1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 52 #define DEV_CREATE_FLAG_MASK \ 53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 54 55 #define DEV_MAP_BULK_SIZE 16 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 unsigned int count; 62 }; 63 64 struct bpf_dtab_netdev { 65 struct net_device *dev; /* must be first member, due to tracepoint */ 66 struct hlist_node index_hlist; 67 struct bpf_dtab *dtab; 68 struct rcu_head rcu; 69 unsigned int idx; 70 }; 71 72 struct bpf_dtab { 73 struct bpf_map map; 74 struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */ 75 struct list_head list; 76 77 /* these are only used for DEVMAP_HASH type maps */ 78 struct hlist_head *dev_index_head; 79 spinlock_t index_lock; 80 unsigned int items; 81 u32 n_buckets; 82 }; 83 84 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 85 static DEFINE_SPINLOCK(dev_map_lock); 86 static LIST_HEAD(dev_map_list); 87 88 static struct hlist_head *dev_map_create_hash(unsigned int entries) 89 { 90 int i; 91 struct hlist_head *hash; 92 93 hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL); 94 if (hash != NULL) 95 for (i = 0; i < entries; i++) 96 INIT_HLIST_HEAD(&hash[i]); 97 98 return hash; 99 } 100 101 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 102 int idx) 103 { 104 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 105 } 106 107 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 108 { 109 u64 cost = 0; 110 int err; 111 112 /* check sanity of attributes */ 113 if (attr->max_entries == 0 || attr->key_size != 4 || 114 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) 115 return -EINVAL; 116 117 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 118 * verifier prevents writes from the BPF side 119 */ 120 attr->map_flags |= BPF_F_RDONLY_PROG; 121 122 123 bpf_map_init_from_attr(&dtab->map, attr); 124 125 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 126 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 127 128 if (!dtab->n_buckets) /* Overflow check */ 129 return -EINVAL; 130 cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets; 131 } else { 132 cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 133 } 134 135 /* if map size is larger than memlock limit, reject it */ 136 err = bpf_map_charge_init(&dtab->map.memory, cost); 137 if (err) 138 return -EINVAL; 139 140 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 141 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets); 142 if (!dtab->dev_index_head) 143 goto free_charge; 144 145 spin_lock_init(&dtab->index_lock); 146 } else { 147 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 148 sizeof(struct bpf_dtab_netdev *), 149 dtab->map.numa_node); 150 if (!dtab->netdev_map) 151 goto free_charge; 152 } 153 154 return 0; 155 156 free_charge: 157 bpf_map_charge_finish(&dtab->map.memory); 158 return -ENOMEM; 159 } 160 161 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 162 { 163 struct bpf_dtab *dtab; 164 int err; 165 166 if (!capable(CAP_NET_ADMIN)) 167 return ERR_PTR(-EPERM); 168 169 dtab = kzalloc(sizeof(*dtab), GFP_USER); 170 if (!dtab) 171 return ERR_PTR(-ENOMEM); 172 173 err = dev_map_init_map(dtab, attr); 174 if (err) { 175 kfree(dtab); 176 return ERR_PTR(err); 177 } 178 179 spin_lock(&dev_map_lock); 180 list_add_tail_rcu(&dtab->list, &dev_map_list); 181 spin_unlock(&dev_map_lock); 182 183 return &dtab->map; 184 } 185 186 static void dev_map_free(struct bpf_map *map) 187 { 188 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 189 int i; 190 191 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 192 * so the programs (can be more than one that used this map) were 193 * disconnected from events. The following synchronize_rcu() guarantees 194 * both rcu read critical sections complete and waits for 195 * preempt-disable regions (NAPI being the relevant context here) so we 196 * are certain there will be no further reads against the netdev_map and 197 * all flush operations are complete. Flush operations can only be done 198 * from NAPI context for this reason. 