xref: /openbmc/linux/kernel/bpf/devmap.c (revision eef8abda)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 struct xdp_dev_bulk_queue {
56 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 	struct list_head flush_node;
58 	struct net_device *dev;
59 	struct net_device *dev_rx;
60 	unsigned int count;
61 };
62 
63 struct bpf_dtab_netdev {
64 	struct net_device *dev; /* must be first member, due to tracepoint */
65 	struct hlist_node index_hlist;
66 	struct bpf_dtab *dtab;
67 	struct bpf_prog *xdp_prog;
68 	struct rcu_head rcu;
69 	unsigned int idx;
70 	struct bpf_devmap_val val;
71 };
72 
73 struct bpf_dtab {
74 	struct bpf_map map;
75 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
76 	struct list_head list;
77 
78 	/* these are only used for DEVMAP_HASH type maps */
79 	struct hlist_head *dev_index_head;
80 	spinlock_t index_lock;
81 	unsigned int items;
82 	u32 n_buckets;
83 };
84 
85 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
88 
89 static struct hlist_head *dev_map_create_hash(unsigned int entries,
90 					      int numa_node)
91 {
92 	int i;
93 	struct hlist_head *hash;
94 
95 	hash = bpf_map_area_alloc(entries * sizeof(*hash), numa_node);
96 	if (hash != NULL)
97 		for (i = 0; i < entries; i++)
98 			INIT_HLIST_HEAD(&hash[i]);
99 
100 	return hash;
101 }
102 
103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
104 						    int idx)
105 {
106 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
107 }
108 
109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
110 {
111 	u32 valsize = attr->value_size;
112 
113 	/* check sanity of attributes. 2 value sizes supported:
114 	 * 4 bytes: ifindex
115 	 * 8 bytes: ifindex + prog fd
116 	 */
117 	if (attr->max_entries == 0 || attr->key_size != 4 ||
118 	    (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
119 	     valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
120 	    attr->map_flags & ~DEV_CREATE_FLAG_MASK)
121 		return -EINVAL;
122 
123 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
124 	 * verifier prevents writes from the BPF side
125 	 */
126 	attr->map_flags |= BPF_F_RDONLY_PROG;
127 
128 
129 	bpf_map_init_from_attr(&dtab->map, attr);
130 
131 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
132 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
133 
134 		if (!dtab->n_buckets) /* Overflow check */
135 			return -EINVAL;
136 	}
137 
138 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
139 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
140 							   dtab->map.numa_node);
141 		if (!dtab->dev_index_head)
142 			return -ENOMEM;
143 
144 		spin_lock_init(&dtab->index_lock);
145 	} else {
146 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
147 						      sizeof(struct bpf_dtab_netdev *),
148 						      dtab->map.numa_node);
149 		if (!dtab->netdev_map)
150 			return -ENOMEM;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
157 {
158 	struct bpf_dtab *dtab;
159 	int err;
160 
161 	if (!capable(CAP_NET_ADMIN))
162 		return ERR_PTR(-EPERM);
163 
164 	dtab = kzalloc(sizeof(*dtab), GFP_USER | __GFP_ACCOUNT);
165 	if (!dtab)
166 		return ERR_PTR(-ENOMEM);
167 
168 	err = dev_map_init_map(dtab, attr);
169 	if (err) {
170 		kfree(dtab);
171 		return ERR_PTR(err);
172 	}
173 
174 	spin_lock(&dev_map_lock);
175 	list_add_tail_rcu(&dtab->list, &dev_map_list);
176 	spin_unlock(&dev_map_lock);
177 
178 	return &dtab->map;
179 }
180 
181 static void dev_map_free(struct bpf_map *map)
182 {
183 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
184 	int i;
185 
186 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
187 	 * so the programs (can be more than one that used this map) were
188 	 * disconnected from events. The following synchronize_rcu() guarantees
189 	 * both rcu read critical sections complete and waits for
190 	 * preempt-disable regions (NAPI being the relevant context here) so we
191 	 * are certain there will be no further reads against the netdev_map and
192 	 * all flush operations are complete. Flush operations can only be done
193 	 * from NAPI context for this reason.
