xref: /openbmc/linux/kernel/bpf/devmap.c (revision be122522)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 #define DEV_MAP_BULK_SIZE 16
56 struct bpf_dtab_netdev;
57 
58 struct xdp_bulk_queue {
59 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
60 	struct list_head flush_node;
61 	struct net_device *dev_rx;
62 	struct bpf_dtab_netdev *obj;
63 	unsigned int count;
64 };
65 
66 struct bpf_dtab_netdev {
67 	struct net_device *dev; /* must be first member, due to tracepoint */
68 	struct hlist_node index_hlist;
69 	struct bpf_dtab *dtab;
70 	struct xdp_bulk_queue __percpu *bulkq;
71 	struct rcu_head rcu;
72 	unsigned int idx; /* keep track of map index for tracepoint */
73 };
74 
75 struct bpf_dtab {
76 	struct bpf_map map;
77 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
78 	struct list_head __percpu *flush_list;
79 	struct list_head list;
80 
81 	/* these are only used for DEVMAP_HASH type maps */
82 	struct hlist_head *dev_index_head;
83 	spinlock_t index_lock;
84 	unsigned int items;
85 	u32 n_buckets;
86 };
87 
88 static DEFINE_SPINLOCK(dev_map_lock);
89 static LIST_HEAD(dev_map_list);
90 
91 static struct hlist_head *dev_map_create_hash(unsigned int entries)
92 {
93 	int i;
94 	struct hlist_head *hash;
95 
96 	hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL);
97 	if (hash != NULL)
98 		for (i = 0; i < entries; i++)
99 			INIT_HLIST_HEAD(&hash[i]);
100 
101 	return hash;
102 }
103 
104 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
105 						    int idx)
106 {
107 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
108 }
109 
110 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
111 {
112 	int err, cpu;
113 	u64 cost;
114 
115 	/* check sanity of attributes */
116 	if (attr->max_entries == 0 || attr->key_size != 4 ||
117 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
118 		return -EINVAL;
119 
120 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
121 	 * verifier prevents writes from the BPF side
122 	 */
123 	attr->map_flags |= BPF_F_RDONLY_PROG;
124 
125 
126 	bpf_map_init_from_attr(&dtab->map, attr);
127 
128 	/* make sure page count doesn't overflow */
129 	cost = (u64) sizeof(struct list_head) * num_possible_cpus();
130 
131 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
132 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
133 
134 		if (!dtab->n_buckets) /* Overflow check */
135 			return -EINVAL;
136 		cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
137 	} else {
138 		cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
139 	}
140 
141 	/* if map size is larger than memlock limit, reject it */
142 	err = bpf_map_charge_init(&dtab->map.memory, cost);
143 	if (err)
144 		return -EINVAL;
145 
146 	dtab->flush_list = alloc_percpu(struct list_head);
147 	if (!dtab->flush_list)
148 		goto free_charge;
149 
150 	for_each_possible_cpu(cpu)
151 		INIT_LIST_HEAD(per_cpu_ptr(dtab->flush_list, cpu));
152 
153 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
154 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets);
155 		if (!dtab->dev_index_head)
156 			goto free_percpu;
157 
158 		spin_lock_init(&dtab->index_lock);
159 	} else {
160 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
161 						      sizeof(struct bpf_dtab_netdev *),
162 						      dtab->map.numa_node);
163 		if (!dtab->netdev_map)
164 			goto free_percpu;
165 	}
166 
167 	return 0;
168 
169 free_percpu:
170 	free_percpu(dtab->flush_list);
171 free_charge:
172 	bpf_map_charge_finish(&dtab->map.memory);
173 	return -ENOMEM;
174 }
175 
176 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
177 {
178 	struct bpf_dtab *dtab;
179 	int err;
180 
181 	if (!capable(CAP_NET_ADMIN))
182 		return ERR_PTR(-EPERM);
183 
184 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
185 	if (!dtab)
186 		return ERR_PTR(-ENOMEM);
187 
188 	err = dev_map_init_map(dtab, attr);
189 	if (err) {
190 		kfree(dtab);
191 		return ERR_PTR(err);
192 	}
193 
194 	spin_lock(&dev_map_lock);
195 	list_add_tail_rcu(&dtab->list, &dev_map_list);
196 	spin_unlock(&dev_map_lock);
197 
198 	return &dtab->map;
199 }
200 
201 static void dev_map_free(struct bpf_map *map)
202 {
203 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
204 	int i, cpu;
205 
206 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
207 	 * so the programs (can be more than one that used this map) were
208 	 * disconnected from events. Wait for outstanding critical sections in
209 	 * these programs to complete. The rcu critical section only guarantees
210 	 * no further reads against netdev_map. It does __not__ ensure pending
211 	 * flush operations (if any) are complete.