199 */ 200 201 spin_lock(&dev_map_lock); 202 list_del_rcu(&dtab->list); 203 spin_unlock(&dev_map_lock); 204 205 bpf_clear_redirect_map(map); 206 synchronize_rcu(); 207 208 /* Make sure prior __dev_map_entry_free() have completed. */ 209 rcu_barrier(); 210 211 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 212 for (i = 0; i < dtab->n_buckets; i++) { 213 struct bpf_dtab_netdev *dev; 214 struct hlist_head *head; 215 struct hlist_node *next; 216 217 head = dev_map_index_hash(dtab, i); 218 219 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 220 hlist_del_rcu(&dev->index_hlist); 221 dev_put(dev->dev); 222 kfree(dev); 223 } 224 } 225 226 kfree(dtab->dev_index_head); 227 } else { 228 for (i = 0; i < dtab->map.max_entries; i++) { 229 struct bpf_dtab_netdev *dev; 230 231 dev = dtab->netdev_map[i]; 232 if (!dev) 233 continue; 234 235 dev_put(dev->dev); 236 kfree(dev); 237 } 238 239 bpf_map_area_free(dtab->netdev_map); 240 } 241 242 kfree(dtab); 243 } 244 245 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 246 { 247 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 248 u32 index = key ? *(u32 *)key : U32_MAX; 249 u32 *next = next_key; 250 251 if (index >= dtab->map.max_entries) { 252 *next = 0; 253 return 0; 254 } 255 256 if (index == dtab->map.max_entries - 1) 257 return -ENOENT; 258 *next = index + 1; 259 return 0; 260 } 261 262 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 263 { 264 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 265 struct hlist_head *head = dev_map_index_hash(dtab, key); 266 struct bpf_dtab_netdev *dev; 267 268 hlist_for_each_entry_rcu(dev, head, index_hlist, 269 lockdep_is_held(&dtab->index_lock)) 270 if (dev->idx == key) 271 return dev; 272 273 return NULL; 274 } 275 276 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 277 void *next_key) 278 { 279 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 280 u32 idx, *next = next_key; 281 struct bpf_dtab_netdev *dev, *next_dev; 282 struct hlist_head *head; 283 int i = 0; 284 285 if (!key) 286 goto find_first; 287 288 idx = *(u32 *)key; 289 290 dev = __dev_map_hash_lookup_elem(map, idx); 291 if (!dev) 292 goto find_first; 293 294 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 295 struct bpf_dtab_netdev, index_hlist); 296 297 if (next_dev) { 298 *next = next_dev->idx; 299 return 0; 300 } 301 302 i = idx & (dtab->n_buckets - 1); 303 i++; 304 305 find_first: 306 for (; i < dtab->n_buckets; i++) { 307 head = dev_map_index_hash(dtab, i); 308 309 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 310 struct bpf_dtab_netdev, 311 index_hlist); 312 if (next_dev) { 313 *next = next_dev->idx; 314 return 0; 315 } 316 } 317 318 return -ENOENT; 319 } 320 321 static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 322 { 323 struct net_device *dev = bq->dev; 324 int sent = 0, drops = 0, err = 0; 325 int i; 326 327 if (unlikely(!bq->count)) 328 return 0; 329 330 for (i = 0; i < bq->count; i++) { 331 struct xdp_frame *xdpf = bq->q[i]; 332 333 prefetch(xdpf); 334 } 335 336 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); 337 if (sent < 0) { 338 err = sent; 339 sent = 0; 340 goto error; 341 } 342 drops = bq->count - sent; 343 out: 344 bq->count = 0; 345 346 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err); 347 bq->dev_rx = NULL; 348 __list_del_clearprev(&bq->flush_node); 349 return 0; 350 error: 351 /* If ndo_xdp_xmit fails with an errno, no frames have been 352 * xmit'ed and it's our responsibility to them free all. 353 */ 354 for (i = 0; i < bq->count; i++) { 355 struct xdp_frame *xdpf = bq->q[i]; 356 357 xdp_return_frame_rx_napi(xdpf); 358 drops++; 359 } 360 goto out; 361 } 362 363 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled 364 * from the driver before returning from its napi->poll() routine. The poll() 365 * routine is called either from busy_poll context or net_rx_action signaled 366 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 367 * net device can be torn down. On devmap tear down we ensure the flush list 368 * is empty before completing to ensure all flush operations have completed. 