1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 #include <linux/btf_ids.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 struct bpf_prog *xdp_prog; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct hlist_node index_hlist; 68 struct bpf_dtab *dtab; 69 struct bpf_prog *xdp_prog; 70 struct rcu_head rcu; 71 unsigned int idx; 72 struct bpf_devmap_val val; 73 }; 74 75 struct bpf_dtab { 76 struct bpf_map map; 77 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 78 struct list_head list; 79 80 /* these are only used for DEVMAP_HASH type maps */ 81 struct hlist_head *dev_index_head; 82 spinlock_t index_lock; 83 unsigned int items; 84 u32 n_buckets; 85 }; 86 87 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 88 static DEFINE_SPINLOCK(dev_map_lock); 89 static LIST_HEAD(dev_map_list); 90 91 static struct hlist_head *dev_map_create_hash(unsigned int entries, 92 int numa_node) 93 { 94 int i; 95 struct hlist_head *hash; 96 97 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 98 if (hash != NULL) 99 for (i = 0; i < entries; i++) 100 INIT_HLIST_HEAD(&hash[i]); 101 102 return hash; 103 } 104 105 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 106 int idx) 107 { 108 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 109 } 110 111 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 112 { 113 u32 valsize = attr->value_size; 114 115 /* check sanity of attributes. 2 value sizes supported: 116 * 4 bytes: ifindex 117 * 8 bytes: ifindex + prog fd 118 */ 119 if (attr->max_entries == 0 || attr->key_size != 4 || 120 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 121 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 122 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 123 return -EINVAL; 124 125 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 126 * verifier prevents writes from the BPF side 127 */ 128 attr->map_flags |= BPF_F_RDONLY_PROG; 129 130 131 bpf_map_init_from_attr(&dtab->map, attr); 132 133 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 134 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 135 136 if (!dtab->n_buckets) /* Overflow check */ 137 return -EINVAL; 138 } 139 140 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 141 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 142 dtab->map.numa_node); 143 if (!dtab->dev_index_head) 144 return -ENOMEM; 145 146 spin_lock_init(&dtab->index_lock); 147 } else { 148 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 149 sizeof(struct bpf_dtab_netdev *), 150 dtab->map.numa_node); 151 if (!dtab->netdev_map) 152 return -ENOMEM; 153 } 154 155 return 0; 156 } 157 158 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 159 { 160 struct bpf_dtab *dtab; 161 int err; 162 163 if (!capable(CAP_NET_ADMIN)) 164 return ERR_PTR(-EPERM); 165 166 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); 167 if (!dtab) 168 return ERR_PTR(-ENOMEM); 169 170 err = dev_map_init_map(dtab, attr); 171 if (err) { 172 bpf_map_area_free(dtab); 173 return ERR_PTR(err); 174 } 175 176 spin_lock(&dev_map_lock); 177 list_add_tail_rcu(&dtab->list, &dev_map_list); 178 spin_unlock(&dev_map_lock); 179 180 return &dtab->map; 181 } 182 183 static void dev_map_free(struct bpf_map *map) 184 { 185 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 186 int i; 187 188 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 189 * so the programs (can be more than one that used this map) were 190 * disconnected from events. The following synchronize_rcu() guarantees 191 * both rcu read critical sections complete and waits for 192 * preempt-disable regions (NAPI being the relevant context here) so we 193 * are certain there will be no further reads against the netdev_map and 194 * all flush operations are complete. Flush operations can only be done 195 * from NAPI context for this reason. 196 */ 197 198 spin_lock(&dev_map_lock); 199 list_del_rcu(&dtab->list); 200 spin_unlock(&dev_map_lock); 201 202 bpf_clear_redirect_map(map); 203 synchronize_rcu(); 204 205 /* Make sure prior __dev_map_entry_free() have completed. */ 206 rcu_barrier(); 207 208 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 209 for (i = 0; i < dtab->n_buckets; i++) { 210 struct bpf_dtab_netdev *dev; 211 struct hlist_head *head; 212 struct hlist_node *next; 213 214 head = dev_map_index_hash(dtab, i); 215 216 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 217 hlist_del_rcu(&dev->index_hlist); 218 if (dev->xdp_prog) 219 bpf_prog_put(dev->xdp_prog); 220 dev_put(dev->dev); 221 