1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 */ 12 13 /* Devmaps primary use is as a backend map for XDP BPF helper call 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 15 * spent some effort to ensure the datapath with redirect maps does not use 16 * any locking. This is a quick note on the details. 17 * 18 * We have three possible paths to get into the devmap control plane bpf 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 20 * will invoke an update, delete, or lookup operation. To ensure updates and 21 * deletes appear atomic from the datapath side xchg() is used to modify the 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for 24 * an rcu grace period before free'ing the old data structures. This ensures the 25 * datapath always has a valid copy. However, the datapath does a "flush" 26 * operation that pushes any pending packets in the driver outside the RCU 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed 29 * until all bits are cleared indicating outstanding flush operations have 30 * completed. 31 * 32 * BPF syscalls may race with BPF program calls on any of the update, delete 33 * or lookup operations. As noted above the xchg() operation also keep the 34 * netdev_map consistent in this case. From the devmap side BPF programs 35 * calling into these operations are the same as multiple user space threads 36 * making system calls. 37 * 38 * Finally, any of the above may race with a netdev_unregister notifier. The 39 * unregister notifier must search for net devices in the map structure that 40 * contain a reference to the net device and remove them. This is a two step 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 42 * check to see if the ifindex is the same as the net_device being removed. 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is 44 * removed, in the case of a concurrent update or delete operation it is 45 * possible that the initially referenced dev is no longer in the map. As the 46 * notifier hook walks the map we know that new dev references can not be 47 * added by the user because core infrastructure ensures dev_get_by_index() 48 * calls will fail at this point. 49 */ 50 #include <linux/bpf.h> 51 #include <net/xdp.h> 52 #include <linux/filter.h> 53 #include <trace/events/xdp.h> 54 55 #define DEV_CREATE_FLAG_MASK \ 56 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 57 58 #define DEV_MAP_BULK_SIZE 16 59 struct xdp_bulk_queue { 60 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 61 struct net_device *dev_rx; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct bpf_dtab *dtab; 68 unsigned int bit; 69 struct xdp_bulk_queue __percpu *bulkq; 70 struct rcu_head rcu; 71 }; 72 73 struct bpf_dtab { 74 struct bpf_map map; 75 struct bpf_dtab_netdev **netdev_map; 76 unsigned long __percpu *flush_needed; 77 struct list_head list; 78 }; 79 80 static DEFINE_SPINLOCK(dev_map_lock); 81 static LIST_HEAD(dev_map_list); 82 83 static u64 dev_map_bitmap_size(const union bpf_attr *attr) 84 { 85 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long); 86 } 87 88 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 89 { 90 struct bpf_dtab *dtab; 91 int err = -EINVAL; 92 u64 cost; 93 94 if (!capable(CAP_NET_ADMIN)) 95 return ERR_PTR(-EPERM); 96 97 /* check sanity of attributes */ 98 if (attr->max_entries == 0 || attr->key_size != 4 || 99 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) 100 return ERR_PTR(-EINVAL); 101 102 dtab = kzalloc(sizeof(*dtab), GFP_USER); 103 if (!dtab) 104 return ERR_PTR(-ENOMEM); 105 106 bpf_map_init_from_attr(&dtab->map, attr); 107 108 /* make sure page count doesn't overflow */ 109 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 110 cost += dev_map_bitmap_size(attr) * num_possible_cpus(); 111 if (cost >= U32_MAX - PAGE_SIZE) 112 goto free_dtab; 113 114 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 115 116 /* if map size is larger than memlock limit, reject it early */ 117 err = bpf_map_precharge_memlock(dtab->map.pages); 118 if (err) 119 goto free_dtab; 120 121 err = -ENOMEM; 122 123 /* A per cpu bitfield with a bit per possible net device */ 124 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr), 125 __alignof__(unsigned long), 126 GFP_KERNEL | __GFP_NOWARN); 127 if (!dtab->flush_needed) 128 goto free_dtab; 129 130 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 131 sizeof(struct bpf_dtab_netdev *), 132 dtab->map.numa_node); 133 if (!dtab->netdev_map) 134 goto free_dtab; 135 136 spin_lock(&dev_map_lock); 137 list_add_tail_rcu(&dtab->list, &dev_map_list); 138 spin_unlock(&dev_map_lock); 139 140 return &dtab->map; 141 free_dtab: 142 free_percpu(dtab->flush_needed); 143 kfree(dtab); 144 return ERR_PTR(err); 145 } 146 147 static void dev_map_free(struct bpf_map *map) 148 { 149 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 150 int i, cpu; 151 152 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 153 * so the programs (can be more than one that used this map) were 154 * disconnected from events. Wait for outstanding critical sections in 155 * these programs to complete. The rcu critical section only guarantees 156 * no further reads against netdev_map. It does __not__ ensure pending 157 * flush operations (if any) are complete. 158 */ 159 160 spin_lock(&dev_map_lock); 161 list_del_rcu(&dtab->list); 162 spin_unlock(&dev_map_lock); 163 164 bpf_clear_redirect_map(map); 165 synchronize_rcu(); 166 167 /* To ensure all pending flush operations have completed wait for flush 168 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 169 * Because the above synchronize_rcu() ensures the map is disconnected 170 * from the program we can assume no new bits will be set. 171 */ 172 for_each_online_cpu(cpu) { 173 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); 174 175 while (!bitmap_empty(bitmap, dtab->map.max_entries)) 176 cond_resched(); 177 } 178 179 for (i = 0; i < dtab->map.max_entries; i++) { 180 struct bpf_dtab_netdev *dev; 181 182 dev = dtab->netdev_map[i]; 183 if (!dev) 184 continue; 185 186 dev_put(dev->dev); 187 kfree(dev); 188 } 189 190 free_percpu(dtab->flush_needed); 191 bpf_map_area_free(dtab->netdev_map); 192 kfree(dtab); 193 } 194 195 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 196 { 197 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 198 u32 index = key ? *(u32 *)key : U32_MAX; 199 u32 *next = next_key; 200 201 if (index >= dtab->map.max_entries) { 202 *next = 0; 203 return 0; 204 } 205 206 if (index == dtab->map.max_entries - 1) 207 return -ENOENT; 208 *next = index + 1; 209 return 0; 210 } 211 212 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) 213 { 214 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 215 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 216 217 __set_bit(bit, bitmap); 218 } 219 220 static int bq_xmit_all(struct bpf_dtab_netdev *obj, 221 struct xdp_bulk_queue *bq, u32 flags, 222 bool in_napi_ctx) 223 { 224 struct net_device *dev = obj->dev; 225 int sent = 0, drops = 0, err = 0; 226 int i; 227 228 if (unlikely(!bq->count)) 229 return 0; 230 231 for (i = 0; i < bq->count; i++) { 232 struct xdp_frame *xdpf = bq->q[i]; 233 234 prefetch(xdpf); 235 } 236 237 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); 238 if (sent < 0) { 239 err = sent; 240 sent = 0; 241 goto error; 242 } 243 drops = bq->count - sent; 244 out: 245 bq->count = 0; 246 247 trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit, 248 sent, drops, bq->dev_rx, dev, err); 249 bq->dev_rx = NULL; 250 return 0; 251 error: 252 /* If ndo_xdp_xmit fails with an errno, no frames have been 253 * xmit'ed and it's our responsibility to them free all. 254 */ 255 for (i = 0; i < bq->count; i++) { 256 struct xdp_frame *xdpf = bq->q[i]; 257 258 /* RX path under NAPI protection, can return frames faster */ 259 if (likely(in_napi_ctx)) 260 xdp_return_frame_rx_napi(xdpf); 261 else 262 xdp_return_frame(xdpf); 263 drops++; 264 } 265 goto out; 266 } 267 268 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 269 * from the driver before returning from its napi->poll() routine. The poll() 270 * routine is called either from busy_poll context or net_rx_action signaled 271 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 272 * net device can be torn down. On devmap tear down we ensure the ctx bitmap 273 * is zeroed before completing to ensure all flush operations have completed. 