xref: /openbmc/linux/kernel/bpf/devmap.c (revision bd4af432)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 #define DEV_MAP_BULK_SIZE 16
56 struct xdp_dev_bulk_queue {
57 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
58 	struct list_head flush_node;
59 	struct net_device *dev;
60 	struct net_device *dev_rx;
61 	unsigned int count;
62 };
63 
64 struct bpf_dtab_netdev {
65 	struct net_device *dev; /* must be first member, due to tracepoint */
66 	struct hlist_node index_hlist;
67 	struct bpf_dtab *dtab;
68 	struct rcu_head rcu;
69 	unsigned int idx;
70 };
71 
72 struct bpf_dtab {
73 	struct bpf_map map;
74 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
75 	struct list_head list;
76 
77 	/* these are only used for DEVMAP_HASH type maps */
78 	struct hlist_head *dev_index_head;
79 	spinlock_t index_lock;
80 	unsigned int items;
81 	u32 n_buckets;
82 };
83 
84 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
85 static DEFINE_SPINLOCK(dev_map_lock);
86 static LIST_HEAD(dev_map_list);
87 
88 static struct hlist_head *dev_map_create_hash(unsigned int entries)
89 {
90 	int i;
91 	struct hlist_head *hash;
92 
93 	hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL);
94 	if (hash != NULL)
95 		for (i = 0; i < entries; i++)
96 			INIT_HLIST_HEAD(&hash[i]);
97 
98 	return hash;
99 }
100 
101 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
102 						    int idx)
103 {
104 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
105 }
106 
107 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
108 {
109 	u64 cost = 0;
110 	int err;
111 
112 	/* check sanity of attributes */
113 	if (attr->max_entries == 0 || attr->key_size != 4 ||
114 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
115 		return -EINVAL;
116 
117 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
118 	 * verifier prevents writes from the BPF side
119 	 */
120 	attr->map_flags |= BPF_F_RDONLY_PROG;
121 
122 
123 	bpf_map_init_from_attr(&dtab->map, attr);
124 
125 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
126 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
127 
128 		if (!dtab->n_buckets) /* Overflow check */
129 			return -EINVAL;
130 		cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
131 	} else {
132 		cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
133 	}
134 
135 	/* if map size is larger than memlock limit, reject it */
136 	err = bpf_map_charge_init(&dtab->map.memory, cost);
137 	if (err)
138 		return -EINVAL;
139 
140 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
141 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets);
142 		if (!dtab->dev_index_head)
143 			goto free_charge;
144 
145 		spin_lock_init(&dtab->index_lock);
146 	} else {
147 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
148 						      sizeof(struct bpf_dtab_netdev *),
149 						      dtab->map.numa_node);
150 		if (!dtab->netdev_map)
151 			goto free_charge;
152 	}
153 
154 	return 0;
155 
156 free_charge:
157 	bpf_map_charge_finish(&dtab->map.memory);
158 	return -ENOMEM;
159 }
160 
161 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
162 {
163 	struct bpf_dtab *dtab;
164 	int err;
165 
166 	if (!capable(CAP_NET_ADMIN))
167 		return ERR_PTR(-EPERM);
168 
169 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
170 	if (!dtab)
171 		return ERR_PTR(-ENOMEM);
172 
173 	err = dev_map_init_map(dtab, attr);
174 	if (err) {
175 		kfree(dtab);
176 		return ERR_PTR(err);
177 	}
178 
179 	spin_lock(&dev_map_lock);
180 	list_add_tail_rcu(&dtab->list, &dev_map_list);
181 	spin_unlock(&dev_map_lock);
182 
183 	return &dtab->map;
184 }
185 
186 static void dev_map_free(struct bpf_map *map)
187 {
188 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
189 	int i;
190 
191 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
192 	 * so the programs (can be more than one that used this map) were
193 	 * disconnected from events. The following synchronize_rcu() guarantees
194 	 * both rcu read critical sections complete and waits for
195 	 * preempt-disable regions (NAPI being the relevant context here) so we
196 	 * are certain there will be no further reads against the netdev_map and
197 	 * all flush operations are complete. Flush operations can only be done
198 	 * from NAPI context for this reason.
