1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 52 #define DEV_CREATE_FLAG_MASK \ 53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 54 55 struct xdp_dev_bulk_queue { 56 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 57 struct list_head flush_node; 58 struct net_device *dev; 59 struct net_device *dev_rx; 60 struct bpf_prog *xdp_prog; 61 unsigned int count; 62 }; 63 64 struct bpf_dtab_netdev { 65 struct net_device *dev; /* must be first member, due to tracepoint */ 66 struct hlist_node index_hlist; 67 struct bpf_dtab *dtab; 68 struct bpf_prog *xdp_prog; 69 struct rcu_head rcu; 70 unsigned int idx; 71 struct bpf_devmap_val val; 72 }; 73 74 struct bpf_dtab { 75 struct bpf_map map; 76 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 77 struct list_head list; 78 79 /* these are only used for DEVMAP_HASH type maps */ 80 struct hlist_head *dev_index_head; 81 spinlock_t index_lock; 82 unsigned int items; 83 u32 n_buckets; 84 }; 85 86 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 87 static DEFINE_SPINLOCK(dev_map_lock); 88 static LIST_HEAD(dev_map_list); 89 90 static struct hlist_head *dev_map_create_hash(unsigned int entries, 91 int numa_node) 92 { 93 int i; 94 struct hlist_head *hash; 95 96 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 97 if (hash != NULL) 98 for (i = 0; i < entries; i++) 99 INIT_HLIST_HEAD(&hash[i]); 100 101 return hash; 102 } 103 104 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 105 int idx) 106 { 107 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 108 } 109 110 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 111 { 112 u32 valsize = attr->value_size; 113 114 /* check sanity of attributes. 2 value sizes supported: 115 * 4 bytes: ifindex 116 * 8 bytes: ifindex + prog fd 117 */ 118 if (attr->max_entries == 0 || attr->key_size != 4 || 119 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 120 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 121 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 122 return -EINVAL; 123 124 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 125 * verifier prevents writes from the BPF side 126 */ 127 attr->map_flags |= BPF_F_RDONLY_PROG; 128 129 130 bpf_map_init_from_attr(&dtab->map, attr); 131 132 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 133 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 134 135 if (!dtab->n_buckets) /* Overflow check */ 136 return -EINVAL; 137 } 138 139 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 140 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 141 dtab->map.numa_node); 142 if (!dtab->dev_index_head) 143 return -ENOMEM; 144 145 spin_lock_init(&dtab->index_lock); 146 } else { 147 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 148 sizeof(struct bpf_dtab_netdev *), 149 dtab->map.numa_node); 150 if (!dtab->netdev_map) 151 return -ENOMEM; 152 } 153 154 return 0; 155 } 156 157 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 158 { 159 struct bpf_dtab *dtab; 160 int err; 161 162 if (!capable(CAP_NET_ADMIN)) 163 return ERR_PTR(-EPERM); 164 165 dtab = kzalloc(sizeof(*dtab), GFP_USER | __GFP_ACCOUNT); 166 if (!dtab) 167 return ERR_PTR(-ENOMEM); 168 169 err = dev_map_init_map(dtab, attr); 170 if (err) { 171 kfree(dtab); 172 return ERR_PTR(err); 173 } 174 175 spin_lock(&dev_map_lock); 176 list_add_tail_rcu(&dtab->list, &dev_map_list); 177 spin_unlock(&dev_map_lock); 178 179 return &dtab->map; 180 } 181 182 static void dev_map_free(struct bpf_map *map) 183 { 184 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 185 int i; 186 187 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 188 * so the programs (can be more than one that used this map) were 189 * disconnected from events. The following synchronize_rcu() guarantees 190 * both rcu read critical sections complete and waits for 191 * preempt-disable regions (NAPI being the relevant context here) so we 192 * are certain there will be no further reads against the netdev_map and 193 * all flush operations are complete. Flush operations can only be done 194 * from NAPI context for this reason. 