xref: /openbmc/linux/kernel/bpf/devmap.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  */
41 #include <linux/bpf.h>
42 #include <net/xdp.h>
43 #include <linux/filter.h>
44 #include <trace/events/xdp.h>
45 
46 #define DEV_CREATE_FLAG_MASK \
47 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
48 
49 #define DEV_MAP_BULK_SIZE 16
50 struct bpf_dtab_netdev;
51 
52 struct xdp_bulk_queue {
53 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
54 	struct list_head flush_node;
55 	struct net_device *dev_rx;
56 	struct bpf_dtab_netdev *obj;
57 	unsigned int count;
58 };
59 
60 struct bpf_dtab_netdev {
61 	struct net_device *dev; /* must be first member, due to tracepoint */
62 	struct bpf_dtab *dtab;
63 	unsigned int bit;
64 	struct xdp_bulk_queue __percpu *bulkq;
65 	struct rcu_head rcu;
66 };
67 
68 struct bpf_dtab {
69 	struct bpf_map map;
70 	struct bpf_dtab_netdev **netdev_map;
71 	struct list_head __percpu *flush_list;
72 	struct list_head list;
73 };
74 
75 static DEFINE_SPINLOCK(dev_map_lock);
76 static LIST_HEAD(dev_map_list);
77 
78 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
79 {
80 	struct bpf_dtab *dtab;
81 	int err, cpu;
82 	u64 cost;
83 
84 	if (!capable(CAP_NET_ADMIN))
85 		return ERR_PTR(-EPERM);
86 
87 	/* check sanity of attributes */
88 	if (attr->max_entries == 0 || attr->key_size != 4 ||
89 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
90 		return ERR_PTR(-EINVAL);
91 
92 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
93 	 * verifier prevents writes from the BPF side
94 	 */
95 	attr->map_flags |= BPF_F_RDONLY_PROG;
96 
97 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
98 	if (!dtab)
99 		return ERR_PTR(-ENOMEM);
100 
101 	bpf_map_init_from_attr(&dtab->map, attr);
102 
103 	/* make sure page count doesn't overflow */
104 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
105 	cost += sizeof(struct list_head) * num_possible_cpus();
106 
107 	/* if map size is larger than memlock limit, reject it */
108 	err = bpf_map_charge_init(&dtab->map.memory, cost);
109 	if (err)
110 		goto free_dtab;
111 
112 	err = -ENOMEM;
113 
114 	dtab->flush_list = alloc_percpu(struct list_head);
115 	if (!dtab->flush_list)
116 		goto free_charge;
117 
118 	for_each_possible_cpu(cpu)
119 		INIT_LIST_HEAD(per_cpu_ptr(dtab->flush_list, cpu));
120 
121 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
122 					      sizeof(struct bpf_dtab_netdev *),
123 					      dtab->map.numa_node);
124 	if (!dtab->netdev_map)
125 		goto free_percpu;
126 
127 	spin_lock(&dev_map_lock);
128 	list_add_tail_rcu(&dtab->list, &dev_map_list);
129 	spin_unlock(&dev_map_lock);
130 
131 	return &dtab->map;
132 
133 free_percpu:
134 	free_percpu(dtab->flush_list);
135 free_charge:
136 	bpf_map_charge_finish(&dtab->map.memory);
137 free_dtab:
138 	kfree(dtab);
139 	return ERR_PTR(err);
140 }
141 
142 static void dev_map_free(struct bpf_map *map)
143 {
144 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
145 	int i, cpu;
146 
147 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
148 	 * so the programs (can be more than one that used this map) were
149 	 * disconnected from events. Wait for outstanding critical sections in
150 	 * these programs to complete. The rcu critical section only guarantees
151 	 * no further reads against netdev_map. It does __not__ ensure pending
152 	 * flush operations (if any) are complete.