369 * When drivers update the bpf program they may need to ensure any flush ops 370 * are also complete. Using synchronize_rcu or call_rcu will suffice for this 371 * because both wait for napi context to exit. 372 */ 373 void __dev_flush(void) 374 { 375 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 376 struct xdp_dev_bulk_queue *bq, *tmp; 377 378 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) 379 bq_xmit_all(bq, XDP_XMIT_FLUSH); 380 } 381 382 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 383 * update happens in parallel here a dev_put wont happen until after reading the 384 * ifindex. 385 */ 386 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 387 { 388 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 389 struct bpf_dtab_netdev *obj; 390 391 if (key >= map->max_entries) 392 return NULL; 393 394 obj = READ_ONCE(dtab->netdev_map[key]); 395 return obj; 396 } 397 398 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 399 * Thus, safe percpu variable access. 400 */ 401 static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 402 struct net_device *dev_rx) 403 { 404 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 405 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 406 407 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 408 bq_xmit_all(bq, 0); 409 410 /* Ingress dev_rx will be the same for all xdp_frame's in 411 * bulk_queue, because bq stored per-CPU and must be flushed 412 * from net_device drivers NAPI func end. 413 */ 414 if (!bq->dev_rx) 415 bq->dev_rx = dev_rx; 416 417 bq->q[bq->count++] = xdpf; 418 419 if (!bq->flush_node.prev) 420 list_add(&bq->flush_node, flush_list); 421 422 return 0; 423 } 424 425 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 426 struct net_device *dev_rx) 427 { 428 struct xdp_frame *xdpf; 429 int err; 430 431 if (!dev->netdev_ops->ndo_xdp_xmit) 432 return -EOPNOTSUPP; 433 434 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 435 if (unlikely(err)) 436 return err; 437 438 xdpf = convert_to_xdp_frame(xdp); 439 if (unlikely(!xdpf)) 440 return -EOVERFLOW; 441 442 return bq_enqueue(dev, xdpf, dev_rx); 443 } 444 445 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 446 struct net_device *dev_rx) 447 { 448 return __xdp_enqueue(dev, xdp, dev_rx); 449 } 450 451 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 452 struct net_device *dev_rx) 453 { 454 struct net_device *dev = dst->dev; 455 456 return __xdp_enqueue(dev, xdp, dev_rx); 457 } 458 459 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 460 struct bpf_prog *xdp_prog) 461 { 462 int err; 463 464 err = xdp_ok_fwd_dev(dst->dev, skb->len); 465 if (unlikely(err)) 466 return err; 467 skb->dev = dst->dev; 468 generic_xdp_tx(skb, xdp_prog); 469 470 return 0; 471 } 472 473 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 474 { 475 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 476 struct net_device *dev = obj ? obj->dev : NULL; 477 478 return dev ? &dev->ifindex : NULL; 479 } 480 481 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 482 { 483 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 484 *(u32 *)key); 485 struct net_device *dev = obj ? obj->dev : NULL; 486 487 return dev ? &dev->ifindex : NULL; 488 } 489 490 static void __dev_map_entry_free(struct rcu_head *rcu) 491 { 492 struct bpf_dtab_netdev *dev; 493 494 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 495 dev_put(dev->dev); 496 kfree(dev); 497 } 498 499 static int dev_map_delete_elem(struct bpf_map *map, void *key) 500 { 501 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 