1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 52 #define DEV_CREATE_FLAG_MASK \ 53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 54 55 #define DEV_MAP_BULK_SIZE 16 56 struct bpf_dtab_netdev; 57 58 struct xdp_bulk_queue { 59 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 60 struct list_head flush_node; 61 struct net_device *dev_rx; 62 struct bpf_dtab_netdev *obj; 63 unsigned int count; 64 }; 65 66 struct bpf_dtab_netdev { 67 struct net_device *dev; /* must be first member, due to tracepoint */ 68 struct hlist_node index_hlist; 69 struct bpf_dtab *dtab; 70 struct xdp_bulk_queue __percpu *bulkq; 71 struct rcu_head rcu; 72 unsigned int idx; /* keep track of map index for tracepoint */ 73 }; 74 75 struct bpf_dtab { 76 struct bpf_map map; 77 struct bpf_dtab_netdev **netdev_map; 78 struct list_head __percpu *flush_list; 79 struct list_head list; 80 81 /* these are only used for DEVMAP_HASH type maps */ 82 struct hlist_head *dev_index_head; 83 spinlock_t index_lock; 84 unsigned int items; 85 u32 n_buckets; 86 }; 87 88 static DEFINE_SPINLOCK(dev_map_lock); 89 static LIST_HEAD(dev_map_list); 90 91 static struct hlist_head *dev_map_create_hash(unsigned int entries) 92 { 93 int i; 94 struct hlist_head *hash; 95 96 hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL); 97 if (hash != NULL) 98 for (i = 0; i < entries; i++) 99 INIT_HLIST_HEAD(&hash[i]); 100 101 return hash; 102 } 103 104 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 105 { 106 int err, cpu; 107 u64 cost; 108 109 /* check sanity of attributes */ 110 if (attr->max_entries == 0 || attr->key_size != 4 || 111 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) 112 return -EINVAL; 113 114 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 115 * verifier prevents writes from the BPF side 116 */ 117 attr->map_flags |= BPF_F_RDONLY_PROG; 118 119 120 bpf_map_init_from_attr(&dtab->map, attr); 121 122 /* make sure page count doesn't overflow */ 123 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 124 cost += sizeof(struct list_head) * num_possible_cpus(); 125 126 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 127 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 128 129 if (!dtab->n_buckets) /* Overflow check */ 130 return -EINVAL; 131 cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets; 132 } 133 134 /* if map size is larger than memlock limit, reject it */ 135 err = bpf_map_charge_init(&dtab->map.memory, cost); 136 if (err) 137 return -EINVAL; 138 139 dtab->flush_list = alloc_percpu(struct list_head); 140 if (!dtab->flush_list) 141 goto free_charge; 142 143 for_each_possible_cpu(cpu) 144 INIT_LIST_HEAD(per_cpu_ptr(dtab->flush_list, cpu)); 145 146 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 147 sizeof(struct bpf_dtab_netdev *), 148 dtab->map.numa_node); 149 if (!dtab->netdev_map) 150 goto free_percpu; 151 152 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 153 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets); 154 if (!dtab->dev_index_head) 155 goto free_map_area; 156 157 spin_lock_init(&dtab->index_lock); 158 } 159 160 return 0; 161 162 free_map_area: 163 bpf_map_area_free(dtab->netdev_map); 164 free_percpu: 165 free_percpu(dtab->flush_list); 166 free_charge: 167 bpf_map_charge_finish(&dtab->map.memory); 168 return -ENOMEM; 169 } 170 171 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 172 { 173 struct bpf_dtab *dtab; 174 int err; 175 176 if (!capable(CAP_NET_ADMIN)) 177 return ERR_PTR(-EPERM); 178 179 dtab = kzalloc(sizeof(*dtab), GFP_USER); 180 if (!dtab) 181 return ERR_PTR(-ENOMEM); 182 183 err = dev_map_init_map(dtab, attr); 184 if (err) { 185 kfree(dtab); 186 return ERR_PTR(err); 187 } 188 189 spin_lock(&dev_map_lock); 190 list_add_tail_rcu(&dtab->list, &dev_map_list); 191 spin_unlock(&dev_map_lock); 192 193 return &dtab->map; 194 } 195 196 static void dev_map_free(struct bpf_map *map) 197 { 198 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 199 int i, cpu; 200 201 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 202 * so the programs (can be more than one that used this map) were 203 * disconnected from events. Wait for outstanding critical sections in 204 * these programs to complete. The rcu critical section only guarantees 205 * no further reads against netdev_map. It does __not__ ensure pending 206 * flush operations (if any) are complete. 