret = htab_lock_bucket(htab, b, hash, &flags); 1215 if (ret) 1216 return ret; 1217 1218 l_old = lookup_elem_raw(head, hash, key, key_size); 1219 1220 ret = check_flags(htab, l_old, map_flags); 1221 if (ret) 1222 goto err; 1223 1224 if (l_old) { 1225 /* per-cpu hash map can update value in-place */ 1226 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1227 value, onallcpus); 1228 } else { 1229 l_new = alloc_htab_elem(htab, key, value, key_size, 1230 hash, true, onallcpus, NULL); 1231 if (IS_ERR(l_new)) { 1232 ret = PTR_ERR(l_new); 1233 goto err; 1234 } 1235 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1236 } 1237 ret = 0; 1238 err: 1239 htab_unlock_bucket(htab, b, hash, flags); 1240 return ret; 1241 } 1242 1243 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1244 void *value, u64 map_flags, 1245 bool onallcpus) 1246 { 1247 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1248 struct htab_elem *l_new = NULL, *l_old; 1249 struct hlist_nulls_head *head; 1250 unsigned long flags; 1251 struct bucket *b; 1252 u32 key_size, hash; 1253 int ret; 1254 1255 if (unlikely(map_flags > BPF_EXIST)) 1256 /* unknown flags */ 1257 return -EINVAL; 1258 1259 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1260 !rcu_read_lock_bh_held()); 1261 1262 key_size = map->key_size; 1263 1264 hash = htab_map_hash(key, key_size, htab->hashrnd); 1265 1266 b = __select_bucket(htab, hash); 1267 head = &b->head; 1268 1269 /* For LRU, we need to alloc before taking bucket's 1270 * spinlock because LRU's elem alloc may need 1271 * to remove older elem from htab and this removal 1272 * operation will need a bucket lock. 1273 */ 1274 if (map_flags != BPF_EXIST) { 1275 l_new = prealloc_lru_pop(htab, key, hash); 1276 if (!l_new) 1277 return -ENOMEM; 1278 } 1279 1280 ret = htab_lock_bucket(htab, b, hash, &flags); 1281 if (ret) 1282 return ret; 1283 1284 l_old = lookup_elem_raw(head, hash, key, key_size); 1285 1286 ret = check_flags(htab, l_old, map_flags); 1287 if (ret) 1288 goto err; 1289 1290 if (l_old) { 1291 bpf_lru_node_set_ref(&l_old->lru_node); 1292 1293 /* per-cpu hash map can update value in-place */ 1294 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1295 value, onallcpus); 1296 } else { 1297 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1298 value, onallcpus); 1299 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1300 l_new = NULL; 1301 } 1302 ret = 0; 1303 err: 1304 htab_unlock_bucket(htab, b, hash, flags); 1305 if (l_new) 1306 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1307 return ret; 1308 } 1309 1310 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1311 void *value, u64 map_flags) 1312 { 1313 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1314 } 1315 1316 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1317 void *value, u64 map_flags) 1318 { 1319 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1320 false); 1321 } 1322 1323 /* Called from syscall or from eBPF program */ 1324 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1325 { 1326 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1327 struct hlist_nulls_head *head; 1328 struct bucket *b; 1329 struct htab_elem *l; 1330 unsigned long flags; 1331 u32 hash, key_size; 1332 int ret; 1333 1334 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1335 !rcu_read_lock_bh_held()); 1336 1337 key_size = map->key_size; 1338 1339 hash = htab_map_hash(key, key_size, htab->hashrnd); 1340 b = __select_bucket(htab, hash); 1341 head = &b->head; 1342 1343 ret = htab_lock_bucket(htab, b, hash, &flags); 1344 if (ret) 1345 return ret; 1346 1347 l = lookup_elem_raw(head, hash, key, key_size); 1348 1349 if (l) { 1350 hlist_nulls_del_rcu(&l->hash_node); 1351 free_htab_elem(htab, l); 1352 } else { 1353 ret = -ENOENT; 1354 } 1355 1356 htab_unlock_bucket(htab, b, hash, flags); 1357 return ret; 1358 } 1359 1360 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1361 { 1362 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1363 struct hlist_nulls_head *head; 1364 struct bucket *b; 1365 struct htab_elem *l; 1366 unsigned long flags; 1367 u32 hash, key_size; 1368 int ret; 1369 1370 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1371 !rcu_read_lock_bh_held()); 1372 