212 	 */
213 
214 	spin_lock(&dev_map_lock);
215 	list_del_rcu(&dtab->list);
216 	spin_unlock(&dev_map_lock);
217 
218 	bpf_clear_redirect_map(map);
219 	synchronize_rcu();
220 
221 	/* Make sure prior __dev_map_entry_free() have completed. */
222 	rcu_barrier();
223 
224 	/* To ensure all pending flush operations have completed wait for flush
225 	 * list to empty on _all_ cpus.
226 	 * Because the above synchronize_rcu() ensures the map is disconnected
227 	 * from the program we can assume no new items will be added.
228 	 */
229 	for_each_online_cpu(cpu) {
230 		struct list_head *flush_list = per_cpu_ptr(dtab->flush_list, cpu);
231 
232 		while (!list_empty(flush_list))
233 			cond_resched();
234 	}
235 
236 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
237 		for (i = 0; i < dtab->n_buckets; i++) {
238 			struct bpf_dtab_netdev *dev;
239 			struct hlist_head *head;
240 			struct hlist_node *next;
241 
242 			head = dev_map_index_hash(dtab, i);
243 
244 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
245 				hlist_del_rcu(&dev->index_hlist);
246 				free_percpu(dev->bulkq);
247 				dev_put(dev->dev);
248 				kfree(dev);
249 			}
250 		}
251 
252 		kfree(dtab->dev_index_head);
253 	} else {
254 		for (i = 0; i < dtab->map.max_entries; i++) {
255 			struct bpf_dtab_netdev *dev;
256 
257 			dev = dtab->netdev_map[i];
258 			if (!dev)
259 				continue;
260 
261 			free_percpu(dev->bulkq);
262 			dev_put(dev->dev);
263 			kfree(dev);
264 		}
265 
266 		bpf_map_area_free(dtab->netdev_map);
267 	}
268 
269 	free_percpu(dtab->flush_list);
270 	kfree(dtab);
271 }
272 
273 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
274 {
275 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
276 	u32 index = key ? *(u32 *)key : U32_MAX;
277 	u32 *next = next_key;
278 
279 	if (index >= dtab->map.max_entries) {
280 		*next = 0;
281 		return 0;
282 	}
283 
284 	if (index == dtab->map.max_entries - 1)
285 		return -ENOENT;
286 	*next = index + 1;
287 	return 0;
288 }
289 
290 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
291 {
292 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
293 	struct hlist_head *head = dev_map_index_hash(dtab, key);
294 	struct bpf_dtab_netdev *dev;
295 
296 	hlist_for_each_entry_rcu(dev, head, index_hlist)
297 		if (dev->idx == key)
298 			return dev;
299 
300 	return NULL;
301 }
302 
303 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
304 				    void *next_key)
305 {
306 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
307 	u32 idx, *next = next_key;
308 	struct bpf_dtab_netdev *dev, *next_dev;
309 	struct hlist_head *head;
310 	int i = 0;
311 
312 	if (!key)
313 		goto find_first;
314 
315 	idx = *(u32 *)key;
316 
317 	dev = __dev_map_hash_lookup_elem(map, idx);
318 	if (!dev)
319 		goto find_first;
320 
321 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
322 				    struct bpf_dtab_netdev, index_hlist);
323 
324 	if (next_dev) {
325 		*next = next_dev->idx;
326 		return 0;
327 	}
328 
329 	i = idx & (dtab->n_buckets - 1);
330 	i++;
331 
332  find_first:
333 	for (; i < dtab->n_buckets; i++) {
334 		head = dev_map_index_hash(dtab, i);
335 
336 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
337 					    struct bpf_dtab_netdev,
338 					    index_hlist);