153 	 */
154 
155 	spin_lock(&dev_map_lock);
156 	list_del_rcu(&dtab->list);
157 	spin_unlock(&dev_map_lock);
158 
159 	bpf_clear_redirect_map(map);
160 	synchronize_rcu();
161 
162 	/* Make sure prior __dev_map_entry_free() have completed. */
163 	rcu_barrier();
164 
165 	/* To ensure all pending flush operations have completed wait for flush
166 	 * list to empty on _all_ cpus.
167 	 * Because the above synchronize_rcu() ensures the map is disconnected
168 	 * from the program we can assume no new items will be added.
169 	 */
170 	for_each_online_cpu(cpu) {
171 		struct list_head *flush_list = per_cpu_ptr(dtab->flush_list, cpu);
172 
173 		while (!list_empty(flush_list))
174 			cond_resched();
175 	}
176 
177 	for (i = 0; i < dtab->map.max_entries; i++) {
178 		struct bpf_dtab_netdev *dev;
179 
180 		dev = dtab->netdev_map[i];
181 		if (!dev)
182 			continue;
183 
184 		free_percpu(dev->bulkq);
185 		dev_put(dev->dev);
186 		kfree(dev);
187 	}
188 
189 	free_percpu(dtab->flush_list);
190 	bpf_map_area_free(dtab->netdev_map);
191 	kfree(dtab);
192 }
193 
194 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
195 {
196 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
197 	u32 index = key ? *(u32 *)key : U32_MAX;
198 	u32 *next = next_key;
199 
200 	if (index >= dtab->map.max_entries) {
201 		*next = 0;
202 		return 0;
203 	}
204 
205 	if (index == dtab->map.max_entries - 1)
206 		return -ENOENT;
207 	*next = index + 1;
208 	return 0;
209 }
210 
211 static int bq_xmit_all(struct xdp_bulk_queue *bq, u32 flags,
212 		       bool in_napi_ctx)
213 {
214 	struct bpf_dtab_netdev *obj = bq->obj;
215 	struct net_device *dev = obj->dev;
216 	int sent = 0, drops = 0, err = 0;
217 	int i;
218 
219 	if (unlikely(!bq->count))
220 		return 0;
221 
222 	for (i = 0; i < bq->count; i++) {
223 		struct xdp_frame *xdpf = bq->q[i];
224 
225 		prefetch(xdpf);
226 	}
227 
228 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
229 	if (sent < 0) {
230 		err = sent;
231 		sent = 0;
232 		goto error;
233 	}
234 	drops = bq->count - sent;
235 out:
236 	bq->count = 0;
237 
238 	trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
239 			      sent, drops, bq->dev_rx, dev, err);
240 	bq->dev_rx = NULL;
241 	__list_del_clearprev(&bq->flush_node);
242 	return 0;
243 error:
244 	/* If ndo_xdp_xmit fails with an errno, no frames have been
245 	 * xmit'ed and it's our responsibility to them free all.
246 	 */
247 	for (i = 0; i < bq->count; i++) {
248 		struct xdp_frame *xdpf = bq->q[i];
249 
250 		/* RX path under NAPI protection, can return frames faster */
251 		if (likely(in_napi_ctx))
252 			xdp_return_frame_rx_napi(xdpf);
253 		else
254 			xdp_return_frame(xdpf);
255 		drops++;
256 	}
257 	goto out;
258 }
259 
260 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
261  * from the driver before returning from its napi->poll() routine. The poll()
262  * routine is called either from busy_poll context or net_rx_action signaled
263  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
264  * net device can be torn down. On devmap tear down we ensure the flush list
265  * is empty before completing to ensure all flush operations have completed.
266  */
267 void __dev_map_flush(struct bpf_map *map)
268 {
269 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
270 	struct list_head *flush_list = this_cpu_ptr(dtab->flush_list);
271 	struct xdp_bulk_queue *bq, *tmp;
272 
273 	rcu_read_lock();
274 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
275 		bq_xmit_all(bq, XDP_XMIT_FLUSH, true);
276 	rcu_read_unlock();
277 }
278 
279 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
280  * update happens in parallel here a dev_put wont happen until after reading the
281  * ifindex.