195 */ 196 197 spin_lock(&dev_map_lock); 198 list_del_rcu(&dtab->list); 199 spin_unlock(&dev_map_lock); 200 201 bpf_clear_redirect_map(map); 202 synchronize_rcu(); 203 204 /* Make sure prior __dev_map_entry_free() have completed. */ 205 rcu_barrier(); 206 207 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 208 for (i = 0; i < dtab->n_buckets; i++) { 209 struct bpf_dtab_netdev *dev; 210 struct hlist_head *head; 211 struct hlist_node *next; 212 213 head = dev_map_index_hash(dtab, i); 214 215 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 216 hlist_del_rcu(&dev->index_hlist); 217 if (dev->xdp_prog) 218 bpf_prog_put(dev->xdp_prog); 219 dev_put(dev->dev); 220 kfree(dev); 221 } 222 } 223 224 bpf_map_area_free(dtab->dev_index_head); 225 } else { 226 for (i = 0; i < dtab->map.max_entries; i++) { 227 struct bpf_dtab_netdev *dev; 228 229 dev = rcu_dereference_raw(dtab->netdev_map[i]); 230 if (!dev) 231 continue; 232 233 if (dev->xdp_prog) 234 bpf_prog_put(dev->xdp_prog); 235 dev_put(dev->dev); 236 kfree(dev); 237 } 238 239 bpf_map_area_free(dtab->netdev_map); 240 } 241 242 kfree(dtab); 243 } 244 245 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 246 { 247 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 248 u32 index = key ? *(u32 *)key : U32_MAX; 249 u32 *next = next_key; 250 251 if (index >= dtab->map.max_entries) { 252 *next = 0; 253 return 0; 254 } 255 256 if (index == dtab->map.max_entries - 1) 257 return -ENOENT; 258 *next = index + 1; 259 return 0; 260 } 261 262 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 263 * by local_bh_disable() (from XDP calls inside NAPI). The 264 * rcu_read_lock_bh_held() below makes lockdep accept both. 265 */ 266 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 267 { 268 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 269 struct hlist_head *head = dev_map_index_hash(dtab, key); 270 struct bpf_dtab_netdev *dev; 271 272 hlist_for_each_entry_rcu(dev, head, index_hlist, 273 lockdep_is_held(&dtab->index_lock)) 274 if (dev->idx == key) 275 return dev; 276 277 return NULL; 278 } 279 280 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 281 void *next_key) 282 { 283 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 284 u32 idx, *next = next_key; 285 struct bpf_dtab_netdev *dev, *next_dev; 286 struct hlist_head *head; 287 int i = 0; 288 289 if (!key) 290 goto find_first; 291 292 idx = *(u32 *)key; 293 294 dev = __dev_map_hash_lookup_elem(map, idx); 295 if (!dev) 296 goto find_first; 297 298 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 299 struct bpf_dtab_netdev, index_hlist); 300 301 if (next_dev) { 302 *next = next_dev->idx; 303 return 0; 304 } 305 306 i = idx & (dtab->n_buckets - 1); 307 i++; 308 309 find_first: 310 for (; i < dtab->n_buckets; i++) { 311 head = dev_map_index_hash(dtab, i); 312 313 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 314 struct bpf_dtab_netdev, 315 index_hlist); 316 if (next_dev) { 317 *next = next_dev->idx; 318 return 0; 319 } 320 } 321 322 return -ENOENT; 323 } 324 325 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 326 struct xdp_frame **frames, int n, 327 struct net_device *dev) 328 { 329 struct xdp_txq_info txq = { .dev = dev }; 330 struct xdp_buff xdp; 331 int i, nframes = 0; 332 333 for (i = 0; i < n; i++) { 334 struct xdp_frame *xdpf = frames[i]; 335 u32 act; 336 int err; 337 338 xdp_convert_frame_to_buff(xdpf, &xdp); 339 xdp.txq = &txq; 340 341 act = bpf_prog_run_xdp(xdp_prog, &xdp); 342 switch (act) { 343 case XDP_PASS: 344 err = xdp_update_frame_from_buff(&xdp, xdpf); 345 if (unlikely(err < 0)) 346 xdp_return_frame_rx_napi(xdpf); 347 else 348 frames[nframes++] = xdpf; 349 break; 350 default: 351 bpf_warn_invalid_xdp_action(act); 352 fallthrough; 353 case XDP_ABORTED: 354 trace_xdp_exception(dev, xdp_prog, act); 355 fallthrough; 356 case XDP_DROP: 357 xdp_return_frame_rx_napi(xdpf); 358 break; 359 } 360 } 361 return nframes; /* sent frames count */ 362 } 363 364 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 365 { 366 struct net_device *dev = bq->dev; 367 unsigned int cnt = bq->count; 368 