339 		if (next_dev) {
340 			*next = next_dev->idx;
341 			return 0;
342 		}
343 	}
344 
345 	return -ENOENT;
346 }
347 
348 static int bq_xmit_all(struct xdp_bulk_queue *bq, u32 flags,
349 		       bool in_napi_ctx)
350 {
351 	struct bpf_dtab_netdev *obj = bq->obj;
352 	struct net_device *dev = obj->dev;
353 	int sent = 0, drops = 0, err = 0;
354 	int i;
355 
356 	if (unlikely(!bq->count))
357 		return 0;
358 
359 	for (i = 0; i < bq->count; i++) {
360 		struct xdp_frame *xdpf = bq->q[i];
361 
362 		prefetch(xdpf);
363 	}
364 
365 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
366 	if (sent < 0) {
367 		err = sent;
368 		sent = 0;
369 		goto error;
370 	}
371 	drops = bq->count - sent;
372 out:
373 	bq->count = 0;
374 
375 	trace_xdp_devmap_xmit(&obj->dtab->map, obj->idx,
376 			      sent, drops, bq->dev_rx, dev, err);
377 	bq->dev_rx = NULL;
378 	__list_del_clearprev(&bq->flush_node);
379 	return 0;
380 error:
381 	/* If ndo_xdp_xmit fails with an errno, no frames have been
382 	 * xmit'ed and it's our responsibility to them free all.
383 	 */
384 	for (i = 0; i < bq->count; i++) {
385 		struct xdp_frame *xdpf = bq->q[i];
386 
387 		/* RX path under NAPI protection, can return frames faster */
388 		if (likely(in_napi_ctx))
389 			xdp_return_frame_rx_napi(xdpf);
390 		else
391 			xdp_return_frame(xdpf);
392 		drops++;
393 	}
394 	goto out;
395 }
396 
397 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
398  * from the driver before returning from its napi->poll() routine. The poll()
399  * routine is called either from busy_poll context or net_rx_action signaled
400  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
401  * net device can be torn down. On devmap tear down we ensure the flush list
402  * is empty before completing to ensure all flush operations have completed.
403  */
404 void __dev_map_flush(struct bpf_map *map)
405 {
406 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
407 	struct list_head *flush_list = this_cpu_ptr(dtab->flush_list);
408 	struct xdp_bulk_queue *bq, *tmp;
409 
410 	rcu_read_lock();
411 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
412 		bq_xmit_all(bq, XDP_XMIT_FLUSH, true);
413 	rcu_read_unlock();
414 }
415 
416 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
417  * update happens in parallel here a dev_put wont happen until after reading the
418  * ifindex.
419  */
420 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
421 {
422 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
423 	struct bpf_dtab_netdev *obj;
424 
425 	if (key >= map->max_entries)
426 		return NULL;
427 
428 	obj = READ_ONCE(dtab->netdev_map[key]);
429 	return obj;
430 }
431 
432 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
433  * Thus, safe percpu variable access.
434  */
435 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
436 		      struct net_device *dev_rx)
437 
438 {
439 	struct list_head *flush_list = this_cpu_ptr(obj->dtab->flush_list);
440 	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
441 
442 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
443 		bq_xmit_all(bq, 0, true);
444 
445 	/* Ingress dev_rx will be the same for all xdp_frame's in
446 	 * bulk_queue, because bq stored per-CPU and must be flushed
447 	 * from net_device drivers NAPI func end.