282  */
283 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
284 {
285 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
286 	struct bpf_dtab_netdev *obj;
287 
288 	if (key >= map->max_entries)
289 		return NULL;
290 
291 	obj = READ_ONCE(dtab->netdev_map[key]);
292 	return obj;
293 }
294 
295 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
296  * Thus, safe percpu variable access.
297  */
298 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
299 		      struct net_device *dev_rx)
300 
301 {
302 	struct list_head *flush_list = this_cpu_ptr(obj->dtab->flush_list);
303 	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
304 
305 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
306 		bq_xmit_all(bq, 0, true);
307 
308 	/* Ingress dev_rx will be the same for all xdp_frame's in
309 	 * bulk_queue, because bq stored per-CPU and must be flushed
310 	 * from net_device drivers NAPI func end.
311 	 */
312 	if (!bq->dev_rx)
313 		bq->dev_rx = dev_rx;
314 
315 	bq->q[bq->count++] = xdpf;
316 
317 	if (!bq->flush_node.prev)
318 		list_add(&bq->flush_node, flush_list);
319 
320 	return 0;
321 }
322 
323 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
324 		    struct net_device *dev_rx)
325 {
326 	struct net_device *dev = dst->dev;
327 	struct xdp_frame *xdpf;
328 	int err;
329 
330 	if (!dev->netdev_ops->ndo_xdp_xmit)
331 		return -EOPNOTSUPP;
332 
333 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
334 	if (unlikely(err))
335 		return err;
336 
337 	xdpf = convert_to_xdp_frame(xdp);
338 	if (unlikely(!xdpf))
339 		return -EOVERFLOW;
340 
341 	return bq_enqueue(dst, xdpf, dev_rx);
342 }
343 
344 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
345 			     struct bpf_prog *xdp_prog)
346 {
347 	int err;
348 
349 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
350 	if (unlikely(err))
351 		return err;
352 	skb->dev = dst->dev;
353 	generic_xdp_tx(skb, xdp_prog);
354 
355 	return 0;
356 }
357 
358 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
359 {
360 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
361 	struct net_device *dev = obj ? obj->dev : NULL;
362 
363 	return dev ? &dev->ifindex : NULL;
364 }
365 
366 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
367 {
368 	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
369 		struct xdp_bulk_queue *bq;
370 		int cpu;
371 
372 		rcu_read_lock();
373 		for_each_online_cpu(cpu) {
374 			bq = per_cpu_ptr(dev->bulkq, cpu);
375 			bq_xmit_all(bq, XDP_XMIT_FLUSH, false);
376 		}
377 		rcu_read_unlock();
378 	}
379 }
380 
381 static void __dev_map_entry_free(struct rcu_head *rcu)
382 {
383 	struct bpf_dtab_netdev *dev;
384 
385 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
386 	dev_map_flush_old(dev);
387 	free_percpu(dev->bulkq);
388 	dev_put(dev->dev);
389 	kfree(dev);
390 }
391 
392 static int dev_map_delete_elem(struct bpf_map *map, void *key)
393 {
394 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
395 	struct bpf_dtab_netdev *old_dev;
396 	int k = *(u32 *)key;
397 
398 	if (k >= map->max_entries)
399 		return -EINVAL;
400 
401 	/* Use call_rcu() here to ensure any rcu critical sections have
402 	 * completed, but this does not guarantee a flush has happened
403 	 * yet. Because driver side rcu_read_lock/unlock only protects the
404 	 * running XDP program. However, for pending flush operations the
405 	 * dev and ctx are stored in another per cpu map. And additionally,
406 	 * the driver tear down ensures all soft irqs are complete before
407 	 * removing the net device in the case of dev_put equals zero.
