xref: /openbmc/linux/kernel/bpf/devmap.c (revision e3d786a3)
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15  * spent some effort to ensure the datapath with redirect maps does not use
16  * any locking. This is a quick note on the details.
17  *
18  * We have three possible paths to get into the devmap control plane bpf
19  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20  * will invoke an update, delete, or lookup operation. To ensure updates and
21  * deletes appear atomic from the datapath side xchg() is used to modify the
22  * netdev_map array. Then because the datapath does a lookup into the netdev_map
23  * array (read-only) from an RCU critical section we use call_rcu() to wait for
24  * an rcu grace period before free'ing the old data structures. This ensures the
25  * datapath always has a valid copy. However, the datapath does a "flush"
26  * operation that pushes any pending packets in the driver outside the RCU
27  * critical section. Each bpf_dtab_netdev tracks these pending operations using
28  * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29  * until all bits are cleared indicating outstanding flush operations have
30  * completed.
31  *
32  * BPF syscalls may race with BPF program calls on any of the update, delete
33  * or lookup operations. As noted above the xchg() operation also keep the
34  * netdev_map consistent in this case. From the devmap side BPF programs
35  * calling into these operations are the same as multiple user space threads
36  * making system calls.
37  *
38  * Finally, any of the above may race with a netdev_unregister notifier. The
39  * unregister notifier must search for net devices in the map structure that
40  * contain a reference to the net device and remove them. This is a two step
41  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42  * check to see if the ifindex is the same as the net_device being removed.
43  * When removing the dev a cmpxchg() is used to ensure the correct dev is
44  * removed, in the case of a concurrent update or delete operation it is
45  * possible that the initially referenced dev is no longer in the map. As the
46  * notifier hook walks the map we know that new dev references can not be
47  * added by the user because core infrastructure ensures dev_get_by_index()
48  * calls will fail at this point.
49  */
50 #include <linux/bpf.h>
51 #include <net/xdp.h>
52 #include <linux/filter.h>
53 #include <trace/events/xdp.h>
54 
55 #define DEV_CREATE_FLAG_MASK \
56 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
57 
58 #define DEV_MAP_BULK_SIZE 16
59 struct xdp_bulk_queue {
60 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
61 	struct net_device *dev_rx;
62 	unsigned int count;
63 };
64 
65 struct bpf_dtab_netdev {
66 	struct net_device *dev; /* must be first member, due to tracepoint */
67 	struct bpf_dtab *dtab;
68 	unsigned int bit;
69 	struct xdp_bulk_queue __percpu *bulkq;
70 	struct rcu_head rcu;
71 };
72 
73 struct bpf_dtab {
74 	struct bpf_map map;
75 	struct bpf_dtab_netdev **netdev_map;
76 	unsigned long __percpu *flush_needed;
77 	struct list_head list;
78 };
79 
80 static DEFINE_SPINLOCK(dev_map_lock);
81 static LIST_HEAD(dev_map_list);
82 
83 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
84 {
85 	return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
86 }
87 
88 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
89 {
90 	struct bpf_dtab *dtab;
91 	int err = -EINVAL;
92 	u64 cost;
93 
94 	if (!capable(CAP_NET_ADMIN))
95 		return ERR_PTR(-EPERM);
96 
97 	/* check sanity of attributes */
98 	if (attr->max_entries == 0 || attr->key_size != 4 ||
99 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
100 		return ERR_PTR(-EINVAL);
101 
102 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
103 	if (!dtab)
104 		return ERR_PTR(-ENOMEM);
105 
106 	bpf_map_init_from_attr(&dtab->map, attr);
107 
108 	/* make sure page count doesn't overflow */
109 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
110 	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
111 	if (cost >= U32_MAX - PAGE_SIZE)
112 		goto free_dtab;
113 
114 	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
115 
116 	/* if map size is larger than memlock limit, reject it early */
117 	err = bpf_map_precharge_memlock(dtab->map.pages);
118 	if (err)
119 		goto free_dtab;
120 
121 	err = -ENOMEM;
122 
123 	/* A per cpu bitfield with a bit per possible net device */
124 	dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
125 						__alignof__(unsigned long),
126 						GFP_KERNEL | __GFP_NOWARN);
127 	if (!dtab->flush_needed)
128 		goto free_dtab;
129 
130 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
131 					      sizeof(struct bpf_dtab_netdev *),
132 					      dtab->map.numa_node);
133 	if (!dtab->netdev_map)
134 		goto free_dtab;
135 
136 	spin_lock(&dev_map_lock);
137 	list_add_tail_rcu(&dtab->list, &dev_map_list);
138 	spin_unlock(&dev_map_lock);
139 
140 	return &dtab->map;
141 free_dtab:
142 	free_percpu(dtab->flush_needed);
143 	kfree(dtab);
144 	return ERR_PTR(err);
145 }
146 
147 static void dev_map_free(struct bpf_map *map)
148 {
149 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
150 	int i, cpu;
151 
152 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
153 	 * so the programs (can be more than one that used this map) were
154 	 * disconnected from events. Wait for outstanding critical sections in
155 	 * these programs to complete. The rcu critical section only guarantees
156 	 * no further reads against netdev_map. It does __not__ ensure pending
157 	 * flush operations (if any) are complete.