194 	 */
195 
196 	spin_lock(&dev_map_lock);
197 	list_del_rcu(&dtab->list);
198 	spin_unlock(&dev_map_lock);
199 
200 	bpf_clear_redirect_map(map);
201 	synchronize_rcu();
202 
203 	/* Make sure prior __dev_map_entry_free() have completed. */
204 	rcu_barrier();
205 
206 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
207 		for (i = 0; i < dtab->n_buckets; i++) {
208 			struct bpf_dtab_netdev *dev;
209 			struct hlist_head *head;
210 			struct hlist_node *next;
211 
212 			head = dev_map_index_hash(dtab, i);
213 
214 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
215 				hlist_del_rcu(&dev->index_hlist);
216 				if (dev->xdp_prog)
217 					bpf_prog_put(dev->xdp_prog);
218 				dev_put(dev->dev);
219 				kfree(dev);
220 			}
221 		}
222 
223 		bpf_map_area_free(dtab->dev_index_head);
224 	} else {
225 		for (i = 0; i < dtab->map.max_entries; i++) {
226 			struct bpf_dtab_netdev *dev;
227 
228 			dev = dtab->netdev_map[i];
229 			if (!dev)
230 				continue;
231 
232 			if (dev->xdp_prog)
233 				bpf_prog_put(dev->xdp_prog);
234 			dev_put(dev->dev);
235 			kfree(dev);
236 		}
237 
238 		bpf_map_area_free(dtab->netdev_map);
239 	}
240 
241 	kfree(dtab);
242 }
243 
244 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
245 {
246 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
247 	u32 index = key ? *(u32 *)key : U32_MAX;
248 	u32 *next = next_key;
249 
250 	if (index >= dtab->map.max_entries) {
251 		*next = 0;
252 		return 0;
253 	}
254 
255 	if (index == dtab->map.max_entries - 1)
256 		return -ENOENT;
257 	*next = index + 1;
258 	return 0;
259 }
260 
261 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
262 {
263 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
264 	struct hlist_head *head = dev_map_index_hash(dtab, key);
265 	struct bpf_dtab_netdev *dev;
266 
267 	hlist_for_each_entry_rcu(dev, head, index_hlist,
268 				 lockdep_is_held(&dtab->index_lock))
269 		if (dev->idx == key)
270 			return dev;
271 
272 	return NULL;
273 }
274 
275 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
276 				    void *next_key)
277 {
278 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
279 	u32 idx, *next = next_key;
280 	struct bpf_dtab_netdev *dev, *next_dev;
281 	struct hlist_head *head;
282 	int i = 0;
283 
284 	if (!key)
285 		goto find_first;
286 
287 	idx = *(u32 *)key;
288 
289 	dev = __dev_map_hash_lookup_elem(map, idx);
290 	if (!dev)
291 		goto find_first;
292 
293 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
294 				    struct bpf_dtab_netdev, index_hlist);
295 
296 	if (next_dev) {
297 		*next = next_dev->idx;
298 		return 0;
299 	}
300 
301 	i = idx & (dtab->n_buckets - 1);
302 	i++;
303 
304  find_first:
305 	for (; i < dtab->n_buckets; i++) {
306 		head = dev_map_index_hash(dtab, i);
307 
308 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
309 					    struct bpf_dtab_netdev,
310 					    index_hlist);
311 		if (next_dev) {
312 			*next = next_dev->idx;
313 			return 0;
314 		}
315 	}
316 
317 	return -ENOENT;
318 }
319 
320 bool dev_map_can_have_prog(struct bpf_map *map)
321 {
322 	if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
323 	     map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
324 	    map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
325 		return true;
326 
327 	return false;
328 }
329 
330 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
331 {
332 	struct net_device *dev = bq->dev;
333 	int sent = 0, drops = 0, err = 0;
334 	int i;
335 
336 	if (unlikely(!bq->count))
337 		return;
338 
339 	for (i = 0; i < bq->count; i++) {
340 		struct xdp_frame *xdpf = bq->q[i];
341 
342 		prefetch(xdpf);
343 	}
344 
345 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
346 	if (sent < 0) {
347 		err = sent;
348 		sent = 0;
349 		goto error;
350 	}
351 	drops = bq->count - sent;
352 out:
353 	bq->count = 0;
354 
355 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
356 	bq->dev_rx = NULL;
357 	__list_del_clearprev(&bq->flush_node);
358 	return;
359 error:
360 	/* If ndo_xdp_xmit fails with an errno, no frames have been
361 	 * xmit'ed and it's our responsibility to them free all.