1373 key_size = map->key_size; 1374 1375 hash = htab_map_hash(key, key_size, htab->hashrnd); 1376 b = __select_bucket(htab, hash); 1377 head = &b->head; 1378 1379 ret = htab_lock_bucket(htab, b, hash, &flags); 1380 if (ret) 1381 return ret; 1382 1383 l = lookup_elem_raw(head, hash, key, key_size); 1384 1385 if (l) 1386 hlist_nulls_del_rcu(&l->hash_node); 1387 else 1388 ret = -ENOENT; 1389 1390 htab_unlock_bucket(htab, b, hash, flags); 1391 if (l) 1392 htab_lru_push_free(htab, l); 1393 return ret; 1394 } 1395 1396 static void delete_all_elements(struct bpf_htab *htab) 1397 { 1398 int i; 1399 1400 for (i = 0; i < htab->n_buckets; i++) { 1401 struct hlist_nulls_head *head = select_bucket(htab, i); 1402 struct hlist_nulls_node *n; 1403 struct htab_elem *l; 1404 1405 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1406 hlist_nulls_del_rcu(&l->hash_node); 1407 htab_elem_free(htab, l); 1408 } 1409 } 1410 } 1411 1412 static void htab_free_malloced_timers(struct bpf_htab *htab) 1413 { 1414 int i; 1415 1416 rcu_read_lock(); 1417 for (i = 0; i < htab->n_buckets; i++) { 1418 struct hlist_nulls_head *head = select_bucket(htab, i); 1419 struct hlist_nulls_node *n; 1420 struct htab_elem *l; 1421 1422 hlist_nulls_for_each_entry(l, n, head, hash_node) 1423 check_and_free_timer(htab, l); 1424 cond_resched_rcu(); 1425 } 1426 rcu_read_unlock(); 1427 } 1428 1429 static void htab_map_free_timers(struct bpf_map *map) 1430 { 1431 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1432 1433 if (likely(!map_value_has_timer(&htab->map))) 1434 return; 1435 if (!htab_is_prealloc(htab)) 1436 htab_free_malloced_timers(htab); 1437 else 1438 htab_free_prealloced_timers(htab); 1439 } 1440 1441 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1442 static void htab_map_free(struct bpf_map *map) 1443 { 1444 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1445 int i; 1446 1447 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1448 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1449 * There is no need to synchronize_rcu() here to protect map elements. 1450 */ 1451 1452 /* some of free_htab_elem() callbacks for elements of this map may 1453 * not have executed. Wait for them. 1454 */ 1455 rcu_barrier(); 1456 if (!htab_is_prealloc(htab)) 1457 delete_all_elements(htab); 1458 else 1459 prealloc_destroy(htab); 1460 1461 free_percpu(htab->extra_elems); 1462 bpf_map_area_free(htab->buckets); 1463 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1464 free_percpu(htab->map_locked[i]); 1465 lockdep_unregister_key(&htab->lockdep_key); 1466 kfree(htab); 1467 } 1468 1469 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1470 struct seq_file *m) 1471 { 1472 void *value; 1473 1474 rcu_read_lock(); 1475 1476 value = htab_map_lookup_elem(map, key); 1477 if (!value) { 1478 rcu_read_unlock(); 1479 return; 1480 } 1481 1482 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1483 seq_puts(m, ": "); 1484 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1485 seq_puts(m, "\n"); 1486 1487 rcu_read_unlock(); 1488 } 1489 1490 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1491 void *value, bool is_lru_map, 1492 bool is_percpu, u64 flags) 1493 { 1494 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1495 struct hlist_nulls_head *head; 1496 unsigned long bflags; 1497 struct htab_elem *l; 1498 u32 hash, key_size; 1499 struct bucket *b; 1500 int ret; 1501 1502 key_size = map->key_size; 1503 1504 hash = htab_map_hash(key, key_size, htab->hashrnd); 1505 b = __select_bucket(htab, hash); 1506 head = &b->head; 1507 1508 ret = htab_lock_bucket(htab, b, hash, &bflags); 1509 if (ret) 1510 return ret; 1511 1512 l = lookup_elem_raw(head, hash, key, key_size); 1513 if (!l) { 1514 ret = -ENOENT; 1515 } else { 1516 if (is_percpu) { 1517 u32 roundup_value_size = round_up(map->value_size, 8); 1518 void __percpu *pptr; 1519 int off = 0, cpu; 1520 1521 pptr = htab_elem_get_ptr(l, key_size); 1522 for_each_possible_cpu(cpu) { 1523 bpf_long_memcpy(value + off, 1524 per_cpu_ptr(pptr, cpu), 1525 roundup_value_size); 1526 off += roundup_value_size; 1527 } 1528 } else { 1529 u32 roundup_key_size = round_up(map->key_size, 8); 1530 1531 if (flags & BPF_F_LOCK) 1532 copy_map_value_locked(map, value, l->key + 1533 roundup_key_size, 1534 true); 1535 else 1536 copy_map_value(map, value, l->key + 1537 roundup_key_size); 1538 check_and_init_map_value(map, value); 1539 } 1540 1541 hlist_nulls_del_rcu(&l->hash_node); 1542 if (!is_lru_map) 1543 free_htab_elem(htab, l); 1544 } 1545 1546 htab_unlock_bucket(htab, b, hash, bflags); 1547 1548 if (is_lru_map && l) 1549 htab_lru_push_free(htab, l); 1550 1551 return ret; 1552 } 1553 1554 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1555 void *value, u64 flags) 1556 { 1557 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1558 flags); 1559 } 1560 1561 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1562 void *key, void *value, 1563 u64 flags) 1564 { 1565 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1566 flags); 1567 } 1568 1569 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1570 void *value, u64 flags) 1571 { 1572 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1573 flags); 1574 } 1575 1576 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1577 void *key, void *value, 1578 u64 flags) 1579 { 1580 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1581 flags); 1582 } 1583 1584 static int 1585 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1586 const union bpf_attr *attr, 1587 union bpf_attr __user *uattr, 1588 bool do_delete, bool is_lru_map, 1589 bool is_percpu) 1590 { 1591 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1592 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1593 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1594 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1595 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1596 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1597 u32 batch, max_count, size, bucket_size; 1598 struct htab_elem *node_to_free = NULL; 1599 u64 elem_map_flags, map_flags; 1600 struct hlist_nulls_head *head; 1601 struct hlist_nulls_node *n; 1602 unsigned long flags = 0; 1603 bool locked = false; 1604 struct htab_elem *l; 1605 struct bucket *b; 1606 int ret = 0; 1607 1608 elem_map_flags = attr->batch.elem_flags; 1609 if ((elem_map_flags & ~BPF_F_LOCK) || 1610 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 1611 return -EINVAL; 1612 1613 map_flags = attr->batch.flags; 1614 if (map_flags) 1615 return -EINVAL; 1616 1617 max_count = attr->batch.count; 1618 if (!max_count) 1619 return 0; 1620 1621 if (put_user(0, &uattr->batch.count)) 1622 return -EFAULT; 1623 1624 batch = 0; 1625 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1626 return -EFAULT; 1627 1628 if (batch >= htab->n_buckets) 1629 return -ENOENT; 1630 1631 key_size = htab->map.key_size; 1632 roundup_key_size = round_up(htab->map.key_size, 8); 1633 value_size = htab->map.value_size; 1634 size = round_up(value_size, 8); 1635 if (is_percpu) 1636 value_size = size * num_possible_cpus(); 1637 total = 0; 1638 /* while experimenting with hash tables with sizes ranging from 10 to 1639 * 1000, it was observed that a bucket can have upto 5 entries. 1640 */ 1641 bucket_size = 5; 1642 1643 alloc: 1644 /* We cannot do copy_from_user or copy_to_user inside 1645 * the rcu_read_lock. Allocate enough space here. 1646 */ 1647 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1648 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1649 if (!keys || !values) { 1650 ret = -ENOMEM; 1651 goto after_loop; 1652 } 1653 1654 again: 1655 bpf_disable_instrumentation(); 1656 rcu_read_lock(); 1657 again_nocopy: 1658 dst_key = keys; 1659 dst_val = values; 1660 b = &htab->buckets[batch]; 1661 head = &b->head; 1662 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1663 if (locked) { 1664 ret = htab_lock_bucket(htab, b, batch, &flags); 1665 if (ret) 1666 goto next_batch; 1667 } 1668 1669 bucket_cnt = 0; 1670 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1671 bucket_cnt++; 1672 1673 if (bucket_cnt && !locked) { 1674 locked = true; 1675 goto again_nocopy; 1676 } 1677 1678 if (bucket_cnt > (max_count - total)) { 1679 if (total == 0) 1680 ret = -ENOSPC; 1681 /* Note that since bucket_cnt > 0 here, it is implicit 1682 * that the locked was grabbed, so release it. 1683 */ 1684 htab_unlock_bucket(htab, b, batch, flags); 1685 rcu_read_unlock(); 1686 