158 	 */
159 
160 	spin_lock(&dev_map_lock);
161 	list_del_rcu(&dtab->list);
162 	spin_unlock(&dev_map_lock);
163 
164 	bpf_clear_redirect_map(map);
165 	synchronize_rcu();
166 
167 	/* To ensure all pending flush operations have completed wait for flush
168 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
169 	 * Because the above synchronize_rcu() ensures the map is disconnected
170 	 * from the program we can assume no new bits will be set.
171 	 */
172 	for_each_online_cpu(cpu) {
173 		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
174 
175 		while (!bitmap_empty(bitmap, dtab->map.max_entries))
176 			cond_resched();
177 	}
178 
179 	for (i = 0; i < dtab->map.max_entries; i++) {
180 		struct bpf_dtab_netdev *dev;
181 
182 		dev = dtab->netdev_map[i];
183 		if (!dev)
184 			continue;
185 
186 		dev_put(dev->dev);
187 		kfree(dev);
188 	}
189 
190 	free_percpu(dtab->flush_needed);
191 	bpf_map_area_free(dtab->netdev_map);
192 	kfree(dtab);
193 }
194 
195 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
196 {
197 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
198 	u32 index = key ? *(u32 *)key : U32_MAX;
199 	u32 *next = next_key;
200 
201 	if (index >= dtab->map.max_entries) {
202 		*next = 0;
203 		return 0;
204 	}
205 
206 	if (index == dtab->map.max_entries - 1)
207 		return -ENOENT;
208 	*next = index + 1;
209 	return 0;
210 }
211 
212 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
213 {
214 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
215 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
216 
217 	__set_bit(bit, bitmap);
218 }
219 
220 static int bq_xmit_all(struct bpf_dtab_netdev *obj,
221 		       struct xdp_bulk_queue *bq, u32 flags,
222 		       bool in_napi_ctx)
223 {
224 	struct net_device *dev = obj->dev;
225 	int sent = 0, drops = 0, err = 0;
226 	int i;
227 
228 	if (unlikely(!bq->count))
229 		return 0;
230 
231 	for (i = 0; i < bq->count; i++) {
232 		struct xdp_frame *xdpf = bq->q[i];
233 
234 		prefetch(xdpf);
235 	}
236 
237 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
238 	if (sent < 0) {
239 		err = sent;
240 		sent = 0;
241 		goto error;
242 	}
243 	drops = bq->count - sent;
244 out:
245 	bq->count = 0;
246 
247 	trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
248 			      sent, drops, bq->dev_rx, dev, err);
249 	bq->dev_rx = NULL;
250 	return 0;
251 error:
252 	/* If ndo_xdp_xmit fails with an errno, no frames have been
253 	 * xmit'ed and it's our responsibility to them free all.