207 */ 208 209 spin_lock(&dev_map_lock); 210 list_del_rcu(&dtab->list); 211 spin_unlock(&dev_map_lock); 212 213 bpf_clear_redirect_map(map); 214 synchronize_rcu(); 215 216 /* Make sure prior __dev_map_entry_free() have completed. */ 217 rcu_barrier(); 218 219 /* To ensure all pending flush operations have completed wait for flush 220 * list to empty on _all_ cpus. 221 * Because the above synchronize_rcu() ensures the map is disconnected 222 * from the program we can assume no new items will be added. 223 */ 224 for_each_online_cpu(cpu) { 225 struct list_head *flush_list = per_cpu_ptr(dtab->flush_list, cpu); 226 227 while (!list_empty(flush_list)) 228 cond_resched(); 229 } 230 231 for (i = 0; i < dtab->map.max_entries; i++) { 232 struct bpf_dtab_netdev *dev; 233 234 dev = dtab->netdev_map[i]; 235 if (!dev) 236 continue; 237 238 free_percpu(dev->bulkq); 239 dev_put(dev->dev); 240 kfree(dev); 241 } 242 243 free_percpu(dtab->flush_list); 244 bpf_map_area_free(dtab->netdev_map); 245 kfree(dtab->dev_index_head); 246 kfree(dtab); 247 } 248 249 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 250 { 251 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 252 u32 index = key ? *(u32 *)key : U32_MAX; 253 u32 *next = next_key; 254 255 if (index >= dtab->map.max_entries) { 256 *next = 0; 257 return 0; 258 } 259 260 if (index == dtab->map.max_entries - 1) 261 return -ENOENT; 262 *next = index + 1; 263 return 0; 264 } 265 266 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 267 int idx) 268 { 269 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 270 } 271 272 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 273 { 274 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 275 struct hlist_head *head = dev_map_index_hash(dtab, key); 276 struct bpf_dtab_netdev *dev; 277 278 hlist_for_each_entry_rcu(dev, head, index_hlist) 279 if (dev->idx == key) 280 return dev; 281 282 return NULL; 283 } 284 285 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 286 void *next_key) 287 { 288 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 289 u32 idx, *next = next_key; 290 struct bpf_dtab_netdev *dev, *next_dev; 291 struct hlist_head *head; 292 int i = 0; 293 294 if (!key) 295 goto find_first; 296 297 idx = *(u32 *)key; 298 299 dev = __dev_map_hash_lookup_elem(map, idx); 300 if (!dev) 301 goto find_first; 302 303 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 304 struct bpf_dtab_netdev, index_hlist); 305 306 if (next_dev) { 307 *next = next_dev->idx; 308 return 0; 309 } 310 311 i = idx & (dtab->n_buckets - 1); 312 i++; 313 314 find_first: 315 for (; i < dtab->n_buckets; i++) { 316 head = dev_map_index_hash(dtab, i); 317 318 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 319 struct bpf_dtab_netdev, 320 index_hlist); 321 if (next_dev) { 322 *next = next_dev->idx; 323 return 0; 324 } 325 } 326 327 return -ENOENT; 328 } 329 330 static int bq_xmit_all(struct xdp_bulk_queue *bq, u32 flags, 331 bool in_napi_ctx) 332 { 333 struct bpf_dtab_netdev *obj = bq->obj; 334 struct net_device *dev = obj->dev; 335 int sent = 0, drops = 0, err = 0; 336 int i; 337 338 if (unlikely(!bq->count)) 339 return 0; 340 341 for (i = 0; i < bq->count; i++) { 342 struct xdp_frame *xdpf = bq->q[i]; 343 344 prefetch(xdpf); 345 } 346 347 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); 348 if (sent < 0) { 349 err = sent; 350 sent = 0; 351 goto error; 352 } 353 drops = bq->count - sent; 354 out: 355 bq->count = 0; 356 357 trace_xdp_devmap_xmit(&obj->dtab->map, obj->idx, 358 sent, drops, bq->dev_rx, dev, err); 359 bq->dev_rx = NULL; 360 __list_del_clearprev(&bq->flush_node); 361 return 0; 362 error: 363 /* If ndo_xdp_xmit fails with an errno, no frames have been 364 * xmit'ed