bpf_enable_instrumentation(); 1687 goto after_loop; 1688 } 1689 1690 if (bucket_cnt > bucket_size) { 1691 bucket_size = bucket_cnt; 1692 /* Note that since bucket_cnt > 0 here, it is implicit 1693 * that the locked was grabbed, so release it. 1694 */ 1695 htab_unlock_bucket(htab, b, batch, flags); 1696 rcu_read_unlock(); 1697 bpf_enable_instrumentation(); 1698 kvfree(keys); 1699 kvfree(values); 1700 goto alloc; 1701 } 1702 1703 /* Next block is only safe to run if you have grabbed the lock */ 1704 if (!locked) 1705 goto next_batch; 1706 1707 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1708 memcpy(dst_key, l->key, key_size); 1709 1710 if (is_percpu) { 1711 int off = 0, cpu; 1712 void __percpu *pptr; 1713 1714 pptr = htab_elem_get_ptr(l, map->key_size); 1715 for_each_possible_cpu(cpu) { 1716 bpf_long_memcpy(dst_val + off, 1717 per_cpu_ptr(pptr, cpu), size); 1718 off += size; 1719 } 1720 } else { 1721 value = l->key + roundup_key_size; 1722 if (elem_map_flags & BPF_F_LOCK) 1723 copy_map_value_locked(map, dst_val, value, 1724 true); 1725 else 1726 copy_map_value(map, dst_val, value); 1727 check_and_init_map_value(map, dst_val); 1728 } 1729 if (do_delete) { 1730 hlist_nulls_del_rcu(&l->hash_node); 1731 1732 /* bpf_lru_push_free() will acquire lru_lock, which 1733 * may cause deadlock. See comments in function 1734 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1735 * after releasing the bucket lock. 1736 */ 1737 if (is_lru_map) { 1738 l->batch_flink = node_to_free; 1739 node_to_free = l; 1740 } else { 1741 free_htab_elem(htab, l); 1742 } 1743 } 1744 dst_key += key_size; 1745 dst_val += value_size; 1746 } 1747 1748 htab_unlock_bucket(htab, b, batch, flags); 1749 locked = false; 1750 1751 while (node_to_free) { 1752 l = node_to_free; 1753 node_to_free = node_to_free->batch_flink; 1754 htab_lru_push_free(htab, l); 1755 } 1756 1757 next_batch: 1758 /* If we are not copying data, we can go to next bucket and avoid 1759 * unlocking the rcu. 1760 */ 1761 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1762 batch++; 1763 goto again_nocopy; 1764 } 1765 1766 rcu_read_unlock(); 1767 bpf_enable_instrumentation(); 1768 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1769 key_size * bucket_cnt) || 1770 copy_to_user(uvalues + total * value_size, values, 1771 value_size * bucket_cnt))) { 1772 ret = -EFAULT; 1773 goto after_loop; 1774 } 1775 1776 total += bucket_cnt; 1777 batch++; 1778 if (batch >= htab->n_buckets) { 1779 ret = -ENOENT; 1780 goto after_loop; 1781 } 1782 goto again; 1783 1784 after_loop: 1785 if (ret == -EFAULT) 1786 goto out; 1787 1788 /* copy # of entries and next batch */ 1789 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1790 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1791 put_user(total, &uattr->batch.count)) 1792 ret = -EFAULT; 1793 1794 out: 1795 kvfree(keys); 1796 kvfree(values); 1797 return ret; 1798 } 1799 1800 static int 1801 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1802 union bpf_attr __user *uattr) 1803 { 1804 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1805 false, true); 1806 } 1807 1808 static int 1809 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1810 const union bpf_attr *attr, 1811 union bpf_attr __user *uattr) 1812 { 1813 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1814 false, true); 1815 } 1816 1817 static int 1818 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1819 union bpf_attr __user *uattr) 1820 { 1821 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1822 false, false); 1823 } 1824 1825 static int 1826 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1827 const union bpf_attr *attr, 1828 union bpf_attr __user *uattr) 1829 { 1830 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1831 false, false); 1832 } 1833 1834 static int 1835 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1836 const union bpf_attr *attr, 1837 union bpf_attr __user *uattr) 1838 { 1839 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1840 true, true); 1841 } 1842 1843 static int 1844 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1845 const union bpf_attr *attr, 1846 union bpf_attr __user *uattr) 1847 { 1848 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1849 