362 	 */
363 	for (i = 0; i < bq->count; i++) {
364 		struct xdp_frame *xdpf = bq->q[i];
365 
366 		xdp_return_frame_rx_napi(xdpf);
367 		drops++;
368 	}
369 	goto out;
370 }
371 
372 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
373  * from the driver before returning from its napi->poll() routine. The poll()
374  * routine is called either from busy_poll context or net_rx_action signaled
375  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
376  * net device can be torn down. On devmap tear down we ensure the flush list
377  * is empty before completing to ensure all flush operations have completed.
378  * When drivers update the bpf program they may need to ensure any flush ops
379  * are also complete. Using synchronize_rcu or call_rcu will suffice for this
380  * because both wait for napi context to exit.
381  */
382 void __dev_flush(void)
383 {
384 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
385 	struct xdp_dev_bulk_queue *bq, *tmp;
386 
387 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
388 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
389 }
390 
391 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
392  * update happens in parallel here a dev_put wont happen until after reading the
393  * ifindex.
394  */
395 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
396 {
397 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
398 	struct bpf_dtab_netdev *obj;
399 
400 	if (key >= map->max_entries)
401 		return NULL;
402 
403 	obj = READ_ONCE(dtab->netdev_map[key]);
404 	return obj;
405 }
406 
407 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
408  * Thus, safe percpu variable access.
409  */
410 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
411 		       struct net_device *dev_rx)
412 {
413 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
414 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
415 
416 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
417 		bq_xmit_all(bq, 0);
418 
419 	/* Ingress dev_rx will be the same for all xdp_frame's in
420 	 * bulk_queue, because bq stored per-CPU and must be flushed
421 	 * from net_device drivers NAPI func end.
422 	 */
423 	if (!bq->dev_rx)
424 		bq->dev_rx = dev_rx;
425 
426 	bq->q[bq->count++] = xdpf;
427 
428 	if (!bq->flush_node.prev)
429 		list_add(&bq->flush_node, flush_list);
430 }
431 
432 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
433 			       struct net_device *dev_rx)
434 {
435 	struct xdp_frame *xdpf;
436 	int err;
437 
438 	if (!dev->netdev_ops->ndo_xdp_xmit)
439 		return -EOPNOTSUPP;
440 
441 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
442 	if (unlikely(err))
443 		return err;
444 
445 	xdpf = xdp_convert_buff_to_frame(xdp);
446 	if (unlikely(!xdpf))
447 		return -EOVERFLOW;
448 
449 	bq_enqueue(dev, xdpf, dev_rx);
450 	return 0;
451 }
452 
453 static struct xdp_buff *dev_map_run_prog(struct net_device *dev,
454 					 struct xdp_buff *xdp,
455 					 struct bpf_prog *xdp_prog)
456 {
457 	struct xdp_txq_info txq = { .dev = dev };
458 	u32 act;
459 
460 	xdp_set_data_meta_invalid(xdp);
461 	xdp->txq = &txq;
462 
463 	act = bpf_prog_run_xdp(xdp_prog, xdp);
464 	switch (act) {
465 	case XDP_PASS:
466 		return xdp;
467 	case XDP_DROP:
468 		break;
469 	default:
470 		bpf_warn_invalid_xdp_action(act);
471 		fallthrough;
472 	case XDP_ABORTED:
473 		trace_xdp_exception(dev, xdp_prog, act);
474 		break;
475 	}
476 
477 	xdp_return_buff(xdp);
478 	return NULL;
479 }
480 
481 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
482 		    struct net_device *dev_rx)
483 {
484 	return __xdp_enqueue(dev, xdp, dev_rx);
485 }