254 	 */
255 	for (i = 0; i < bq->count; i++) {
256 		struct xdp_frame *xdpf = bq->q[i];
257 
258 		/* RX path under NAPI protection, can return frames faster */
259 		if (likely(in_napi_ctx))
260 			xdp_return_frame_rx_napi(xdpf);
261 		else
262 			xdp_return_frame(xdpf);
263 		drops++;
264 	}
265 	goto out;
266 }
267 
268 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
269  * from the driver before returning from its napi->poll() routine. The poll()
270  * routine is called either from busy_poll context or net_rx_action signaled
271  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
272  * net device can be torn down. On devmap tear down we ensure the ctx bitmap
273  * is zeroed before completing to ensure all flush operations have completed.
274  */
275 void __dev_map_flush(struct bpf_map *map)
276 {
277 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
278 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
279 	u32 bit;
280 
281 	for_each_set_bit(bit, bitmap, map->max_entries) {
282 		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
283 		struct xdp_bulk_queue *bq;
284 
285 		/* This is possible if the dev entry is removed by user space
286 		 * between xdp redirect and flush op.
287 		 */
288 		if (unlikely(!dev))
289 			continue;
290 
291 		__clear_bit(bit, bitmap);
292 
293 		bq = this_cpu_ptr(dev->bulkq);
294 		bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
295 	}
296 }
297 
298 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
299  * update happens in parallel here a dev_put wont happen until after reading the
300  * ifindex.
301  */
302 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
303 {
304 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
305 	struct bpf_dtab_netdev *obj;
306 
307 	if (key >= map->max_entries)
308 		return NULL;
309 
310 	obj = READ_ONCE(dtab->netdev_map[key]);
311 	return obj;
312 }
313 
314 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
315  * Thus, safe percpu variable access.
316  */
317 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
318 		      struct net_device *dev_rx)
319 
320 {
321 	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
322 
323 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
324 		bq_xmit_all(obj, bq, 0, true);
325 
326 	/* Ingress dev_rx will be the same for all xdp_frame's in
327 	 * bulk_queue, because bq stored per-CPU and must be flushed
328 	 * from net_device drivers NAPI func end.
329 	 */
330 	if (!bq->dev_rx)
331 		bq->dev_rx = dev_rx;
332 
333 	bq->q[bq->count++] = xdpf;
334 	return 0;
335 }
336 
337 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
338 		    struct net_device *dev_rx)
339 {
340 	struct net_device *dev = dst->dev;
341 	struct xdp_frame *xdpf;
342 	int err;
343 
344 	if (!dev->netdev_ops->ndo_xdp_xmit)
345 		return -EOPNOTSUPP;
346 
347 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
348 	if (unlikely(err))
349 		return err;
350 
351 	xdpf = convert_to_xdp_frame(xdp);
352 	if (unlikely(!xdpf))
353 		return -EOVERFLOW;
354 
355 	return bq_enqueue(dst, xdpf, dev_rx);
356 }
357 
358 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
359 			     struct bpf_prog *xdp_prog)
360 {
361 	int err;
362 
363 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
364 	if (unlikely(err))
365 		return err;
366 	skb->dev = dst->dev;
367 	generic_xdp_tx(skb, xdp_prog);
368 
369 	return 0;
370 }
371 
372 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
373 {
374 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
375 	struct net_device *dev = obj ? obj->dev : NULL;
376 
377 	return dev ? &dev->ifindex : NULL;
378 }
379 
380 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
381 {
382 	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
383 		struct xdp_bulk_queue *bq;
384 		unsigned long *bitmap;
385 
386 		int cpu;
387 
388 		for_each_online_cpu(cpu) {
389 			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
390 			__clear_bit(dev->bit, bitmap);
391 
392 			bq = per_cpu_ptr(dev->bulkq, cpu);
393 			bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
394 		}
395 	}
396 }
397 
398 static void __dev_map_entry_free(struct rcu_head *rcu)
399 {
400 	struct bpf_dtab_netdev *dev;
401 
402 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
403 	dev_map_flush_old(dev);
404 	free_percpu(dev->bulkq);
405 	dev_put(dev->dev);
406 	kfree(dev);
407 }
408 
409 static int dev_map_delete_elem(struct bpf_map *map, void *key)
410 {
411 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
412 	struct bpf_dtab_netdev *old_dev;
413 	int k = *(u32 *)key;
414 
415 	if (k >= map->max_entries)
416 		return -EINVAL;
417 
418 	/* Use call_rcu() here to ensure any rcu critical sections have
419 	 * completed, but this does not guarantee a flush has happened
420 	 * yet. Because driver side rcu_read_lock/unlock only protects the
421 	 * running XDP program. However, for pending flush operations the
422 	 * dev and ctx are stored in another per cpu map. And additionally,
423 	 * the driver tear down ensures all soft irqs are complete before
424 	 * removing the net device in the case of dev_put equals zero.