199 	 */
200 
201 	spin_lock(&dev_map_lock);
202 	list_del_rcu(&dtab->list);
203 	spin_unlock(&dev_map_lock);
204 
205 	bpf_clear_redirect_map(map);
206 	synchronize_rcu();
207 
208 	/* Make sure prior __dev_map_entry_free() have completed. */
209 	rcu_barrier();
210 
211 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
212 		for (i = 0; i < dtab->n_buckets; i++) {
213 			struct bpf_dtab_netdev *dev;
214 			struct hlist_head *head;
215 			struct hlist_node *next;
216 
217 			head = dev_map_index_hash(dtab, i);
218 
219 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
220 				hlist_del_rcu(&dev->index_hlist);
221 				dev_put(dev->dev);
222 				kfree(dev);
223 			}
224 		}
225 
226 		kfree(dtab->dev_index_head);
227 	} else {
228 		for (i = 0; i < dtab->map.max_entries; i++) {
229 			struct bpf_dtab_netdev *dev;
230 
231 			dev = dtab->netdev_map[i];
232 			if (!dev)
233 				continue;
234 
235 			dev_put(dev->dev);
236 			kfree(dev);
237 		}
238 
239 		bpf_map_area_free(dtab->netdev_map);
240 	}
241 
242 	kfree(dtab);
243 }
244 
245 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
246 {
247 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
248 	u32 index = key ? *(u32 *)key : U32_MAX;
249 	u32 *next = next_key;
250 
251 	if (index >= dtab->map.max_entries) {
252 		*next = 0;
253 		return 0;
254 	}
255 
256 	if (index == dtab->map.max_entries - 1)
257 		return -ENOENT;
258 	*next = index + 1;
259 	return 0;
260 }
261 
262 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
263 {
264 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
265 	struct hlist_head *head = dev_map_index_hash(dtab, key);
266 	struct bpf_dtab_netdev *dev;
267 
268 	hlist_for_each_entry_rcu(dev, head, index_hlist,
269 				 lockdep_is_held(&dtab->index_lock))
270 		if (dev->idx == key)
271 			return dev;
272 
273 	return NULL;
274 }
275 
276 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
277 				    void *next_key)
278 {
279 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
280 	u32 idx, *next = next_key;
281 	struct bpf_dtab_netdev *dev, *next_dev;
282 	struct hlist_head *head;
283 	int i = 0;
284 
285 	if (!key)
286 		goto find_first;
287 
288 	idx = *(u32 *)key;
289 
290 	dev = __dev_map_hash_lookup_elem(map, idx);
291 	if (!dev)
292 		goto find_first;
293 
294 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
295 				    struct bpf_dtab_netdev, index_hlist);
296 
297 	if (next_dev) {
298 		*next = next_dev->idx;
299 		return 0;
300 	}
301 
302 	i = idx & (dtab->n_buckets - 1);
303 	i++;
304 
305  find_first:
306 	for (; i < dtab->n_buckets; i++) {
307 		head = dev_map_index_hash(dtab, i);
308 
309 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
310 					    struct bpf_dtab_netdev,
311 					    index_hlist);
312 		if (next_dev) {
313 			*next = next_dev->idx;
314 			return 0;
315 		}
316 	}
317 
318 	return -ENOENT;
319 }
320 
321 static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
322 {
323 	struct net_device *dev = bq->dev;
324 	int sent = 0, drops = 0, err = 0;
325 	int i;
326 
327 	if (unlikely(!bq->count))
328 		return 0;
329 
330 	for (i = 0; i < bq->count; i++) {
331 		struct xdp_frame *xdpf = bq->q[i];
332 
333 		prefetch(xdpf);
334 	}
335 
336 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
337 	if (sent < 0) {
338 		err = sent;
339 		sent = 0;
340 		goto error;
341 	}
342 	drops = bq->count - sent;
343 out:
344 	bq->count = 0;
345 
346 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
347 	bq->dev_rx = NULL;
348 	__list_del_clearprev(&bq->flush_node);
349 	return 0;
350 error:
351 	/* If ndo_xdp_xmit fails with an errno, no frames have been
352 	 * xmit'ed and it's our responsibility to them free all.