and it's our responsibility to them free all. 365 */ 366 for (i = 0; i < bq->count; i++) { 367 struct xdp_frame *xdpf = bq->q[i]; 368 369 /* RX path under NAPI protection, can return frames faster */ 370 if (likely(in_napi_ctx)) 371 xdp_return_frame_rx_napi(xdpf); 372 else 373 xdp_return_frame(xdpf); 374 drops++; 375 } 376 goto out; 377 } 378 379 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 380 * from the driver before returning from its napi->poll() routine. The poll() 381 * routine is called either from busy_poll context or net_rx_action signaled 382 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 383 * net device can be torn down. On devmap tear down we ensure the flush list 384 * is empty before completing to ensure all flush operations have completed. 385 */ 386 void __dev_map_flush(struct bpf_map *map) 387 { 388 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 389 struct list_head *flush_list = this_cpu_ptr(dtab->flush_list); 390 struct xdp_bulk_queue *bq, *tmp; 391 392 rcu_read_lock(); 393 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) 394 bq_xmit_all(bq, XDP_XMIT_FLUSH, true); 395 rcu_read_unlock(); 396 } 397 398 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 399 * update happens in parallel here a dev_put wont happen until after reading the 400 * ifindex. 401 */ 402 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 403 { 404 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 405 struct bpf_dtab_netdev *obj; 406 407 if (key >= map->max_entries) 408 return NULL; 409 410 obj = READ_ONCE(dtab->netdev_map[key]); 411 return obj; 412 } 413 414 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 415 * Thus, safe percpu variable access. 416 */ 417 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf, 418 struct net_device *dev_rx) 419 420 { 421 struct list_head *flush_list = this_cpu_ptr(obj->dtab->flush_list); 422 struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq); 423 424 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 425 bq_xmit_all(bq, 0, true); 426 427 /* Ingress dev_rx will be the same for all xdp_frame's in 428 * bulk_queue, because bq stored per-CPU and must be flushed 429 * from net_device drivers NAPI func end. 430 */ 431 if (!bq->dev_rx) 432 bq->dev_rx = dev_rx; 433 434 bq->q[bq->count++] = xdpf; 435 436 if (!bq->flush_node.prev) 437 list_add(&bq->flush_node, flush_list); 438 439 return 0; 440 } 441 442 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 443 struct net_device *dev_rx) 444 { 445 struct net_device *dev = dst->dev; 446 struct xdp_frame *xdpf; 447 int err; 448 449 if (!dev->netdev_ops->ndo_xdp_xmit) 450 return -EOPNOTSUPP; 451 452 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 453 if (unlikely(err)) 454 return err; 455 456 xdpf = convert_to_xdp_frame(xdp); 457 if (unlikely(!xdpf)) 458 return -EOVERFLOW; 459 460 return bq_enqueue(dst, xdpf, dev_rx); 461 } 462 463 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 464 struct bpf_prog *xdp_prog) 465 { 466 int err; 467 468 err = xdp_ok_fwd_dev(dst->dev, skb->len); 469 if (unlikely(err)) 470 return err; 471 skb->dev = dst->dev; 472 generic_xdp_tx(skb, xdp_prog); 473 474 return 0; 475 } 476 477 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 478 { 479 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 480 struct net_device *dev = obj ? obj->dev : NULL; 481 482 return dev ? &dev->ifindex : NULL; 483 } 484 485 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 486 { 487 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 488 *(u32 *)key); 489 struct net_device *dev = obj ? obj->dev : NULL; 490 491 return dev ? &dev->ifindex : NULL; 492 } 493 494 static void dev_map_flush_old(struct bpf_dtab_netdev *dev) 495 { 496 if (dev->dev->netdev_ops->ndo_xdp_xmit) { 497 struct xdp_bulk_queue *bq; 498 int cpu; 499 500 rcu_read_lock(); 501 for_each_online_cpu(cpu) { 502 bq = per_cpu_ptr(dev->bulkq, cpu); 503 bq_xmit_all(bq, XDP_XMIT_FLUSH, false); 504 } 505 rcu_read_unlock(); 506 } 507 } 508 509 static void __dev_map_entry_free(struct