true, true); 1850 } 1851 1852 static int 1853 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1854 union bpf_attr __user *uattr) 1855 { 1856 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1857 true, false); 1858 } 1859 1860 static int 1861 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1862 const union bpf_attr *attr, 1863 union bpf_attr __user *uattr) 1864 { 1865 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1866 true, false); 1867 } 1868 1869 struct bpf_iter_seq_hash_map_info { 1870 struct bpf_map *map; 1871 struct bpf_htab *htab; 1872 void *percpu_value_buf; // non-zero means percpu hash 1873 u32 bucket_id; 1874 u32 skip_elems; 1875 }; 1876 1877 static struct htab_elem * 1878 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1879 struct htab_elem *prev_elem) 1880 { 1881 const struct bpf_htab *htab = info->htab; 1882 u32 skip_elems = info->skip_elems; 1883 u32 bucket_id = info->bucket_id; 1884 struct hlist_nulls_head *head; 1885 struct hlist_nulls_node *n; 1886 struct htab_elem *elem; 1887 struct bucket *b; 1888 u32 i, count; 1889 1890 if (bucket_id >= htab->n_buckets) 1891 return NULL; 1892 1893 /* try to find next elem in the same bucket */ 1894 if (prev_elem) { 1895 /* no update/deletion on this bucket, prev_elem should be still valid 1896 * and we won't skip elements. 1897 */ 1898 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1899 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1900 if (elem) 1901 return elem; 1902 1903 /* not found, unlock and go to the next bucket */ 1904 b = &htab->buckets[bucket_id++]; 1905 rcu_read_unlock(); 1906 skip_elems = 0; 1907 } 1908 1909 for (i = bucket_id; i < htab->n_buckets; i++) { 1910 b = &htab->buckets[i]; 1911 rcu_read_lock(); 1912 1913 count = 0; 1914 head = &b->head; 1915 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 1916 if (count >= skip_elems) { 1917 info->bucket_id = i; 1918 info->skip_elems = count; 1919 return elem; 1920 } 1921 count++; 1922 } 1923 1924 rcu_read_unlock(); 1925 skip_elems = 0; 1926 } 1927 1928 info->bucket_id = i; 1929 info->skip_elems = 0; 1930 return NULL; 1931 } 1932 1933 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 1934 { 1935 struct bpf_iter_seq_hash_map_info *info = seq->private; 1936 struct htab_elem *elem; 1937 1938 elem = bpf_hash_map_seq_find_next(info, NULL); 1939 if (!elem) 1940 return NULL; 1941 1942 if (*pos == 0) 1943 ++*pos; 1944 return elem; 1945 } 1946 1947 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1948 { 1949 struct bpf_iter_seq_hash_map_info *info = seq->private; 1950 1951 ++*pos; 1952 ++info->skip_elems; 1953 return bpf_hash_map_seq_find_next(info, v); 1954 } 1955 1956 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 1957 { 1958 struct bpf_iter_seq_hash_map_info *info = seq->private; 1959 u32 roundup_key_size, roundup_value_size; 1960 struct bpf_iter__bpf_map_elem ctx = {}; 1961 struct bpf_map *map = info->map; 1962 struct bpf_iter_meta meta; 1963 int ret = 0, off = 0, cpu; 1964 struct bpf_prog *prog; 1965 void __percpu *pptr; 1966 1967 meta.seq = seq; 1968 prog = bpf_iter_get_info(&meta, elem == NULL); 1969 if (prog) { 1970 ctx.meta = &meta; 1971 ctx.map = info->map; 1972 if (elem) { 1973 roundup_key_size = round_up(map->key_size, 8); 1974 ctx.key = elem->key; 1975 if (!info->percpu_value_buf) { 1976 ctx.value = elem->key + roundup_key_size; 1977 } else { 1978 roundup_value_size = round_up(map->value_size, 8); 1979 pptr = htab_elem_get_ptr(elem, map->key_size); 1980 for_each_possible_cpu(cpu) { 1981 bpf_long_memcpy(info->percpu_value_buf + off, 1982 per_cpu_ptr(pptr, cpu), 1983 roundup_value_size); 1984 off += roundup_value_size; 1985 } 1986 ctx.value = info->percpu_value_buf; 1987 } 1988 } 1989 ret = bpf_iter_run_prog(prog, &ctx); 1990 } 1991 1992 return ret; 1993 } 1994 1995 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 1996 { 1997 return __bpf_hash_map_seq_show(seq, v); 1998 } 1999 2000 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2001 { 2002 if (!v) 2003 (void)__bpf_hash_map_seq_show(seq, NULL); 2004 else 2005 rcu_read_unlock(); 2006 } 2007 2008 static int bpf_iter_init_hash_map(void *priv_data, 2009 struct bpf_iter_aux_info *aux) 2010 { 2011 