int sent = 0, err = 0; 369 int to_send = cnt; 370 int i; 371 372 if (unlikely(!cnt)) 373 return; 374 375 for (i = 0; i < cnt; i++) { 376 struct xdp_frame *xdpf = bq->q[i]; 377 378 prefetch(xdpf); 379 } 380 381 if (bq->xdp_prog) { 382 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 383 if (!to_send) 384 goto out; 385 } 386 387 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 388 if (sent < 0) { 389 /* If ndo_xdp_xmit fails with an errno, no frames have 390 * been xmit'ed. 391 */ 392 err = sent; 393 sent = 0; 394 } 395 396 /* If not all frames have been transmitted, it is our 397 * responsibility to free them 398 */ 399 for (i = sent; unlikely(i < to_send); i++) 400 xdp_return_frame_rx_napi(bq->q[i]); 401 402 out: 403 bq->count = 0; 404 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 405 } 406 407 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 408 * driver before returning from its napi->poll() routine. See the comment above 409 * xdp_do_flush() in filter.c. 410 */ 411 void __dev_flush(void) 412 { 413 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 414 struct xdp_dev_bulk_queue *bq, *tmp; 415 416 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 417 bq_xmit_all(bq, XDP_XMIT_FLUSH); 418 bq->dev_rx = NULL; 419 bq->xdp_prog = NULL; 420 __list_del_clearprev(&bq->flush_node); 421 } 422 } 423 424 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 425 * by local_bh_disable() (from XDP calls inside NAPI). The 426 * rcu_read_lock_bh_held() below makes lockdep accept both. 427 */ 428 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 429 { 430 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 431 struct bpf_dtab_netdev *obj; 432 433 if (key >= map->max_entries) 434 return NULL; 435 436 obj = rcu_dereference_check(dtab->netdev_map[key], 437 rcu_read_lock_bh_held()); 438 return obj; 439 } 440 441 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 442 * variable access, and map elements stick around. See comment above 443 * xdp_do_flush() in filter.c. 444 */ 445 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 446 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 447 { 448 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 449 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 450 451 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 452 bq_xmit_all(bq, 0); 453 454 /* Ingress dev_rx will be the same for all xdp_frame's in 455 * bulk_queue, because bq stored per-CPU and must be flushed 456 * from net_device drivers NAPI func end. 457 * 458 * Do the same with xdp_prog and flush_list since these fields 459 * are only ever modified together. 460 */ 461 if (!bq->dev_rx) { 462 bq->dev_rx = dev_rx; 463 bq->xdp_prog = xdp_prog; 464 list_add(&bq->flush_node, flush_list); 465 } 466 467 bq->q[bq->count++] = xdpf; 468 } 469 470 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 471 struct net_device *dev_rx, 472 struct bpf_prog *xdp_prog) 473 { 474 struct xdp_frame *xdpf; 475 int err; 476 477 if (!dev->netdev_ops->ndo_xdp_xmit) 478 return -EOPNOTSUPP; 479 480 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 481 if (unlikely(err)) 482 return err; 483 484 xdpf = xdp_convert_buff_to_frame(xdp); 485 if (unlikely(!xdpf)) 486 return -EOVERFLOW; 487 488 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 489 return 0; 490 } 491 492 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 493 { 494 struct xdp_txq_info txq = { .dev = dst->dev }; 495 struct xdp_buff xdp; 496 u32 act; 497 498 if (!dst->xdp_prog) 499 return XDP_PASS; 500 501 __skb_pull(skb, skb->mac_len); 502 xdp.txq = &txq; 503 504 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 505 switch (act) { 506 case XDP_PASS: 507 __skb_push(skb, skb->mac_len); 508 break; 509 default: 510 bpf_warn_invalid_xdp_action(act); 511 fallthrough; 512 case XDP_ABORTED: 513 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 514 fallthrough; 515 case XDP_DROP: 516 kfree_skb(skb); 517 break; 518 } 519 520 return act; 521 } 522 523 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 524 struct net_device *dev_rx) 525 { 526 return __xdp_enqueue(dev, xdp, dev_rx, NULL); 527 } 528 529 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 530 struct net_device *dev_rx) 531 { 532 struct net_device *dev = dst->dev; 533 534 return __xdp_enqueue(dev, xdp, dev_rx, dst->xdp_prog); 535 } 536 537 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_buff *xdp) 538 { 539 if (!obj || 540 !obj->dev->netdev_ops->ndo_xdp_xmit) 541 return false; 542 543 if (xdp_ok_fwd_dev(obj->dev, xdp->data_end - xdp->data)) 544 return false; 545 546 return true; 547 } 548 549 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 550 struct net_device *dev_rx, 551 struct xdp_frame *xdpf) 552 { 553 struct xdp_frame *nxdpf; 554 555 nxdpf = xdpf_clone(xdpf); 556 if (!nxdpf) 557 return -ENOMEM; 558 559 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 560 561 return 0; 562 } 563 564 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 565 { 566 while (num_excluded--) { 567 if (ifindex == excluded[num_excluded]) 568 return true; 569 } 570 return false; 571 } 572 573 /* Get ifindex of each upper device. 'indexes' must be able to hold at 574 * least MAX_NEST_DEV elements. 575 * Returns the number of ifindexes added. 576 */ 577 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 578 { 579 struct net_device *upper; 580 struct list_head *iter; 581 int n = 0; 582 583 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 584 indexes[n++] = upper->ifindex; 585 } 586 return n; 587 } 588 589 int dev_map_enqueue_multi(struct xdp_buff *xdp, struct net_device *dev_rx, 590 struct bpf_map *map, bool exclude_ingress) 591 { 592 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 593 struct bpf_dtab_netdev *dst, *last_dst = NULL; 594 int excluded_devices[1+MAX_NEST_DEV]; 595 struct hlist_head *head; 596 struct xdp_frame *xdpf; 597 int num_excluded = 0; 598 unsigned int i; 599 int err; 600 601 if (exclude_ingress) { 602 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 603 excluded_devices[num_excluded++] = dev_rx->ifindex; 604 } 605 606 xdpf = xdp_convert_buff_to_frame(xdp); 607 if (unlikely(!xdpf)) 608 return -EOVERFLOW; 609 610 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 611 for (i = 0; i < map->max_entries; i++) { 612 dst = rcu_dereference_check(dtab->netdev_map[i], 613 rcu_read_lock_bh_held()); 614 if (!is_valid_dst(dst, xdp)) 615 continue; 616 617 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 618 continue; 619 620 /* we only need n-1 clones; last_dst enqueued below */ 621 if (!last_dst) { 622 last_dst = dst; 623 continue; 624 } 625 626 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 627 if (err) 628 return err; 629 630 last_dst = dst; 631 } 632 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 633 for (i = 0; i < dtab->n_buckets; i++) { 634 head = dev_map_index_hash(dtab, i); 635 hlist_for_each_entry_rcu(dst, head, index_hlist, 636 lockdep_is_held(&dtab->index_lock)) { 637 if (!is_valid_dst(dst, xdp)) 638 continue; 639 640 if (is_ifindex_excluded(excluded_devices, num_excluded, 641 dst->dev->ifindex)) 642 continue; 643 644 /* we only need n-1 clones; last_dst enqueued below */ 645 if (!last_dst) { 646 last_dst = dst; 647 continue; 648 } 649 650 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 651 if (err) 652 return err; 653 654 last_dst = dst; 655 } 656 } 657 } 658 659 /* consume the last copy of the frame */ 660 if (last_dst) 661 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 662 else 663 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 664 665 return 0; 666 } 667 668 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 669 struct bpf_prog *xdp_prog) 670 { 671 int err; 672 673 err = xdp_ok_fwd_dev(dst->dev, skb->len); 674 if (unlikely(err)) 675 return err; 676 677 /* Redirect has already succeeded semantically at this point, so we just 678 * return 0 even if packet is dropped. Helper below takes care of 679 * freeing skb. 680 */ 681 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 682 return 0; 683 684 skb->dev = dst->dev; 685 generic_xdp_tx(skb, xdp_prog); 686 687 return 0; 688 } 689 690 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 