448 	 */
449 	if (!bq->dev_rx)
450 		bq->dev_rx = dev_rx;
451 
452 	bq->q[bq->count++] = xdpf;
453 
454 	if (!bq->flush_node.prev)
455 		list_add(&bq->flush_node, flush_list);
456 
457 	return 0;
458 }
459 
460 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
461 		    struct net_device *dev_rx)
462 {
463 	struct net_device *dev = dst->dev;
464 	struct xdp_frame *xdpf;
465 	int err;
466 
467 	if (!dev->netdev_ops->ndo_xdp_xmit)
468 		return -EOPNOTSUPP;
469 
470 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
471 	if (unlikely(err))
472 		return err;
473 
474 	xdpf = convert_to_xdp_frame(xdp);
475 	if (unlikely(!xdpf))
476 		return -EOVERFLOW;
477 
478 	return bq_enqueue(dst, xdpf, dev_rx);
479 }
480 
481 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
482 			     struct bpf_prog *xdp_prog)
483 {
484 	int err;
485 
486 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
487 	if (unlikely(err))
488 		return err;
489 	skb->dev = dst->dev;
490 	generic_xdp_tx(skb, xdp_prog);
491 
492 	return 0;
493 }
494 
495 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
496 {
497 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
498 	struct net_device *dev = obj ? obj->dev : NULL;
499 
500 	return dev ? &dev->ifindex : NULL;
501 }
502 
503 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
504 {
505 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
506 								*(u32 *)key);
507 	struct net_device *dev = obj ? obj->dev : NULL;
508 
509 	return dev ? &dev->ifindex : NULL;
510 }
511 
512 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
513 {
514 	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
515 		struct xdp_bulk_queue *bq;
516 		int cpu;
517 
518 		rcu_read_lock();
519 		for_each_online_cpu(cpu) {
520 			bq = per_cpu_ptr(dev->bulkq, cpu);
521 			bq_xmit_all(bq, XDP_XMIT_FLUSH, false);
522 		}
523 		rcu_read_unlock();
524 	}
525 }
526 
527 static void __dev_map_entry_free(struct rcu_head *rcu)
528 {
529 	struct bpf_dtab_netdev *dev;
530 
531 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
532 	dev_map_flush_old(dev);
533 	free_percpu(dev->bulkq);
534 	dev_put(dev->dev);
535 	kfree(dev);
536 }
537 
538 static int dev_map_delete_elem(struct bpf_map *map, void *key)
539 {
540 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
541 	struct bpf_dtab_netdev *old_dev;
542 	int k = *(u32 *)key;
543 
544 	if (k >= map->max_entries)
545 		return -EINVAL;
546 
547 	/* Use call_rcu() here to ensure any rcu critical sections have
548 	 * completed, but this does not guarantee a flush has happened
549 	 * yet. Because driver side rcu_read_lock/unlock only protects the
550 	 * running XDP program. However, for pending flush operations the
551 	 * dev and ctx are stored in another per cpu map. And additionally,
552 	 * the driver tear down ensures all soft irqs are complete before
553 	 * removing the net device in the case of dev_put equals zero.