408 	 */
409 	old_dev = xchg(&dtab->netdev_map[k], NULL);
410 	if (old_dev)
411 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
412 	return 0;
413 }
414 
415 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
416 				u64 map_flags)
417 {
418 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
419 	struct net *net = current->nsproxy->net_ns;
420 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
421 	struct bpf_dtab_netdev *dev, *old_dev;
422 	u32 ifindex = *(u32 *)value;
423 	struct xdp_bulk_queue *bq;
424 	u32 i = *(u32 *)key;
425 	int cpu;
426 
427 	if (unlikely(map_flags > BPF_EXIST))
428 		return -EINVAL;
429 	if (unlikely(i >= dtab->map.max_entries))
430 		return -E2BIG;
431 	if (unlikely(map_flags == BPF_NOEXIST))
432 		return -EEXIST;
433 
434 	if (!ifindex) {
435 		dev = NULL;
436 	} else {
437 		dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
438 		if (!dev)
439 			return -ENOMEM;
440 
441 		dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
442 						sizeof(void *), gfp);
443 		if (!dev->bulkq) {
444 			kfree(dev);
445 			return -ENOMEM;
446 		}
447 
448 		for_each_possible_cpu(cpu) {
449 			bq = per_cpu_ptr(dev->bulkq, cpu);
450 			bq->obj = dev;
451 		}
452 
453 		dev->dev = dev_get_by_index(net, ifindex);
454 		if (!dev->dev) {
455 			free_percpu(dev->bulkq);
456 			kfree(dev);
457 			return -EINVAL;
458 		}
459 
460 		dev->bit = i;
461 		dev->dtab = dtab;
462 	}
463 
464 	/* Use call_rcu() here to ensure rcu critical sections have completed
465 	 * Remembering the driver side flush operation will happen before the
466 	 * net device is removed.
467 	 */
468 	old_dev = xchg(&dtab->netdev_map[i], dev);
469 	if (old_dev)
470 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
471 
472 	return 0;
473 }
474 
475 const struct bpf_map_ops dev_map_ops = {
476 	.map_alloc = dev_map_alloc,
477 	.map_free = dev_map_free,
478 	.map_get_next_key = dev_map_get_next_key,
479 	.map_lookup_elem = dev_map_lookup_elem,
480 	.map_update_elem = dev_map_update_elem,
481 	.map_delete_elem = dev_map_delete_elem,
482 	.map_check_btf = map_check_no_btf,
483 };
484 
485 static int dev_map_notification(struct notifier_block *notifier,
486 				ulong event, void *ptr)
487 {
488 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
489 	struct bpf_dtab *dtab;
490 	int i;
491 
492 	switch (event) {
493 	case NETDEV_UNREGISTER:
494 		/* This rcu_read_lock/unlock pair is needed because
495 		 * dev_map_list is an RCU list AND to ensure a delete
496 		 * operation does not free a netdev_map entry while we
497 		 * are comparing it against the netdev being unregistered.
498 		 */
499 		rcu_read_lock();
500 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
501 			for (i = 0; i < dtab->map.max_entries; i++) {
502 				struct bpf_dtab_netdev *dev, *odev;
503 
504 				dev = READ_ONCE(dtab->netdev_map[i]);
505 				if (!dev || netdev != dev->dev)
506 					continue;
507 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
508 				if (dev == odev)
509 					call_rcu(&dev->rcu,
510 						 __dev_map_entry_free);
511 			}
512 		}
513 		rcu_read_unlock();
514 		break;
515 	default:
516 		break;
517 	}
518 	return NOTIFY_OK;
519 }
520 
521 static struct notifier_block dev_map_notifier = {
522 	.notifier_call = dev_map_notification,
523 };
524 
525 static int __init dev_map_init(void)
526 {
527 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
528 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
529 		     offsetof(struct _bpf_dtab_netdev, dev));
530 	register_netdevice_notifier(&dev_map_notifier);
531 	return 0;
532 }
533 
534 subsys_initcall(dev_map_init);
535