502 struct bpf_dtab_netdev *old_dev; 503 int k = *(u32 *)key; 504 505 if (k >= map->max_entries) 506 return -EINVAL; 507 508 /* Use call_rcu() here to ensure any rcu critical sections have 509 * completed as well as any flush operations because call_rcu 510 * will wait for preempt-disable region to complete, NAPI in this 511 * context. And additionally, the driver tear down ensures all 512 * soft irqs are complete before removing the net device in the 513 * case of dev_put equals zero. 514 */ 515 old_dev = xchg(&dtab->netdev_map[k], NULL); 516 if (old_dev) 517 call_rcu(&old_dev->rcu, __dev_map_entry_free); 518 return 0; 519 } 520 521 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key) 522 { 523 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 524 struct bpf_dtab_netdev *old_dev; 525 int k = *(u32 *)key; 526 unsigned long flags; 527 int ret = -ENOENT; 528 529 spin_lock_irqsave(&dtab->index_lock, flags); 530 531 old_dev = __dev_map_hash_lookup_elem(map, k); 532 if (old_dev) { 533 dtab->items--; 534 hlist_del_init_rcu(&old_dev->index_hlist); 535 call_rcu(&old_dev->rcu, __dev_map_entry_free); 536 ret = 0; 537 } 538 spin_unlock_irqrestore(&dtab->index_lock, flags); 539 540 return ret; 541 } 542 543 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 544 struct bpf_dtab *dtab, 545 u32 ifindex, 546 unsigned int idx) 547 { 548 struct bpf_dtab_netdev *dev; 549 550 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, 551 dtab->map.numa_node); 552 if (!dev) 553 return ERR_PTR(-ENOMEM); 554 555 dev->dev = dev_get_by_index(net, ifindex); 556 if (!dev->dev) { 557 kfree(dev); 558 return ERR_PTR(-EINVAL); 559 } 560 561 dev->idx = idx; 562 dev->dtab = dtab; 563 564 return dev; 565 } 566 567 static int __dev_map_update_elem(struct net *net, struct bpf_map *map, 568 void *key, void *value, u64 map_flags) 569 { 570 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 571 struct bpf_dtab_netdev *dev, *old_dev; 572 u32 ifindex = *(u32 *)value; 573 u32 i = *(u32 *)key; 574 575 if (unlikely(map_flags > BPF_EXIST)) 576 return -EINVAL; 577 if (unlikely(i >= dtab->map.max_entries)) 578 return -E2BIG; 579 if (unlikely(map_flags == BPF_NOEXIST)) 580 return -EEXIST; 581 582 if (!ifindex) { 583 dev = NULL; 584 } else { 585 dev = __dev_map_alloc_node(net, dtab, ifindex, i); 586 if (IS_ERR(dev)) 587 return PTR_ERR(dev); 588 } 589 590 /* Use call_rcu() here to ensure rcu critical sections have completed 591 * Remembering the driver side flush operation will happen before the 592 * net device is removed. 593 */ 594 old_dev = xchg(&dtab->netdev_map[i], dev); 595 if (old_dev) 596 call_rcu(&old_dev->rcu, __dev_map_entry_free); 597 598 return 0; 599 } 600 601 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 602 u64 map_flags) 603 { 604 return __dev_map_update_elem(current->nsproxy->net_ns, 605 map, key, value, map_flags); 606 } 607 608 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 609 void *key, void *value, u64 map_flags) 610 { 611 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 612 struct bpf_dtab_netdev *dev, *old_dev; 613 u32 ifindex = *(u32 *)value; 614 u32 idx = *(u32 *)key; 615 unsigned long flags; 616 int err = -EEXIST; 617 618 if (unlikely(map_flags > BPF_EXIST || !ifindex)) 619 return -EINVAL; 620 621 spin_lock_irqsave(&dtab->index_lock, flags); 622 623 old_dev = __dev_map_hash_lookup_elem(map, idx); 624 if (old_dev && (map_flags & BPF_NOEXIST)) 625 goto out_err; 626 627 dev = __dev_map_alloc_node(net, dtab, ifindex, idx); 628 if (IS_ERR(dev)) { 629 err = PTR_ERR(dev); 630 goto out_err; 631 } 632 633 if (old_dev) { 634 hlist_del_rcu(&old_dev->index_hlist); 635 } else { 636 if (dtab->items >= dtab->map.max_entries) { 637 spin_unlock_irqrestore(&dtab->index_lock, flags); 638 call_rcu(&dev->rcu, __dev_map_entry_free); 639 return -E2BIG; 640 } 641 dtab->items++; 642 } 643 644 hlist_add_head_rcu(&dev->index_hlist, 