353 	 */
354 	for (i = 0; i < bq->count; i++) {
355 		struct xdp_frame *xdpf = bq->q[i];
356 
357 		xdp_return_frame_rx_napi(xdpf);
358 		drops++;
359 	}
360 	goto out;
361 }
362 
363 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
364  * from the driver before returning from its napi->poll() routine. The poll()
365  * routine is called either from busy_poll context or net_rx_action signaled
366  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
367  * net device can be torn down. On devmap tear down we ensure the flush list
368  * is empty before completing to ensure all flush operations have completed.
369  * When drivers update the bpf program they may need to ensure any flush ops
370  * are also complete. Using synchronize_rcu or call_rcu will suffice for this
371  * because both wait for napi context to exit.
372  */
373 void __dev_flush(void)
374 {
375 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
376 	struct xdp_dev_bulk_queue *bq, *tmp;
377 
378 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
379 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
380 }
381 
382 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
383  * update happens in parallel here a dev_put wont happen until after reading the
384  * ifindex.
385  */
386 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
387 {
388 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
389 	struct bpf_dtab_netdev *obj;
390 
391 	if (key >= map->max_entries)
392 		return NULL;
393 
394 	obj = READ_ONCE(dtab->netdev_map[key]);
395 	return obj;
396 }
397 
398 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
399  * Thus, safe percpu variable access.
400  */
401 static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
402 		      struct net_device *dev_rx)
403 {
404 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
405 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
406 
407 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
408 		bq_xmit_all(bq, 0);
409 
410 	/* Ingress dev_rx will be the same for all xdp_frame's in
411 	 * bulk_queue, because bq stored per-CPU and must be flushed
412 	 * from net_device drivers NAPI func end.
413 	 */
414 	if (!bq->dev_rx)
415 		bq->dev_rx = dev_rx;
416 
417 	bq->q[bq->count++] = xdpf;
418 
419 	if (!bq->flush_node.prev)
420 		list_add(&bq->flush_node, flush_list);
421 
422 	return 0;
423 }
424 
425 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
426 			       struct net_device *dev_rx)
427 {
428 	struct xdp_frame *xdpf;
429 	int err;
430 
431 	if (!dev->netdev_ops->ndo_xdp_xmit)
432 		return -EOPNOTSUPP;
433 
434 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
435 	if (unlikely(err))
436 		return err;
437 
438 	xdpf = convert_to_xdp_frame(xdp);
439 	if (unlikely(!xdpf))
440 		return -EOVERFLOW;
441 
442 	return bq_enqueue(dev, xdpf, dev_rx);
443 }
444 
445 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
446 		    struct net_device *dev_rx)
447 {
448 	return __xdp_enqueue(dev, xdp, dev_rx);
449 }
450 
451 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
452 		    struct net_device *dev_rx)
453 {
454 	struct net_device *dev = dst->dev;
455 
456 	return __xdp_enqueue(dev, xdp, dev_rx);
457 }
458 
459 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
460 			     struct bpf_prog *xdp_prog)
461 {
462 	int err;
463 
464 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
465 	if (unlikely(err))
466 		return err;
467 	skb->dev = dst->dev;
468 	generic_xdp_tx(skb, xdp_prog);
469 
470 	return 0;
471 }
472 
473 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
474 {
475 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
476 	struct net_device *dev = obj ? obj->dev : NULL;
477 
478 	return dev ? &dev->ifindex : NULL;
479 }
480 
481 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
482 {
483 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
484 								*(u32 *)key);
485 	struct net_device *dev = obj ? obj->dev : NULL;
486 
487 	return dev ? &dev->ifindex : NULL;
488 }
489 
490 static void __dev_map_entry_free(struct rcu_head *rcu)
491 {
492 	struct bpf_dtab_netdev *dev;
493 
494 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
495 	dev_put(dev->dev);
496 	kfree(dev);
497 }
498 
499 static int dev_map_delete_elem(struct bpf_map *map, void *key)
500 {
501 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
502 	struct bpf_dtab_netdev *old_dev;
503 	int k = *(u32 *)key;
504 
505 	if (k >= map->max_entries)
506 		return -EINVAL;
507 
508 	/* Use call_rcu() here to ensure any rcu critical sections have
509 	 * completed as well as any flush operations because call_rcu
510 	 * will wait for preempt-disable region to complete, NAPI in this
511 	 * context.  And additionally, the driver tear down ensures all
512 	 * soft irqs are complete before removing the net device in the
513 	 * case of dev_put equals zero.