691 struct sk_buff *skb, 692 struct bpf_prog *xdp_prog) 693 { 694 struct sk_buff *nskb; 695 int err; 696 697 nskb = skb_clone(skb, GFP_ATOMIC); 698 if (!nskb) 699 return -ENOMEM; 700 701 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 702 if (unlikely(err)) { 703 consume_skb(nskb); 704 return err; 705 } 706 707 return 0; 708 } 709 710 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 711 struct bpf_prog *xdp_prog, struct bpf_map *map, 712 bool exclude_ingress) 713 { 714 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 715 struct bpf_dtab_netdev *dst, *last_dst = NULL; 716 int excluded_devices[1+MAX_NEST_DEV]; 717 struct hlist_head *head; 718 struct hlist_node *next; 719 int num_excluded = 0; 720 unsigned int i; 721 int err; 722 723 if (exclude_ingress) { 724 num_excluded = get_upper_ifindexes(dev, excluded_devices); 725 excluded_devices[num_excluded++] = dev->ifindex; 726 } 727 728 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 729 for (i = 0; i < map->max_entries; i++) { 730 dst = rcu_dereference_check(dtab->netdev_map[i], 731 rcu_read_lock_bh_held()); 732 if (!dst) 733 continue; 734 735 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 736 continue; 737 738 /* we only need n-1 clones; last_dst enqueued below */ 739 if (!last_dst) { 740 last_dst = dst; 741 continue; 742 } 743 744 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 745 if (err) 746 return err; 747 748 last_dst = dst; 749 750 } 751 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 752 for (i = 0; i < dtab->n_buckets; i++) { 753 head = dev_map_index_hash(dtab, i); 754 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 755 if (!dst) 756 continue; 757 758 if (is_ifindex_excluded(excluded_devices, num_excluded, 759 dst->dev->ifindex)) 760 continue; 761 762 /* we only need n-1 clones; last_dst enqueued below */ 763 if (!last_dst) { 764 last_dst = dst; 765 continue; 766 } 767 768 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 769 if (err) 770 return err; 771 772 last_dst = dst; 773 } 774 } 775 } 776 777 /* consume the first skb and return */ 778 if (last_dst) 779 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 780 781 /* dtab is empty */ 782 consume_skb(skb); 783 return 0; 784 } 785 786 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 787 { 788 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 789 790 return obj ? &obj->val : NULL; 791 } 792 793 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 794 { 795 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 796 *(u32 *)key); 797 return obj ? &obj->val : NULL; 798 } 799 800 static void __dev_map_entry_free(struct rcu_head *rcu) 801 { 802 struct bpf_dtab_netdev *dev; 803 804 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 805 if (dev->xdp_prog) 806 bpf_prog_put(dev->xdp_prog); 807 dev_put(dev->dev); 808 kfree(dev); 809 } 810 811 static int dev_map_delete_elem(struct bpf_map *map, void *key) 812 { 813 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 814 struct bpf_dtab_netdev *old_dev; 815 int k = *(u32 *)key; 816 817 if (k >= map->max_entries) 818 return -EINVAL; 819 820 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 821 if (old_dev) 822 call_rcu(&old_dev->rcu, __dev_map_entry_free); 823 return 0; 824 } 825 826 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key) 827 { 828 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 829 struct bpf_dtab_netdev *old_dev; 830 int k = *(u32 *)key; 831 unsigned long flags; 832 int ret = -ENOENT; 833 834 spin_lock_irqsave(&dtab->index_lock, flags); 835 836 old_dev = __dev_map_hash_lookup_elem(map, k); 837 if (old_dev) { 838 dtab->items--; 839 hlist_del_init_rcu(&old_dev->index_hlist); 840 call_rcu(&old_dev->rcu, __dev_map_entry_free); 841 ret = 0; 842 } 843 spin_unlock_irqrestore(&dtab->index_lock, flags); 844 845 return ret; 846 } 847 848 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 849 struct bpf_dtab *dtab, 850 struct bpf_devmap_val *val, 851 unsigned int idx) 852 { 853 struct bpf_prog *prog = NULL; 854 struct bpf_dtab_netdev *dev; 855 856 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 