425 	 */
426 	old_dev = xchg(&dtab->netdev_map[k], NULL);
427 	if (old_dev)
428 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
429 	return 0;
430 }
431 
432 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
433 				u64 map_flags)
434 {
435 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
436 	struct net *net = current->nsproxy->net_ns;
437 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
438 	struct bpf_dtab_netdev *dev, *old_dev;
439 	u32 i = *(u32 *)key;
440 	u32 ifindex = *(u32 *)value;
441 
442 	if (unlikely(map_flags > BPF_EXIST))
443 		return -EINVAL;
444 	if (unlikely(i >= dtab->map.max_entries))
445 		return -E2BIG;
446 	if (unlikely(map_flags == BPF_NOEXIST))
447 		return -EEXIST;
448 
449 	if (!ifindex) {
450 		dev = NULL;
451 	} else {
452 		dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
453 		if (!dev)
454 			return -ENOMEM;
455 
456 		dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
457 						sizeof(void *), gfp);
458 		if (!dev->bulkq) {
459 			kfree(dev);
460 			return -ENOMEM;
461 		}
462 
463 		dev->dev = dev_get_by_index(net, ifindex);
464 		if (!dev->dev) {
465 			free_percpu(dev->bulkq);
466 			kfree(dev);
467 			return -EINVAL;
468 		}
469 
470 		dev->bit = i;
471 		dev->dtab = dtab;
472 	}
473 
474 	/* Use call_rcu() here to ensure rcu critical sections have completed
475 	 * Remembering the driver side flush operation will happen before the
476 	 * net device is removed.
477 	 */
478 	old_dev = xchg(&dtab->netdev_map[i], dev);
479 	if (old_dev)
480 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
481 
482 	return 0;
483 }
484 
485 const struct bpf_map_ops dev_map_ops = {
486 	.map_alloc = dev_map_alloc,
487 	.map_free = dev_map_free,
488 	.map_get_next_key = dev_map_get_next_key,
489 	.map_lookup_elem = dev_map_lookup_elem,
490 	.map_update_elem = dev_map_update_elem,
491 	.map_delete_elem = dev_map_delete_elem,
492 	.map_check_btf = map_check_no_btf,
493 };
494 
495 static int dev_map_notification(struct notifier_block *notifier,
496 				ulong event, void *ptr)
497 {
498 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
499 	struct bpf_dtab *dtab;
500 	int i;
501 
502 	switch (event) {
503 	case NETDEV_UNREGISTER:
504 		/* This rcu_read_lock/unlock pair is needed because
505 		 * dev_map_list is an RCU list AND to ensure a delete
506 		 * operation does not free a netdev_map entry while we
507 		 * are comparing it against the netdev being unregistered.
508 		 */
509 		rcu_read_lock();
510 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
511 			for (i = 0; i < dtab->map.max_entries; i++) {
512 				struct bpf_dtab_netdev *dev, *odev;
513 
514 				dev = READ_ONCE(dtab->netdev_map[i]);
515 				if (!dev || netdev != dev->dev)
516 					continue;
517 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
518 				if (dev == odev)
519 					call_rcu(&dev->rcu,
520 						 __dev_map_entry_free);
521 			}
522 		}
523 		rcu_read_unlock();
524 		break;
525 	default:
526 		break;
527 	}
528 	return NOTIFY_OK;
529 }
530 
531 static struct notifier_block dev_map_notifier = {
532 	.notifier_call = dev_map_notification,
533 };
534 
535 static int __init dev_map_init(void)
536 {
537 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
538 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
539 		     offsetof(struct _bpf_dtab_netdev, dev));
540 	register_netdevice_notifier(&dev_map_notifier);
541 	return 0;
542 }
543 
544 subsys_initcall(dev_map_init);
545