514 	 */
515 	old_dev = xchg(&dtab->netdev_map[k], NULL);
516 	if (old_dev)
517 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
518 	return 0;
519 }
520 
521 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
522 {
523 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
524 	struct bpf_dtab_netdev *old_dev;
525 	int k = *(u32 *)key;
526 	unsigned long flags;
527 	int ret = -ENOENT;
528 
529 	spin_lock_irqsave(&dtab->index_lock, flags);
530 
531 	old_dev = __dev_map_hash_lookup_elem(map, k);
532 	if (old_dev) {
533 		dtab->items--;
534 		hlist_del_init_rcu(&old_dev->index_hlist);
535 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
536 		ret = 0;
537 	}
538 	spin_unlock_irqrestore(&dtab->index_lock, flags);
539 
540 	return ret;
541 }
542 
543 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
544 						    struct bpf_dtab *dtab,
545 						    u32 ifindex,
546 						    unsigned int idx)
547 {
548 	struct bpf_dtab_netdev *dev;
549 
550 	dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
551 			   dtab->map.numa_node);
552 	if (!dev)
553 		return ERR_PTR(-ENOMEM);
554 
555 	dev->dev = dev_get_by_index(net, ifindex);
556 	if (!dev->dev) {
557 		kfree(dev);
558 		return ERR_PTR(-EINVAL);
559 	}
560 
561 	dev->idx = idx;
562 	dev->dtab = dtab;
563 
564 	return dev;
565 }
566 
567 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
568 				 void *key, void *value, u64 map_flags)
569 {
570 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
571 	struct bpf_dtab_netdev *dev, *old_dev;
572 	u32 ifindex = *(u32 *)value;
573 	u32 i = *(u32 *)key;
574 
575 	if (unlikely(map_flags > BPF_EXIST))
576 		return -EINVAL;
577 	if (unlikely(i >= dtab->map.max_entries))
578 		return -E2BIG;
579 	if (unlikely(map_flags == BPF_NOEXIST))
580 		return -EEXIST;
581 
582 	if (!ifindex) {
583 		dev = NULL;
584 	} else {
585 		dev = __dev_map_alloc_node(net, dtab, ifindex, i);
586 		if (IS_ERR(dev))
587 			return PTR_ERR(dev);
588 	}
589 
590 	/* Use call_rcu() here to ensure rcu critical sections have completed
591 	 * Remembering the driver side flush operation will happen before the
592 	 * net device is removed.
593 	 */
594 	old_dev = xchg(&dtab->netdev_map[i], dev);
595 	if (old_dev)
596 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
597 
598 	return 0;
599 }
600 
601 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
602 			       u64 map_flags)
603 {
604 	return __dev_map_update_elem(current->nsproxy->net_ns,
605 				     map, key, value, map_flags);
606 }
607 
608 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
609 				     void *key, void *value, u64 map_flags)
610 {
611 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
612 	struct bpf_dtab_netdev *dev, *old_dev;
613 	u32 ifindex = *(u32 *)value;
614 	u32 idx = *(u32 *)key;
615 	unsigned long flags;
616 	int err = -EEXIST;
617 
618 	if (unlikely(map_flags > BPF_EXIST || !ifindex))
619 		return -EINVAL;
620 
621 	spin_lock_irqsave(&dtab->index_lock, flags);
622 
623 	old_dev = __dev_map_hash_lookup_elem(map, idx);
624 	if (old_dev && (map_flags & BPF_NOEXIST))
625 		goto out_err;
626 
627 	dev = __dev_map_alloc_node(net, dtab, ifindex, idx);
628 	if (IS_ERR(dev)) {
629 		err = PTR_ERR(dev);
630 		goto out_err;
631 	}
632 
633 	if (old_dev) {
634 		hlist_del_rcu(&old_dev->index_hlist);
635 	} else {
636 		if (dtab->items >= dtab->map.max_entries) {
637 			spin_unlock_irqrestore(&dtab->index_lock, flags);
638 			call_rcu(&dev->rcu, __dev_map_entry_free);
639 			return -E2BIG;
640 		}
641 		dtab->items++;
642 	}
643 
644 	hlist_add_head_rcu(&dev->index_hlist,
645 			   dev_map_index_hash(dtab, idx));
646 	spin_unlock_irqrestore(&dtab->index_lock, flags);
647 
648 	if (old_dev)
649 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
650 
651 	return 0;
652 
653 out_err:
654 	spin_unlock_irqrestore(&dtab->index_lock, flags);