857 GFP_ATOMIC | __GFP_NOWARN, 858 dtab->map.numa_node); 859 if (!dev) 860 return ERR_PTR(-ENOMEM); 861 862 dev->dev = dev_get_by_index(net, val->ifindex); 863 if (!dev->dev) 864 goto err_out; 865 866 if (val->bpf_prog.fd > 0) { 867 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 868 BPF_PROG_TYPE_XDP, false); 869 if (IS_ERR(prog)) 870 goto err_put_dev; 871 if (prog->expected_attach_type != BPF_XDP_DEVMAP) 872 goto err_put_prog; 873 } 874 875 dev->idx = idx; 876 dev->dtab = dtab; 877 if (prog) { 878 dev->xdp_prog = prog; 879 dev->val.bpf_prog.id = prog->aux->id; 880 } else { 881 dev->xdp_prog = NULL; 882 dev->val.bpf_prog.id = 0; 883 } 884 dev->val.ifindex = val->ifindex; 885 886 return dev; 887 err_put_prog: 888 bpf_prog_put(prog); 889 err_put_dev: 890 dev_put(dev->dev); 891 err_out: 892 kfree(dev); 893 return ERR_PTR(-EINVAL); 894 } 895 896 static int __dev_map_update_elem(struct net *net, struct bpf_map *map, 897 void *key, void *value, u64 map_flags) 898 { 899 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 900 struct bpf_dtab_netdev *dev, *old_dev; 901 struct bpf_devmap_val val = {}; 902 u32 i = *(u32 *)key; 903 904 if (unlikely(map_flags > BPF_EXIST)) 905 return -EINVAL; 906 if (unlikely(i >= dtab->map.max_entries)) 907 return -E2BIG; 908 if (unlikely(map_flags == BPF_NOEXIST)) 909 return -EEXIST; 910 911 /* already verified value_size <= sizeof val */ 912 memcpy(&val, value, map->value_size); 913 914 if (!val.ifindex) { 915 dev = NULL; 916 /* can not specify fd if ifindex is 0 */ 917 if (val.bpf_prog.fd > 0) 918 return -EINVAL; 919 } else { 920 dev = __dev_map_alloc_node(net, dtab, &val, i); 921 if (IS_ERR(dev)) 922 return PTR_ERR(dev); 923 } 924 925 /* Use call_rcu() here to ensure rcu critical sections have completed 926 * Remembering the driver side flush operation will happen before the 927 * net device is removed. 928 */ 929 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 930 if (old_dev) 931 call_rcu(&old_dev->rcu, __dev_map_entry_free); 932 933 return 0; 934 } 935 936 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 937 u64 map_flags) 938 { 939 return __dev_map_update_elem(current->nsproxy->net_ns, 940 map, key, value, map_flags); 941 } 942 943 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 944 void *key, void *value, u64 map_flags) 945 { 946 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 947 struct bpf_dtab_netdev *dev, *old_dev; 948 struct bpf_devmap_val val = {}; 949 u32 idx = *(u32 *)key; 950 unsigned long flags; 951 int err = -EEXIST; 952 953 /* already verified value_size <= sizeof val */ 954 memcpy(&val, value, map->value_size); 955 956 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 957 return -EINVAL; 958 959 spin_lock_irqsave(&dtab->index_lock, flags); 960 961 old_dev = __dev_map_hash_lookup_elem(map, idx); 962 if (old_dev && (map_flags & BPF_NOEXIST)) 963 goto out_err; 964 965 dev = __dev_map_alloc_node(net, dtab, &val, idx); 966 if (IS_ERR(dev)) { 967 err = PTR_ERR(dev); 968 goto out_err; 969 } 970 971 if (old_dev) { 972 hlist_del_rcu(&old_dev->index_hlist); 973 } else { 974 if (dtab->items >= dtab->map.max_entries) { 975 spin_unlock_irqrestore(&dtab->index_lock, flags); 976 call_rcu(&dev->rcu, __dev_map_entry_free); 977 return -E2BIG; 978 } 979 dtab->items++; 980 } 981 982 hlist_add_head_rcu(&dev->index_hlist, 983 dev_map_index_hash(dtab, idx)); 984 spin_unlock_irqrestore(&dtab->index_lock, flags); 985 986 if (old_dev) 987 call_rcu(&old_dev->rcu, __dev_map_entry_free); 988 989 return 0; 990 991 out_err: 992 spin_unlock_irqrestore(&dtab->index_lock, flags); 993 return err; 994 } 995 996 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 997 u64 map_flags) 998 { 999 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1000 map, key, value, map_flags); 1001 } 1002 1003 static int dev_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags) 1004 { 1005 return __bpf_xdp_redirect_map(map, ifindex, flags, 1006 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1007 __dev_map_lookup_elem); 1008 } 1009 1010 static int