554 	 */
555 	old_dev = xchg(&dtab->netdev_map[k], NULL);
556 	if (old_dev)
557 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
558 	return 0;
559 }
560 
561 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
562 {
563 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
564 	struct bpf_dtab_netdev *old_dev;
565 	int k = *(u32 *)key;
566 	unsigned long flags;
567 	int ret = -ENOENT;
568 
569 	spin_lock_irqsave(&dtab->index_lock, flags);
570 
571 	old_dev = __dev_map_hash_lookup_elem(map, k);
572 	if (old_dev) {
573 		dtab->items--;
574 		hlist_del_init_rcu(&old_dev->index_hlist);
575 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
576 		ret = 0;
577 	}
578 	spin_unlock_irqrestore(&dtab->index_lock, flags);
579 
580 	return ret;
581 }
582 
583 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
584 						    struct bpf_dtab *dtab,
585 						    u32 ifindex,
586 						    unsigned int idx)
587 {
588 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
589 	struct bpf_dtab_netdev *dev;
590 	struct xdp_bulk_queue *bq;
591 	int cpu;
592 
593 	dev = kmalloc_node(sizeof(*dev), gfp, dtab->map.numa_node);
594 	if (!dev)
595 		return ERR_PTR(-ENOMEM);
596 
597 	dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
598 					sizeof(void *), gfp);
599 	if (!dev->bulkq) {
600 		kfree(dev);
601 		return ERR_PTR(-ENOMEM);
602 	}
603 
604 	for_each_possible_cpu(cpu) {
605 		bq = per_cpu_ptr(dev->bulkq, cpu);
606 		bq->obj = dev;
607 	}
608 
609 	dev->dev = dev_get_by_index(net, ifindex);
610 	if (!dev->dev) {
611 		free_percpu(dev->bulkq);
612 		kfree(dev);
613 		return ERR_PTR(-EINVAL);
614 	}
615 
616 	dev->idx = idx;
617 	dev->dtab = dtab;
618 
619 	return dev;
620 }
621 
622 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
623 				 void *key, void *value, u64 map_flags)
624 {
625 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
626 	struct bpf_dtab_netdev *dev, *old_dev;
627 	u32 ifindex = *(u32 *)value;
628 	u32 i = *(u32 *)key;
629 
630 	if (unlikely(map_flags > BPF_EXIST))
631 		return -EINVAL;
632 	if (unlikely(i >= dtab->map.max_entries))
633 		return -E2BIG;
634 	if (unlikely(map_flags == BPF_NOEXIST))
635 		return -EEXIST;
636 
637 	if (!ifindex) {
638 		dev = NULL;
639 	} else {
640 		dev = __dev_map_alloc_node(net, dtab, ifindex, i);
641 		if (IS_ERR(dev))
642 			return PTR_ERR(dev);
643 	}
644 
645 	/* Use call_rcu() here to ensure rcu critical sections have completed
646 	 * Remembering the driver side flush operation will happen before the
647 	 * net device is removed.
648 	 */
649 	old_dev = xchg(&dtab->netdev_map[i], dev);
650 	if (old_dev)
651 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
652 
653 	return 0;
654 }
655 
656 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
657 			       u64 map_flags)
658 {
659 	return __dev_map_update_elem(current->nsproxy->net_ns,
660 				     map, key, value, map_flags);
661 }
662 
663 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
664 				     void *key, void *value, u64 map_flags)
665 {
666 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
667 	struct bpf_dtab_netdev *dev, *old_dev;
668 	u32 ifindex = *(u32 *)value;
669 	u32 idx = *(u32 *)key;
670 	unsigned long flags;
671 	int err = -EEXIST;
672 
673 	if (unlikely(map_flags > BPF_EXIST || !ifindex))
674 		return -EINVAL;
675 
676 	spin_lock_irqsave(&dtab->index_lock, flags);
677 
678 	old_dev = __dev_map_hash_lookup_elem(map, idx);
679 	if (old_dev && (map_flags & BPF_NOEXIST))
680 		goto out_err;
681 
682 	dev = __dev_map_alloc_node(net, dtab, ifindex, idx);
683 	if (IS_ERR(dev)) {
684 		err = PTR_ERR(dev);
685 		goto out_err;
686 	}
687 
688 	if (old_dev) {
689 		hlist_del_rcu(&old_dev->index_hlist);
690 	} else {
691 		if (dtab->items >= dtab->map.max_entries) {