655 	return err;
656 }
657 
658 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
659 				   u64 map_flags)
660 {
661 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
662 					 map, key, value, map_flags);
663 }
664 
665 const struct bpf_map_ops dev_map_ops = {
666 	.map_alloc = dev_map_alloc,
667 	.map_free = dev_map_free,
668 	.map_get_next_key = dev_map_get_next_key,
669 	.map_lookup_elem = dev_map_lookup_elem,
670 	.map_update_elem = dev_map_update_elem,
671 	.map_delete_elem = dev_map_delete_elem,
672 	.map_check_btf = map_check_no_btf,
673 };
674 
675 const struct bpf_map_ops dev_map_hash_ops = {
676 	.map_alloc = dev_map_alloc,
677 	.map_free = dev_map_free,
678 	.map_get_next_key = dev_map_hash_get_next_key,
679 	.map_lookup_elem = dev_map_hash_lookup_elem,
680 	.map_update_elem = dev_map_hash_update_elem,
681 	.map_delete_elem = dev_map_hash_delete_elem,
682 	.map_check_btf = map_check_no_btf,
683 };
684 
685 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
686 				       struct net_device *netdev)
687 {
688 	unsigned long flags;
689 	u32 i;
690 
691 	spin_lock_irqsave(&dtab->index_lock, flags);
692 	for (i = 0; i < dtab->n_buckets; i++) {
693 		struct bpf_dtab_netdev *dev;
694 		struct hlist_head *head;
695 		struct hlist_node *next;
696 
697 		head = dev_map_index_hash(dtab, i);
698 
699 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
700 			if (netdev != dev->dev)
701 				continue;
702 
703 			dtab->items--;
704 			hlist_del_rcu(&dev->index_hlist);
705 			call_rcu(&dev->rcu, __dev_map_entry_free);
706 		}
707 	}
708 	spin_unlock_irqrestore(&dtab->index_lock, flags);
709 }
710 
711 static int dev_map_notification(struct notifier_block *notifier,
712 				ulong event, void *ptr)
713 {
714 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
715 	struct bpf_dtab *dtab;
716 	int i, cpu;
717 
718 	switch (event) {
719 	case NETDEV_REGISTER:
720 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
721 			break;
722 
723 		/* will be freed in free_netdev() */
724 		netdev->xdp_bulkq =
725 			__alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue),
726 					   sizeof(void *), GFP_ATOMIC);
727 		if (!netdev->xdp_bulkq)
728 			return NOTIFY_BAD;
729 
730 		for_each_possible_cpu(cpu)
731 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
732 		break;
733 	case NETDEV_UNREGISTER:
734 		/* This rcu_read_lock/unlock pair is needed because
735 		 * dev_map_list is an RCU list AND to ensure a delete
736 		 * operation does not free a netdev_map entry while we
737 		 * are comparing it against the netdev being unregistered.
738 		 */
739 		rcu_read_lock();
740 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
741 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
742 				dev_map_hash_remove_netdev(dtab, netdev);
743 				continue;
744 			}
745 
746 			for (i = 0; i < dtab->map.max_entries; i++) {
747 				struct bpf_dtab_netdev *dev, *odev;
748 
749 				dev = READ_ONCE(dtab->netdev_map[i]);
750 				if (!dev || netdev != dev->dev)
751 					continue;
752 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
753 				if (dev == odev)
754 					call_rcu(&dev->rcu,
755 						 __dev_map_entry_free);
756 			}
757 		}
758 		rcu_read_unlock();
759 		break;
760 	default:
761 		break;
762 	}
763 	return NOTIFY_OK;
764 }
765 
766 static struct notifier_block dev_map_notifier = {
767 	.notifier_call = dev_map_notification,
768 };
769 
770 static int __init dev_map_init(void)
771 {
772 	int cpu;
773 
774 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
775 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
776 		     offsetof(struct _bpf_dtab_netdev, dev));
777 	register_netdevice_notifier(&dev_map_notifier);
778 
779 	for_each_possible_cpu(cpu)
780 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
781 	return 0;
782 }
783 
784 subsys_initcall(dev_map_init);
785