486 
487 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
488 		    struct net_device *dev_rx)
489 {
490 	struct net_device *dev = dst->dev;
491 
492 	if (dst->xdp_prog) {
493 		xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog);
494 		if (!xdp)
495 			return 0;
496 	}
497 	return __xdp_enqueue(dev, xdp, dev_rx);
498 }
499 
500 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
501 			     struct bpf_prog *xdp_prog)
502 {
503 	int err;
504 
505 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
506 	if (unlikely(err))
507 		return err;
508 	skb->dev = dst->dev;
509 	generic_xdp_tx(skb, xdp_prog);
510 
511 	return 0;
512 }
513 
514 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
515 {
516 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
517 
518 	return obj ? &obj->val : NULL;
519 }
520 
521 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
522 {
523 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
524 								*(u32 *)key);
525 	return obj ? &obj->val : NULL;
526 }
527 
528 static void __dev_map_entry_free(struct rcu_head *rcu)
529 {
530 	struct bpf_dtab_netdev *dev;
531 
532 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
533 	if (dev->xdp_prog)
534 		bpf_prog_put(dev->xdp_prog);
535 	dev_put(dev->dev);
536 	kfree(dev);
537 }
538 
539 static int dev_map_delete_elem(struct bpf_map *map, void *key)
540 {
541 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
542 	struct bpf_dtab_netdev *old_dev;
543 	int k = *(u32 *)key;
544 
545 	if (k >= map->max_entries)
546 		return -EINVAL;
547 
548 	/* Use call_rcu() here to ensure any rcu critical sections have
549 	 * completed as well as any flush operations because call_rcu
550 	 * will wait for preempt-disable region to complete, NAPI in this
551 	 * context.  And additionally, the driver tear down ensures all
552 	 * soft irqs are complete before removing the net device in the
553 	 * case of dev_put equals zero.
554 	 */
555 	old_dev = xchg(&dtab->netdev_map[k], NULL);
556 	if (old_dev)
557 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
558 	return 0;
559 }
560 
561 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
562 {
563 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
564 	struct bpf_dtab_netdev *old_dev;
565 	int k = *(u32 *)key;
566 	unsigned long flags;
567 	int ret = -ENOENT;
568 
569 	spin_lock_irqsave(&dtab->index_lock, flags);
570 
571 	old_dev = __dev_map_hash_lookup_elem(map, k);
572 	if (old_dev) {
573 		dtab->items--;
574 		hlist_del_init_rcu(&old_dev->index_hlist);
575 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
576 		ret = 0;
577 	}
578 	spin_unlock_irqrestore(&dtab->index_lock, flags);
579 
580 	return ret;
581 }
582 
583 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
584 						    struct bpf_dtab *dtab,
585 						    struct bpf_devmap_val *val,
586 						    unsigned int idx)
587 {
588 	struct bpf_prog *prog = NULL;
589 	struct bpf_dtab_netdev *dev;
590 
591 	dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
592 				   GFP_ATOMIC | __GFP_NOWARN,
593 				   dtab->map.numa_node);
594 	if (!dev)
595 		return ERR_PTR(-ENOMEM);
596 
597 	dev->dev = dev_get_by_index(net, val->ifindex);
598 	if (!dev->dev)
599 		goto err_out;
600 
601 	if (val->bpf_prog.fd > 0) {
602 		prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
603 					     BPF_PROG_TYPE_XDP, false);
604 		if (IS_ERR(prog))
605 			goto err_put_dev;
606 		if (prog->expected_attach_type != BPF_XDP_DEVMAP)
607 			goto err_put_prog;
608 	}
609 
610 	dev->idx = idx;
611 	dev->dtab = dtab;
612 	if (prog) {
613 		dev->xdp_prog = prog;
614 		dev->val.bpf_prog.id = prog->aux->id;