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2012 struct bpf_map *map = aux->map; 2013 void *value_buf; 2014 u32 buf_size; 2015 2016 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2017 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2018 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2019 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2020 if (!value_buf) 2021 return -ENOMEM; 2022 2023 seq_info->percpu_value_buf = value_buf; 2024 } 2025 2026 seq_info->map = map; 2027 seq_info->htab = container_of(map, struct bpf_htab, map); 2028 return 0; 2029 } 2030 2031 static void bpf_iter_fini_hash_map(void *priv_data) 2032 { 2033 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2034 2035 kfree(seq_info->percpu_value_buf); 2036 } 2037 2038 static const struct seq_operations bpf_hash_map_seq_ops = { 2039 .start = bpf_hash_map_seq_start, 2040 .next = bpf_hash_map_seq_next, 2041 .stop = bpf_hash_map_seq_stop, 2042 .show = bpf_hash_map_seq_show, 2043 }; 2044 2045 static const struct bpf_iter_seq_info iter_seq_info = { 2046 .seq_ops = &bpf_hash_map_seq_ops, 2047 .init_seq_private = bpf_iter_init_hash_map, 2048 .fini_seq_private = bpf_iter_fini_hash_map, 2049 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2050 }; 2051 2052 static int bpf_for_each_hash_elem(struct bpf_map *map, void *callback_fn, 2053 void *callback_ctx, u64 flags) 2054 { 2055 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2056 struct hlist_nulls_head *head; 2057 struct hlist_nulls_node *n; 2058 struct htab_elem *elem; 2059 u32 roundup_key_size; 2060 int i, num_elems = 0; 2061 void __percpu *pptr; 2062 struct bucket *b; 2063 void *key, *val; 2064 bool is_percpu; 2065 u64 ret = 0; 2066 2067 if (flags != 0) 2068 return -EINVAL; 2069 2070 is_percpu = htab_is_percpu(htab); 2071 2072 roundup_key_size = round_up(map->key_size, 8); 2073 /* disable migration so percpu value prepared here will be the 2074 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2075 */ 2076 if (is_percpu) 2077 migrate_disable(); 2078 for (i = 0; i < htab->n_buckets; i++) { 2079 b = &htab->buckets[i]; 2080 rcu_read_lock(); 2081 head = &b->head; 2082 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2083 key = elem->key; 2084 if (is_percpu) { 2085 /* current cpu value for percpu map */ 2086 pptr = htab_elem_get_ptr(elem, map->key_size); 2087 val = this_cpu_ptr(pptr); 2088 } else { 2089 val = elem->key + roundup_key_size; 2090 } 2091 num_elems++; 2092 ret = BPF_CAST_CALL(callback_fn)((u64)(long)map, 2093 (u64)(long)key, (u64)(long)val, 2094 (u64)(long)callback_ctx, 0); 2095 /* return value: 0 - continue, 1 - stop and return */ 2096 if (ret) { 2097 rcu_read_unlock(); 2098 goto out; 2099 } 2100 } 2101 rcu_read_unlock(); 2102 } 2103 out: 2104 if (is_percpu) 2105 migrate_enable(); 2106 return num_elems; 2107 } 2108 2109 static int htab_map_btf_id; 2110 const struct bpf_map_ops htab_map_ops = { 2111 .map_meta_equal = bpf_map_meta_equal, 2112 .map_alloc_check = htab_map_alloc_check, 2113 .map_alloc = htab_map_alloc, 2114 .map_free = htab_map_free, 2115 .map_get_next_key = htab_map_get_next_key, 2116 .map_release_uref = htab_map_free_timers, 2117 .map_lookup_elem = htab_map_lookup_elem, 2118 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2119 .map_update_elem = htab_map_update_elem, 2120 .map_delete_elem = htab_map_delete_elem, 2121 .map_gen_lookup = htab_map_gen_lookup, 2122 .map_seq_show_elem = htab_map_seq_show_elem, 2123 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2124 .map_for_each_callback = bpf_for_each_hash_elem, 2125 BATCH_OPS(htab), 2126 .map_btf_name = "bpf_htab", 2127 .map_btf_id = &htab_map_btf_id, 2128 .iter_seq_info = &iter_seq_info, 2129 }; 2130 2131 static int htab_lru_map_btf_id; 2132 const struct bpf_map_ops htab_lru_map_ops = { 2133 .map_meta_equal = bpf_map_meta_equal, 2134 .map_alloc_check = htab_map_alloc_check, 2135 .map_alloc = htab_map_alloc, 2136 .map_free = htab_map_free, 2137 .map_get_next_key = htab_map_get_next_key, 2138 .map_release_uref = htab_map_free_timers, 2139 .map_lookup_elem = htab_lru_map_lookup_elem, 2140 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2141 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2142 .map_update_elem = htab_lru_map_update_elem, 2143 .map_delete_elem = htab_lru_map_delete_elem, 2144 .map_gen_lookup = htab_lru_map_gen_lookup, 2145 .map_seq_show_elem = htab_map_seq_show_elem, 2146 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2147 .map_for_each_callback = bpf_for_each_hash_elem, 2148 BATCH_OPS(htab_lru), 2149 .map_btf_name = "bpf_htab", 2150 .map_btf_id = &htab_lru_map_btf_id, 2151 .iter_seq_info = &iter_seq_info, 2152 }; 2153 2154 /* Called from eBPF program */ 2155 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2156 { 2157 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2158 2159 if (l) 2160 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2161 else 2162 return NULL; 2163 } 2164 2165 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2166 { 2167 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2168 2169 if (l) { 2170 bpf_lru_node_set_ref(&l->lru_node); 2171 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2172 } 2173 2174 return NULL; 2175 } 2176 2177 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2178 { 2179 struct htab_elem *l; 2180 void __percpu *pptr; 2181 int ret = -ENOENT; 2182 int cpu, off = 0; 2183 u32 size; 2184 2185 /* per_cpu areas are zero-filled and bpf programs can only 2186 * access 'value_size' of them, so copying rounded areas 2187 * will not leak any kernel data 2188 */ 2189 size = round_up(map->value_size, 8); 2190 rcu_read_lock(); 2191 l = __htab_map_lookup_elem(map, key); 2192 if (!l) 2193 goto out; 2194 /* We do not mark LRU map element here in order to not mess up 2195 * eviction heuristics when user space does a map walk. 2196 */ 2197 pptr = htab_elem_get_ptr(l, map->key_size); 2198 for_each_possible_cpu(cpu) { 2199 bpf_long_memcpy(value + off, 2200 per_cpu_ptr(pptr, cpu), size); 2201 off += size; 2202 } 2203 ret = 0; 2204 out: 2205 rcu_read_unlock(); 2206 return ret; 2207 } 2208 2209 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2210 u64 map_flags) 2211 { 2212 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2213 int ret; 2214 2215 rcu_read_lock(); 2216 if (htab_is_lru(htab)) 2217 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2218 map_flags, true); 2219 else 2220 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2221 true); 2222 rcu_read_unlock(); 2223 2224 return ret; 2225 } 2226 2227 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2228 struct seq_file *m) 2229 { 2230 struct htab_elem *l; 2231 void __percpu *pptr; 2232 int cpu; 2233 2234 rcu_read_lock(); 2235 2236 l = __htab_map_lookup_elem(map, key); 2237 if (!l) { 2238 rcu_read_unlock(); 2239 return; 2240 } 2241 2242 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2243 seq_puts(m, ": {\n"); 2244 pptr = htab_elem_get_ptr(l, map->key_size); 2245 for_each_possible_cpu(cpu) { 2246 seq_printf(m, "\tcpu%d: ", cpu); 2247 btf_type_seq_show(map->btf, map->btf_value_type_id, 2248 per_cpu_ptr(pptr, cpu), m); 2249 seq_puts(m, "\n"); 2250 } 2251 seq_puts(m, "}\n"); 2252 2253 rcu_read_unlock(); 2254 } 2255 2256 static int htab_percpu_map_btf_id; 2257 const struct bpf_map_ops htab_percpu_map_ops = { 2258 .map_meta_equal = bpf_map_meta_equal, 2259 .map_alloc_check = htab_map_alloc_check, 2260 .map_alloc = htab_map_alloc, 2261 .map_free = htab_map_free, 2262 .map_get_next_key = htab_map_get_next_key, 2263 .map_lookup_elem = htab_percpu_map_lookup_elem, 2264 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2265 .map_update_elem = htab_percpu_map_update_elem, 2266 .map_delete_elem = htab_map_delete_elem, 2267 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2268 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2269 .map_for_each_callback = bpf_for_each_hash_elem, 2270 BATCH_OPS(htab_percpu), 2271 .map_btf_name = "bpf_htab", 2272 .map_btf_id = &htab_percpu_map_btf_id, 2273 .iter_seq_info = &iter_seq_info, 2274 }; 2275 2276 static int htab_lru_percpu_map_btf_id; 2277 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2278 .map_meta_equal = bpf_map_meta_equal, 2279 .map_alloc_check = htab_map_alloc_check, 2280 .map_alloc = htab_map_alloc, 2281 .map_free = htab_map_free, 2282 .map_get_next_key = htab_map_get_next_key, 2283 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2284 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2285 .map_update_elem = htab_lru_percpu_map_update_elem, 2286 .map_delete_elem = htab_lru_map_delete_elem, 2287 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2288 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2289 .map_for_each_callback = bpf_for_each_hash_elem, 2290 BATCH_OPS(htab_lru_percpu), 2291 .map_btf_name = "bpf_htab", 2292 .map_btf_id = &htab_lru_percpu_map_btf_id, 2293 .iter_seq_info = &iter_seq_info, 2294 }; 2295 2296 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2297 { 2298 if (attr->value_size != sizeof(u32)) 2299 return -EINVAL; 2300 return htab_map_alloc_check(attr); 2301 } 2302 2303 static void fd_htab_map_free(struct bpf_map *map) 2304 { 2305 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2306 struct hlist_nulls_node *n; 2307 struct hlist_nulls_head *head; 2308 struct htab_elem *l; 2309 int i; 2310 2311 for (i = 0; i < htab->n_buckets; i++) { 2312 head = select_bucket(htab, i); 2313 2314 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2315 void *ptr = fd_htab_map_get_ptr(map, l); 2316 2317 map->ops->map_fd_put_ptr(ptr); 2318 } 2319 } 2320 2321 htab_map_free(map); 2322 } 2323 2324 /* only called from syscall */ 2325 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2326 { 2327 void **ptr; 2328 int ret = 0; 2329 2330 if (!map->ops->map_fd_sys_lookup_elem) 2331 return -ENOTSUPP; 2332 2333 rcu_read_lock(); 2334 ptr = htab_map_lookup_elem(map, key); 2335 if (ptr) 2336 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2337 else 2338 ret = -ENOENT; 2339 rcu_read_unlock(); 2340 2341 return ret; 2342 } 2343 2344 /* only called from syscall */ 2345 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2346 void *key, void *value, u64 map_flags) 2347 { 2348 void *ptr; 2349 int ret; 2350 u32 ufd = *(u32 *)value; 2351 2352 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2353 if (IS_ERR(ptr)) 2354 return PTR_ERR(ptr); 2355 2356 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2357 if (ret) 2358 map->ops->map_fd_put_ptr(ptr); 2359 2360 return ret; 2361 } 2362 2363 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2364 { 2365 struct bpf_map *map, *inner_map_meta; 2366 2367 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2368 if (IS_ERR(inner_map_meta)) 2369 return inner_map_meta; 2370 2371 map = htab_map_alloc(attr); 2372 if (IS_ERR(map)) { 2373 bpf_map_meta_free(inner_map_meta); 2374 return map; 2375 } 2376 2377 map->inner_map_meta = inner_map_meta; 2378 2379 return map; 2380 } 2381 2382 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2383 { 2384 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2385 2386 if (!inner_map) 2387 return NULL; 2388 2389 return READ_ONCE(*inner_map); 2390 } 2391 2392 static int htab_of_map_gen_lookup(struct bpf_map *map, 2393 struct bpf_insn *insn_buf) 2394 { 2395 struct bpf_insn *insn = insn_buf; 2396 const int ret = BPF_REG_0; 2397 2398 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2399 (void *(*)(struct bpf_map *map, void *key))NULL)); 2400 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 2401 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2402 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2403 offsetof(struct htab_elem, key) + 2404 round_up(map->key_size, 8)); 2405 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2406 2407 return insn - insn_buf; 2408 } 2409 2410 static void htab_of_map_free(struct bpf_map *map) 2411 { 2412 bpf_map_meta_free(map->inner_map_meta); 2413 fd_htab_map_free(map); 2414 } 2415 2416 static int htab_of_maps_map_btf_id; 2417 const struct bpf_map_ops htab_of_maps_map_ops = { 2418 .map_alloc_check = fd_htab_map_alloc_check, 2419 .map_alloc = htab_of_map_alloc, 2420 .map_free = htab_of_map_free, 2421 .map_get_next_key = htab_map_get_next_key, 2422 .map_lookup_elem = htab_of_map_lookup_elem, 2423 .map_delete_elem = htab_map_delete_elem, 2424 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2425 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2426 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2427 .map_gen_lookup = htab_of_map_gen_lookup, 2428 .map_check_btf = map_check_no_btf, 2429 .map_btf_name = "bpf_htab", 2430 .map_btf_id = &htab_of_maps_map_btf_id, 2431 }; 2432