dev_hash_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags) 1011 { 1012 return __bpf_xdp_redirect_map(map, ifindex, flags, 1013 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1014 __dev_map_hash_lookup_elem); 1015 } 1016 1017 static int dev_map_btf_id; 1018 const struct bpf_map_ops dev_map_ops = { 1019 .map_meta_equal = bpf_map_meta_equal, 1020 .map_alloc = dev_map_alloc, 1021 .map_free = dev_map_free, 1022 .map_get_next_key = dev_map_get_next_key, 1023 .map_lookup_elem = dev_map_lookup_elem, 1024 .map_update_elem = dev_map_update_elem, 1025 .map_delete_elem = dev_map_delete_elem, 1026 .map_check_btf = map_check_no_btf, 1027 .map_btf_name = "bpf_dtab", 1028 .map_btf_id = &dev_map_btf_id, 1029 .map_redirect = dev_map_redirect, 1030 }; 1031 1032 static int dev_map_hash_map_btf_id; 1033 const struct bpf_map_ops dev_map_hash_ops = { 1034 .map_meta_equal = bpf_map_meta_equal, 1035 .map_alloc = dev_map_alloc, 1036 .map_free = dev_map_free, 1037 .map_get_next_key = dev_map_hash_get_next_key, 1038 .map_lookup_elem = dev_map_hash_lookup_elem, 1039 .map_update_elem = dev_map_hash_update_elem, 1040 .map_delete_elem = dev_map_hash_delete_elem, 1041 .map_check_btf = map_check_no_btf, 1042 .map_btf_name = "bpf_dtab", 1043 .map_btf_id = &dev_map_hash_map_btf_id, 1044 .map_redirect = dev_hash_map_redirect, 1045 }; 1046 1047 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1048 struct net_device *netdev) 1049 { 1050 unsigned long flags; 1051 u32 i; 1052 1053 spin_lock_irqsave(&dtab->index_lock, flags); 1054 for (i = 0; i < dtab->n_buckets; i++) { 1055 struct bpf_dtab_netdev *dev; 1056 struct hlist_head *head; 1057 struct hlist_node *next; 1058 1059 head = dev_map_index_hash(dtab, i); 1060 1061 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1062 if (netdev != dev->dev) 1063 continue; 1064 1065 dtab->items--; 1066 hlist_del_rcu(&dev->index_hlist); 1067 call_rcu(&dev->rcu, __dev_map_entry_free); 1068 } 1069 } 1070 spin_unlock_irqrestore(&dtab->index_lock, flags); 1071 } 1072 1073 static int dev_map_notification(struct notifier_block *notifier, 1074 ulong event, void *ptr) 1075 { 1076 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1077 struct bpf_dtab *dtab; 1078 int i, cpu; 1079 1080 switch (event) { 1081 case NETDEV_REGISTER: 1082 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1083 break; 1084 1085 /* will be freed in free_netdev() */ 1086 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1087 if (!netdev->xdp_bulkq) 1088 return NOTIFY_BAD; 1089 1090 for_each_possible_cpu(cpu) 1091 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1092 break; 1093 case NETDEV_UNREGISTER: 1094 /* This rcu_read_lock/unlock pair is needed because 1095 * dev_map_list is an RCU list AND to ensure a delete 1096 * operation does not free a netdev_map entry while we 1097 * are comparing it against the netdev being unregistered. 1098 */ 1099 rcu_read_lock(); 1100 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1101 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1102 dev_map_hash_remove_netdev(dtab, netdev); 1103 continue; 1104 } 1105 1106 for (i = 0; i < dtab->map.max_entries; i++) { 1107 struct bpf_dtab_netdev *dev, *odev; 1108 1109 dev = rcu_dereference(dtab->netdev_map[i]); 1110 if (!dev || netdev != dev->dev) 1111 continue; 1112 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1113 if (dev == odev) 1114 call_rcu(&dev->rcu, 1115 __dev_map_entry_free); 1116 } 1117 } 1118 rcu_read_unlock(); 1119 break; 1120 default: 1121 break; 1122 } 1123 return NOTIFY_OK; 1124 } 1125 1126 static struct notifier_block dev_map_notifier = { 1127 .notifier_call = dev_map_notification, 1128 }; 1129 1130 static int __init dev_map_init(void) 1131 { 1132 int cpu; 1133 1134 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1135 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1136 offsetof(struct _bpf_dtab_netdev, dev)); 1137 register_netdevice_notifier(&dev_map_notifier); 1138 1139 for_each_possible_cpu(cpu) 1140 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 1141 return 0; 1142 } 1143 1144 subsys_initcall(dev_map_init); 1145