615 	} else {
616 		dev->xdp_prog = NULL;
617 		dev->val.bpf_prog.id = 0;
618 	}
619 	dev->val.ifindex = val->ifindex;
620 
621 	return dev;
622 err_put_prog:
623 	bpf_prog_put(prog);
624 err_put_dev:
625 	dev_put(dev->dev);
626 err_out:
627 	kfree(dev);
628 	return ERR_PTR(-EINVAL);
629 }
630 
631 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
632 				 void *key, void *value, u64 map_flags)
633 {
634 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
635 	struct bpf_dtab_netdev *dev, *old_dev;
636 	struct bpf_devmap_val val = {};
637 	u32 i = *(u32 *)key;
638 
639 	if (unlikely(map_flags > BPF_EXIST))
640 		return -EINVAL;
641 	if (unlikely(i >= dtab->map.max_entries))
642 		return -E2BIG;
643 	if (unlikely(map_flags == BPF_NOEXIST))
644 		return -EEXIST;
645 
646 	/* already verified value_size <= sizeof val */
647 	memcpy(&val, value, map->value_size);
648 
649 	if (!val.ifindex) {
650 		dev = NULL;
651 		/* can not specify fd if ifindex is 0 */
652 		if (val.bpf_prog.fd > 0)
653 			return -EINVAL;
654 	} else {
655 		dev = __dev_map_alloc_node(net, dtab, &val, i);
656 		if (IS_ERR(dev))
657 			return PTR_ERR(dev);
658 	}
659 
660 	/* Use call_rcu() here to ensure rcu critical sections have completed
661 	 * Remembering the driver side flush operation will happen before the
662 	 * net device is removed.
663 	 */
664 	old_dev = xchg(&dtab->netdev_map[i], dev);
665 	if (old_dev)
666 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
667 
668 	return 0;
669 }
670 
671 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
672 			       u64 map_flags)
673 {
674 	return __dev_map_update_elem(current->nsproxy->net_ns,
675 				     map, key, value, map_flags);
676 }
677 
678 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
679 				     void *key, void *value, u64 map_flags)
680 {
681 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
682 	struct bpf_dtab_netdev *dev, *old_dev;
683 	struct bpf_devmap_val val = {};
684 	u32 idx = *(u32 *)key;
685 	unsigned long flags;
686 	int err = -EEXIST;
687 
688 	/* already verified value_size <= sizeof val */
689 	memcpy(&val, value, map->value_size);
690 
691 	if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
692 		return -EINVAL;
693 
694 	spin_lock_irqsave(&dtab->index_lock, flags);
695 
696 	old_dev = __dev_map_hash_lookup_elem(map, idx);
697 	if (old_dev && (map_flags & BPF_NOEXIST))
698 		goto out_err;
699 
700 	dev = __dev_map_alloc_node(net, dtab, &val, idx);
701 	if (IS_ERR(dev)) {
702 		err = PTR_ERR(dev);
703 		goto out_err;
704 	}
705 
706 	if (old_dev) {
707 		hlist_del_rcu(&old_dev->index_hlist);
708 	} else {
709 		if (dtab->items >= dtab->map.max_entries) {
710 			spin_unlock_irqrestore(&dtab->index_lock, flags);
711 			call_rcu(&dev->rcu, __dev_map_entry_free);
712 			return -E2BIG;
713 		}
714 		dtab->items++;
715 	}
716 
717 	hlist_add_head_rcu(&dev->index_hlist,
718 			   dev_map_index_hash(dtab, idx));
719 	spin_unlock_irqrestore(&dtab->index_lock, flags);
720 
721 	if (old_dev)
722 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
723 
724 	return 0;
725 
726 out_err:
727 	spin_unlock_irqrestore(&dtab->index_lock, flags);
728 	return err;
729 }
730 
731 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
732 				   u64 map_flags)
733 {
734 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
735 					 map, key, value, map_flags);
736 }
737 
738 static int dev_map_btf_id;
739 const struct bpf_map_ops dev_map_ops = {
740 	.map_meta_equal = bpf_map_meta_equal,
741 	.map_alloc = dev_map_alloc,
742 	.map_free = dev_map_free,
743 	.map_get_next_key = dev_map_get_next_key,