692 			spin_unlock_irqrestore(&dtab->index_lock, flags);
693 			call_rcu(&dev->rcu, __dev_map_entry_free);
694 			return -E2BIG;
695 		}
696 		dtab->items++;
697 	}
698 
699 	hlist_add_head_rcu(&dev->index_hlist,
700 			   dev_map_index_hash(dtab, idx));
701 	spin_unlock_irqrestore(&dtab->index_lock, flags);
702 
703 	if (old_dev)
704 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
705 
706 	return 0;
707 
708 out_err:
709 	spin_unlock_irqrestore(&dtab->index_lock, flags);
710 	return err;
711 }
712 
713 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
714 				   u64 map_flags)
715 {
716 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
717 					 map, key, value, map_flags);
718 }
719 
720 const struct bpf_map_ops dev_map_ops = {
721 	.map_alloc = dev_map_alloc,
722 	.map_free = dev_map_free,
723 	.map_get_next_key = dev_map_get_next_key,
724 	.map_lookup_elem = dev_map_lookup_elem,
725 	.map_update_elem = dev_map_update_elem,
726 	.map_delete_elem = dev_map_delete_elem,
727 	.map_check_btf = map_check_no_btf,
728 };
729 
730 const struct bpf_map_ops dev_map_hash_ops = {
731 	.map_alloc = dev_map_alloc,
732 	.map_free = dev_map_free,
733 	.map_get_next_key = dev_map_hash_get_next_key,
734 	.map_lookup_elem = dev_map_hash_lookup_elem,
735 	.map_update_elem = dev_map_hash_update_elem,
736 	.map_delete_elem = dev_map_hash_delete_elem,
737 	.map_check_btf = map_check_no_btf,
738 };
739 
740 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
741 				       struct net_device *netdev)
742 {
743 	unsigned long flags;
744 	u32 i;
745 
746 	spin_lock_irqsave(&dtab->index_lock, flags);
747 	for (i = 0; i < dtab->n_buckets; i++) {
748 		struct bpf_dtab_netdev *dev;
749 		struct hlist_head *head;
750 		struct hlist_node *next;
751 
752 		head = dev_map_index_hash(dtab, i);
753 
754 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
755 			if (netdev != dev->dev)
756 				continue;
757 
758 			dtab->items--;
759 			hlist_del_rcu(&dev->index_hlist);
760 			call_rcu(&dev->rcu, __dev_map_entry_free);
761 		}
762 	}
763 	spin_unlock_irqrestore(&dtab->index_lock, flags);
764 }
765 
766 static int dev_map_notification(struct notifier_block *notifier,
767 				ulong event, void *ptr)
768 {
769 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
770 	struct bpf_dtab *dtab;
771 	int i;
772 
773 	switch (event) {
774 	case NETDEV_UNREGISTER:
775 		/* This rcu_read_lock/unlock pair is needed because
776 		 * dev_map_list is an RCU list AND to ensure a delete
777 		 * operation does not free a netdev_map entry while we
778 		 * are comparing it against the netdev being unregistered.
779 		 */
780 		rcu_read_lock();
781 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
782 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
783 				dev_map_hash_remove_netdev(dtab, netdev);
784 				continue;
785 			}
786 
787 			for (i = 0; i < dtab->map.max_entries; i++) {
788 				struct bpf_dtab_netdev *dev, *odev;
789 
790 				dev = READ_ONCE(dtab->netdev_map[i]);
791 				if (!dev || netdev != dev->dev)
792 					continue;
793 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
794 				if (dev == odev)
795 					call_rcu(&dev->rcu,
796 						 __dev_map_entry_free);
797 			}
798 		}
799 		rcu_read_unlock();
800 		break;
801 	default:
802 		break;
803 	}
804 	return NOTIFY_OK;
805 }
806 
807 static struct notifier_block dev_map_notifier = {
808 	.notifier_call = dev_map_notification,
809 };
810 
811 static int __init dev_map_init(void)
812 {
813 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
814 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
815 		     offsetof(struct _bpf_dtab_netdev, dev));
816 	register_netdevice_notifier(&dev_map_notifier);
817 	return 0;
818 }
819 
820 subsys_initcall(dev_map_init);
821