645 dev_map_index_hash(dtab, idx)); 646 spin_unlock_irqrestore(&dtab->index_lock, flags); 647 648 if (old_dev) 649 call_rcu(&old_dev->rcu, __dev_map_entry_free); 650 651 return 0; 652 653 out_err: 654 spin_unlock_irqrestore(&dtab->index_lock, flags); 655 return err; 656 } 657 658 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 659 u64 map_flags) 660 { 661 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 662 map, key, value, map_flags); 663 } 664 665 const struct bpf_map_ops dev_map_ops = { 666 .map_alloc = dev_map_alloc, 667 .map_free = dev_map_free, 668 .map_get_next_key = dev_map_get_next_key, 669 .map_lookup_elem = dev_map_lookup_elem, 670 .map_update_elem = dev_map_update_elem, 671 .map_delete_elem = dev_map_delete_elem, 672 .map_check_btf = map_check_no_btf, 673 }; 674 675 const struct bpf_map_ops dev_map_hash_ops = { 676 .map_alloc = dev_map_alloc, 677 .map_free = dev_map_free, 678 .map_get_next_key = dev_map_hash_get_next_key, 679 .map_lookup_elem = dev_map_hash_lookup_elem, 680 .map_update_elem = dev_map_hash_update_elem, 681 .map_delete_elem = dev_map_hash_delete_elem, 682 .map_check_btf = map_check_no_btf, 683 }; 684 685 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 686 struct net_device *netdev) 687 { 688 unsigned long flags; 689 u32 i; 690 691 spin_lock_irqsave(&dtab->index_lock, flags); 692 for (i = 0; i < dtab->n_buckets; i++) { 693 struct bpf_dtab_netdev *dev; 694 struct hlist_head *head; 695 struct hlist_node *next; 696 697 head = dev_map_index_hash(dtab, i); 698 699 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 700 if (netdev != dev->dev) 701 continue; 702 703 dtab->items--; 704 hlist_del_rcu(&dev->index_hlist); 705 call_rcu(&dev->rcu, __dev_map_entry_free); 706 } 707 } 708 spin_unlock_irqrestore(&dtab->index_lock, flags); 709 } 710 711 static int dev_map_notification(struct notifier_block *notifier, 712 ulong event, void *ptr) 713 { 714 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 715 struct bpf_dtab *dtab; 716 int i, cpu; 717 718 switch (event) { 719 case NETDEV_REGISTER: 720 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 721 break; 722 723 /* will be freed in free_netdev() */ 724 netdev->xdp_bulkq = 725 __alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue), 726 sizeof(void *), GFP_ATOMIC); 727 if (!netdev->xdp_bulkq) 728 return NOTIFY_BAD; 729 730 for_each_possible_cpu(cpu) 731 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 732 break; 733 case NETDEV_UNREGISTER: 734 /* This rcu_read_lock/unlock pair is needed because 735 * dev_map_list is an RCU list AND to ensure a delete 736 * operation does not free a netdev_map entry while we 737 * are comparing it against the netdev being unregistered. 738 */ 739 rcu_read_lock(); 740 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 741 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 742 dev_map_hash_remove_netdev(dtab, netdev); 743 continue; 744 } 745 746 for (i = 0; i < dtab->map.max_entries; i++) { 747 struct bpf_dtab_netdev *dev, *odev; 748 749 dev = READ_ONCE(dtab->netdev_map[i]); 750 if (!dev || netdev != dev->dev) 751 continue; 752 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 753 if (dev == odev) 754 call_rcu(&dev->rcu, 755 __dev_map_entry_free); 756 } 757 } 758 rcu_read_unlock(); 759 break; 760 default: 761 break; 762 } 763 return NOTIFY_OK; 764 } 765 766 static struct notifier_block dev_map_notifier = { 767 .notifier_call = dev_map_notification, 768 }; 769 770 static int __init dev_map_init(void) 771 { 772 int cpu; 773 774 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 775 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 776 offsetof(struct _bpf_dtab_netdev, dev)); 777 register_netdevice_notifier(&dev_map_notifier); 778 779 for_each_possible_cpu(cpu) 780 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 781 return 0; 782 } 783 784 subsys_initcall(dev_map_init); 785