744 	.map_lookup_elem = dev_map_lookup_elem,
745 	.map_update_elem = dev_map_update_elem,
746 	.map_delete_elem = dev_map_delete_elem,
747 	.map_check_btf = map_check_no_btf,
748 	.map_btf_name = "bpf_dtab",
749 	.map_btf_id = &dev_map_btf_id,
750 };
751 
752 static int dev_map_hash_map_btf_id;
753 const struct bpf_map_ops dev_map_hash_ops = {
754 	.map_meta_equal = bpf_map_meta_equal,
755 	.map_alloc = dev_map_alloc,
756 	.map_free = dev_map_free,
757 	.map_get_next_key = dev_map_hash_get_next_key,
758 	.map_lookup_elem = dev_map_hash_lookup_elem,
759 	.map_update_elem = dev_map_hash_update_elem,
760 	.map_delete_elem = dev_map_hash_delete_elem,
761 	.map_check_btf = map_check_no_btf,
762 	.map_btf_name = "bpf_dtab",
763 	.map_btf_id = &dev_map_hash_map_btf_id,
764 };
765 
766 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
767 				       struct net_device *netdev)
768 {
769 	unsigned long flags;
770 	u32 i;
771 
772 	spin_lock_irqsave(&dtab->index_lock, flags);
773 	for (i = 0; i < dtab->n_buckets; i++) {
774 		struct bpf_dtab_netdev *dev;
775 		struct hlist_head *head;
776 		struct hlist_node *next;
777 
778 		head = dev_map_index_hash(dtab, i);
779 
780 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
781 			if (netdev != dev->dev)
782 				continue;
783 
784 			dtab->items--;
785 			hlist_del_rcu(&dev->index_hlist);
786 			call_rcu(&dev->rcu, __dev_map_entry_free);
787 		}
788 	}
789 	spin_unlock_irqrestore(&dtab->index_lock, flags);
790 }
791 
792 static int dev_map_notification(struct notifier_block *notifier,
793 				ulong event, void *ptr)
794 {
795 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
796 	struct bpf_dtab *dtab;
797 	int i, cpu;
798 
799 	switch (event) {
800 	case NETDEV_REGISTER:
801 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
802 			break;
803 
804 		/* will be freed in free_netdev() */
805 		netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
806 		if (!netdev->xdp_bulkq)
807 			return NOTIFY_BAD;
808 
809 		for_each_possible_cpu(cpu)
810 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
811 		break;
812 	case NETDEV_UNREGISTER:
813 		/* This rcu_read_lock/unlock pair is needed because
814 		 * dev_map_list is an RCU list AND to ensure a delete
815 		 * operation does not free a netdev_map entry while we
816 		 * are comparing it against the netdev being unregistered.
817 		 */
818 		rcu_read_lock();
819 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
820 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
821 				dev_map_hash_remove_netdev(dtab, netdev);
822 				continue;
823 			}
824 
825 			for (i = 0; i < dtab->map.max_entries; i++) {
826 				struct bpf_dtab_netdev *dev, *odev;
827 
828 				dev = READ_ONCE(dtab->netdev_map[i]);
829 				if (!dev || netdev != dev->dev)
830 					continue;
831 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
832 				if (dev == odev)
833 					call_rcu(&dev->rcu,
834 						 __dev_map_entry_free);
835 			}
836 		}
837 		rcu_read_unlock();
838 		break;
839 	default:
840 		break;
841 	}
842 	return NOTIFY_OK;
843 }
844 
845 static struct notifier_block dev_map_notifier = {
846 	.notifier_call = dev_map_notification,
847 };
848 
849 static int __init dev_map_init(void)
850 {
851 	int cpu;
852 
853 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
854 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
855 		     offsetof(struct _bpf_dtab_netdev, dev));
856 	register_netdevice_notifier(&dev_map_notifier);
857 
858 	for_each_possible_cpu(cpu)
859 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
860 	return 0;
861 }
862 
863 subsys_initcall(dev_map_init);
864