274 */ 275 void __dev_map_flush(struct bpf_map *map) 276 { 277 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 278 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 279 u32 bit; 280 281 for_each_set_bit(bit, bitmap, map->max_entries) { 282 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); 283 struct xdp_bulk_queue *bq; 284 285 /* This is possible if the dev entry is removed by user space 286 * between xdp redirect and flush op. 287 */ 288 if (unlikely(!dev)) 289 continue; 290 291 __clear_bit(bit, bitmap); 292 293 bq = this_cpu_ptr(dev->bulkq); 294 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true); 295 } 296 } 297 298 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 299 * update happens in parallel here a dev_put wont happen until after reading the 300 * ifindex. 301 */ 302 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 303 { 304 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 305 struct bpf_dtab_netdev *obj; 306 307 if (key >= map->max_entries) 308 return NULL; 309 310 obj = READ_ONCE(dtab->netdev_map[key]); 311 return obj; 312 } 313 314 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 315 * Thus, safe percpu variable access. 316 */ 317 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf, 318 struct net_device *dev_rx) 319 320 { 321 struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq); 322 323 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 324 bq_xmit_all(obj, bq, 0, true); 325 326 /* Ingress dev_rx will be the same for all xdp_frame's in 327 * bulk_queue, because bq stored per-CPU and must be flushed 328 * from net_device drivers NAPI func end. 329 */ 330 if (!bq->dev_rx) 331 bq->dev_rx = dev_rx; 332 333 bq->q[bq->count++] = xdpf; 334 return 0; 335 } 336 337 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 338 struct net_device *dev_rx) 339 { 340 struct net_device *dev = dst->dev; 341 struct xdp_frame *xdpf; 342 int err; 343 344 if (!dev->netdev_ops->ndo_xdp_xmit) 345 return -EOPNOTSUPP; 346 347 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 348 if (unlikely(err)) 349 return err; 350 351 xdpf = convert_to_xdp_frame(xdp); 352 if (unlikely(!xdpf)) 353 return -EOVERFLOW; 354 355 return bq_enqueue(dst, xdpf, dev_rx); 356 } 357 358 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 359 struct bpf_prog *xdp_prog) 360 { 361 int err; 362 363 err = xdp_ok_fwd_dev(dst->dev, skb->len); 364 if (unlikely(err)) 365 return err; 366 skb->dev = dst->dev; 367 generic_xdp_tx(skb, xdp_prog); 368 369 return 0; 370 } 371 372 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 373 { 374 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 375 struct net_device *dev = obj ? obj->dev : NULL; 376 377 return dev ? &dev->ifindex : NULL; 378 } 379 380 static void dev_map_flush_old(struct bpf_dtab_netdev *dev) 381 { 382 if (dev->dev->netdev_ops->ndo_xdp_xmit) { 383 struct xdp_bulk_queue *bq; 384 unsigned long *bitmap; 385 386 int cpu; 387 388 for_each_online_cpu(cpu) { 389 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); 390 __clear_bit(dev->bit, bitmap); 391 392 bq = per_cpu_ptr(dev->bulkq, cpu); 393 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false); 394 } 395 } 396 } 397 398 static void __dev_map_entry_free(struct rcu_head *rcu) 399 { 400 struct bpf_dtab_netdev *dev; 401 402 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 403 dev_map_flush_old(dev); 404 free_percpu(dev->bulkq); 405 dev_put(dev->dev); 406 kfree(dev); 407 } 408 409 static int dev_map_delete_elem(struct bpf_map *map, void *key) 410 { 411 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 412 struct bpf_dtab_netdev *old_dev; 413 int k = *(u32 *)key; 414 415 if (k >= map->max_entries) 416 return -EINVAL; 417 418 /* Use call_rcu() here to ensure any rcu critical sections have 419 * completed, but this does not guarantee a flush has happened 420 * yet. Because driver side rcu_read_lock/unlock only protects the 421 * running XDP program. However, for pending flush operations the 422 * dev and ctx are stored in another per cpu map. And additionally, 423 * the driver tear down ensures all soft irqs are complete before 424 * removing the net device in the case of dev_put equals zero. 425 */ 426 old_dev = xchg(&dtab->netdev_map[k], NULL); 427 if (old_dev) 428 call_rcu(&old_dev->rcu, __dev_map_entry_free); 429 return 0; 430 } 431 432 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 433 u64 map_flags) 434 { 435 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 436 struct net *net = current->nsproxy->net_ns; 437 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; 438 struct bpf_dtab_netdev *dev, *old_dev; 439 u32 i = *(u32 *)key; 440 u32 ifindex = *(u32 *)value; 441 442 if (unlikely(map_flags > BPF_EXIST)) 443 return -EINVAL; 444 if (unlikely(i >= dtab->map.max_entries)) 445 return -E2BIG; 446 if (unlikely(map_flags == BPF_NOEXIST)) 447 return -EEXIST; 448 449 if (!ifindex) { 450 dev = NULL; 451 } else { 452 dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node); 453 if (!dev) 454 return -ENOMEM; 455 456 dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq), 457 sizeof(void *), gfp); 458 if (!dev->bulkq) { 459 kfree(dev); 460 return -ENOMEM; 461 } 462 463 dev->dev = dev_get_by_index(net, ifindex); 464 if (!dev->dev) { 465 free_percpu(dev->bulkq); 466 kfree(dev); 467 return -EINVAL; 468 } 469 470 dev->bit = i; 471 dev->dtab = dtab; 472 } 473 474 /* Use call_rcu() here to ensure rcu critical sections have completed 475 * Remembering the driver side flush operation will happen before the 476 * net device is removed. 477 */ 478 old_dev = xchg(&dtab->netdev_map[i], dev); 479 if (old_dev) 480 call_rcu(&old_dev->rcu, __dev_map_entry_free); 481 482 return 0; 483 } 484 485 const struct bpf_map_ops dev_map_ops = { 486 .map_alloc = dev_map_alloc, 487 .map_free = dev_map_free, 488 .map_get_next_key = dev_map_get_next_key, 489 .map_lookup_elem = dev_map_lookup_elem, 490 .map_update_elem = dev_map_update_elem, 491 .map_delete_elem = dev_map_delete_elem, 492 .map_check_btf = map_check_no_btf, 493 }; 494 495 static int dev_map_notification(struct notifier_block *notifier, 496 ulong event, void *ptr) 497 { 498 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 499 struct bpf_dtab *dtab; 500 int i; 501 502 switch (event) { 503 case NETDEV_UNREGISTER: 504 /* This rcu_read_lock/unlock pair is needed because 505 * dev_map_list is an RCU list AND to ensure a delete 506 * operation does not free a netdev_map entry while we 507 * are comparing it against the netdev being unregistered. 508 */ 509 rcu_read_lock(); 510 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 511 for (i = 0; i < dtab->map.max_entries; i++) { 512 struct bpf_dtab_netdev *dev, *odev; 513 514 dev = READ_ONCE(dtab->netdev_map[i]); 515 if (!dev || netdev != dev->dev) 516 continue; 517 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 518 if (dev == odev) 519 call_rcu(&dev->rcu, 520 __dev_map_entry_free); 521 } 522 } 523 rcu_read_unlock(); 524 break; 525 default: 526 break; 527 } 528 return NOTIFY_OK; 529 } 530 531 static struct notifier_block dev_map_notifier = { 532 .notifier_call = dev_map_notification, 533 }; 534 535 static int __init dev_map_init(void) 536 { 537 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 538 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 539 offsetof(struct _bpf_dtab_netdev, dev)); 540 register_netdevice_notifier(&dev_map_notifier); 541 return 0; 542 } 543 544 subsys_initcall(dev_map_init); 545