rcu_head *rcu) 510 { 511 struct bpf_dtab_netdev *dev; 512 513 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 514 dev_map_flush_old(dev); 515 free_percpu(dev->bulkq); 516 dev_put(dev->dev); 517 kfree(dev); 518 } 519 520 static int dev_map_delete_elem(struct bpf_map *map, void *key) 521 { 522 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 523 struct bpf_dtab_netdev *old_dev; 524 int k = *(u32 *)key; 525 526 if (k >= map->max_entries) 527 return -EINVAL; 528 529 /* Use call_rcu() here to ensure any rcu critical sections have 530 * completed, but this does not guarantee a flush has happened 531 * yet. Because driver side rcu_read_lock/unlock only protects the 532 * running XDP program. However, for pending flush operations the 533 * dev and ctx are stored in another per cpu map. And additionally, 534 * the driver tear down ensures all soft irqs are complete before 535 * removing the net device in the case of dev_put equals zero. 536 */ 537 old_dev = xchg(&dtab->netdev_map[k], NULL); 538 if (old_dev) 539 call_rcu(&old_dev->rcu, __dev_map_entry_free); 540 return 0; 541 } 542 543 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key) 544 { 545 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 546 struct bpf_dtab_netdev *old_dev; 547 int k = *(u32 *)key; 548 unsigned long flags; 549 int ret = -ENOENT; 550 551 spin_lock_irqsave(&dtab->index_lock, flags); 552 553 old_dev = __dev_map_hash_lookup_elem(map, k); 554 if (old_dev) { 555 dtab->items--; 556 hlist_del_init_rcu(&old_dev->index_hlist); 557 call_rcu(&old_dev->rcu, __dev_map_entry_free); 558 ret = 0; 559 } 560 spin_unlock_irqrestore(&dtab->index_lock, flags); 561 562 return ret; 563 } 564 565 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 566 struct bpf_dtab *dtab, 567 u32 ifindex, 568 unsigned int idx) 569 { 570 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; 571 struct bpf_dtab_netdev *dev; 572 struct xdp_bulk_queue *bq; 573 int cpu; 574 575 dev = kmalloc_node(sizeof(*dev), gfp, dtab->map.numa_node); 576 if (!dev) 577 return ERR_PTR(-ENOMEM); 578 579 dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq), 580 sizeof(void *), gfp); 581 if (!dev->bulkq) { 582 kfree(dev); 583 return ERR_PTR(-ENOMEM); 584 } 585 586 for_each_possible_cpu(cpu) { 587 bq = per_cpu_ptr(dev->bulkq, cpu); 588 bq->obj = dev; 589 } 590 591 dev->dev = dev_get_by_index(net, ifindex); 592 if (!dev->dev) { 593 free_percpu(dev->bulkq); 594 kfree(dev); 595 return ERR_PTR(-EINVAL); 596 } 597 598 dev->idx = idx; 599 dev->dtab = dtab; 600 601 return dev; 602 } 603 604 static int __dev_map_update_elem(struct net *net, struct bpf_map *map, 605 void *key, void *value, u64 map_flags) 606 { 607 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 608 struct bpf_dtab_netdev *dev, *old_dev; 609 u32 ifindex = *(u32 *)value; 610 u32 i = *(u32 *)key; 611 612 if (unlikely(map_flags > BPF_EXIST)) 613 return -EINVAL; 614 if (unlikely(i >= dtab->map.max_entries)) 615 return -E2BIG; 616 if (unlikely(map_flags == BPF_NOEXIST)) 617 return -EEXIST; 618 619 if (!ifindex) { 620 dev = NULL; 621 } else { 622 dev = __dev_map_alloc_node(net, dtab, ifindex, i); 623 if (IS_ERR(dev)) 624 return PTR_ERR(dev); 625 } 626 627 /* Use call_rcu() here to ensure rcu critical sections have completed 628 * Remembering the driver side flush operation will happen before the 629 * net device is removed. 630 */ 631 old_dev = xchg(&dtab->netdev_map[i], dev); 632 if (old_dev) 633 call_rcu(&old_dev->rcu, __dev_map_entry_free); 634 635 return 0; 636 } 637 638 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 639 u64 map_flags) 640 { 641 return __dev_map_update_elem(current->nsproxy->net_ns, 642 map, key, value, map_flags); 643 } 644 645 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 646 void *key, void *value, u64 map_flags) 647 { 648 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 649 struct bpf_dtab_netdev *dev, *old_dev; 650 u32 ifindex = *(u32 *)value; 651 u32 idx = *(u32 *)key; 652 unsigned long flags; 653 int err = -EEXIST; 654 655 if (unlikely(map_flags > BPF_EXIST || !ifindex)) 656 return -EINVAL; 657 658 spin_lock_irqsave(&dtab->index_lock, flags); 659 660 old_dev = __dev_map_hash_lookup_elem(map, idx); 661 if (old_dev && (map_flags & BPF_NOEXIST)) 662 goto out_err; 663 664 dev = __dev_map_alloc_node(net, dtab, ifindex, idx); 665 if (IS_ERR(dev)) { 666 err = PTR_ERR(dev); 667 goto out_err; 668 } 669 670 if (old_dev) { 671 hlist_del_rcu(&old_dev->index_hlist); 672 } else { 673 if (dtab->items >= dtab->map.max_entries) { 674 spin_unlock_irqrestore(&dtab->index_lock, flags); 675 call_rcu(&dev->rcu, __dev_map_entry_free); 676 return -E2BIG; 677 } 678 dtab->items++; 679 } 680 681 hlist_add_head_rcu(&dev->index_hlist, 682 dev_map_index_hash(dtab, idx)); 683 spin_unlock_irqrestore(&dtab->index_lock, flags); 684 685 if (old_dev) 686 call_rcu(&old_dev->rcu, __dev_map_entry_free); 687 688 return 0; 689 690 out_err: 691 spin_unlock_irqrestore(&dtab->index_lock, flags); 692 return err; 693 } 694 695 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 696 u64 map_flags) 697 { 698 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 699 map, key, value, map_flags); 700 } 701 702 const struct bpf_map_ops dev_map_ops = { 703 .map_alloc = dev_map_alloc, 704 .map_free = dev_map_free, 705 .map_get_next_key = dev_map_get_next_key, 706 .map_lookup_elem = dev_map_lookup_elem, 707 .map_update_elem = dev_map_update_elem, 708 .map_delete_elem = dev_map_delete_elem, 709 .map_check_btf = map_check_no_btf, 710 }; 711 712 const struct bpf_map_ops dev_map_hash_ops = { 713 .map_alloc = dev_map_alloc, 714 .map_free = dev_map_free, 715 .map_get_next_key = dev_map_hash_get_next_key, 716 .map_lookup_elem = dev_map_hash_lookup_elem, 717 .map_update_elem = dev_map_hash_update_elem, 718 .map_delete_elem = dev_map_hash_delete_elem, 719 .map_check_btf = map_check_no_btf, 720 }; 721 722 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 723 struct net_device *netdev) 724 { 725 unsigned long flags; 726 u32 i; 727 728 spin_lock_irqsave(&dtab->index_lock, flags); 729 for (i = 0; i < dtab->n_buckets; i++) { 730 struct bpf_dtab_netdev *dev; 731 struct hlist_head *head; 732 struct hlist_node *next; 733 734 head = dev_map_index_hash(dtab, i); 735 736 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 737 if (netdev != dev->dev) 738 continue; 739 740 dtab->items--; 741 hlist_del_rcu(&dev->index_hlist); 742 call_rcu(&dev->rcu, __dev_map_entry_free); 743 } 744 } 745 spin_unlock_irqrestore(&dtab->index_lock, flags); 746 } 747 748 static int dev_map_notification(struct notifier_block *notifier, 749 ulong event, void *ptr) 750 { 751 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 752 struct bpf_dtab *dtab; 753 int i; 754 755 switch (event) { 756 case NETDEV_UNREGISTER: 757 /* This rcu_read_lock/unlock pair is needed because 758 * dev_map_list is an RCU list AND to ensure a delete 759 * operation does not free a netdev_map entry while we 760 * are comparing it against the netdev being unregistered. 761 */ 762 rcu_read_lock(); 763 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 764 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 765 dev_map_hash_remove_netdev(dtab, netdev); 766 continue; 767 } 768 769 for (i = 0; i < dtab->map.max_entries; i++) { 770 struct bpf_dtab_netdev *dev, *odev; 771 772 dev = READ_ONCE(dtab->netdev_map[i]); 773 if (!dev || netdev != dev->dev) 774 continue; 775 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 776 if (dev == odev) 777 call_rcu(&dev->rcu, 778 __dev_map_entry_free); 779 } 780 } 781 rcu_read_unlock(); 782 break; 783 default: 784 break; 785 } 786 return NOTIFY_OK; 787 } 788 789 static struct notifier_block dev_map_notifier = { 790 .notifier_call = dev_map_notification, 791 }; 792 793 static int __init dev_map_init(void) 794 { 795 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 796 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 797 offsetof(struct _bpf_dtab_netdev, dev)); 798 register_netdevice_notifier(&dev_map_notifier); 799 return 0; 800 } 801 802 subsys_initcall(dev_map_init); 803