kfree(dev); 222 } 223 } 224 225 bpf_map_area_free(dtab->dev_index_head); 226 } else { 227 for (i = 0; i < dtab->map.max_entries; i++) { 228 struct bpf_dtab_netdev *dev; 229 230 dev = rcu_dereference_raw(dtab->netdev_map[i]); 231 if (!dev) 232 continue; 233 234 if (dev->xdp_prog) 235 bpf_prog_put(dev->xdp_prog); 236 dev_put(dev->dev); 237 kfree(dev); 238 } 239 240 bpf_map_area_free(dtab->netdev_map); 241 } 242 243 bpf_map_area_free(dtab); 244 } 245 246 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 247 { 248 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 249 u32 index = key ? *(u32 *)key : U32_MAX; 250 u32 *next = next_key; 251 252 if (index >= dtab->map.max_entries) { 253 *next = 0; 254 return 0; 255 } 256 257 if (index == dtab->map.max_entries - 1) 258 return -ENOENT; 259 *next = index + 1; 260 return 0; 261 } 262 263 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 264 * by local_bh_disable() (from XDP calls inside NAPI). The 265 * rcu_read_lock_bh_held() below makes lockdep accept both. 266 */ 267 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 268 { 269 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 270 struct hlist_head *head = dev_map_index_hash(dtab, key); 271 struct bpf_dtab_netdev *dev; 272 273 hlist_for_each_entry_rcu(dev, head, index_hlist, 274 lockdep_is_held(&dtab->index_lock)) 275 if (dev->idx == key) 276 return dev; 277 278 return NULL; 279 } 280 281 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 282 void *next_key) 283 { 284 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 285 u32 idx, *next = next_key; 286 struct bpf_dtab_netdev *dev, *next_dev; 287 struct hlist_head *head; 288 int i = 0; 289 290 if (!key) 291 goto find_first; 292 293 idx = *(u32 *)key; 294 295 dev = __dev_map_hash_lookup_elem(map, idx); 296 if (!dev) 297 goto find_first; 298 299 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 300 struct bpf_dtab_netdev, index_hlist); 301 302 if (next_dev) { 303 *next = next_dev->idx; 304 return 0; 305 } 306 307 i = idx & (dtab->n_buckets - 1); 308 i++; 309 310 find_first: 311 for (; i < dtab->n_buckets; i++) { 312 head = dev_map_index_hash(dtab, i); 313 314 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 315 struct bpf_dtab_netdev, 316 index_hlist); 317 if (next_dev) { 318 *next = next_dev->idx; 319 return 0; 320 } 321 } 322 323 return -ENOENT; 324 } 325 326 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 327 struct xdp_frame **frames, int n, 328 struct net_device *dev) 329 { 330 struct xdp_txq_info txq = { .dev = dev }; 331 struct xdp_buff xdp; 332 int i, nframes = 0; 333 334 for (i = 0; i < n; i++) { 335 struct xdp_frame *xdpf = frames[i]; 336 u32 act; 337 int err; 338 339 xdp_convert_frame_to_buff(xdpf, &xdp); 340 xdp.txq = &txq; 341 342 act = bpf_prog_run_xdp(xdp_prog, &xdp); 343 switch (act) { 344 case XDP_PASS: 345 err = xdp_update_frame_from_buff(&xdp, xdpf); 346 if (unlikely(err < 0)) 347 xdp_return_frame_rx_napi(xdpf); 348 else 349 frames[nframes++] = xdpf; 350 break; 351 default: 352 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); 353 fallthrough; 354 case XDP_ABORTED: 355 trace_xdp_exception(dev, xdp_prog, act); 356 fallthrough; 357 case XDP_DROP: 358 xdp_return_frame_rx_napi(xdpf); 359 break; 360 } 361 } 362 return nframes; /* sent frames count */ 363 } 364 365 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 366 { 367 struct net_device *dev = bq->dev; 368 unsigned int cnt = bq->count; 369 int sent = 0, err = 0; 370 int to_send = cnt; 371 int i; 372 373 if (unlikely(!cnt)) 374 return; 375 376 for (i = 0; i < cnt; i++) { 377 struct xdp_frame *xdpf = bq->q[i]; 378 379 prefetch(xdpf); 380 } 381 382 if (bq->xdp_prog) { 383 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 384 if (!to_send) 385 goto out; 386 } 387 388 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 389 if (sent < 0) { 390 /* If ndo_xdp_xmit fails with an errno, no frames have 391 * been xmit'ed. 392 */ 393 err = sent; 394 sent = 0; 395 } 396 397 /* If not all frames have been transmitted, it is our 398 * responsibility to free them 399 */ 400 for (i = sent; unlikely(i < to_send); i++) 401 xdp_return_frame_rx_napi(bq->q[i]); 402 403 out: 404 bq->count = 0; 405 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 406 } 407 408 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 409 * driver before returning from its napi->poll() routine. See the comment above 410 * xdp_do_flush() in filter.c. 411 */ 412 void __dev_flush(void) 413 { 414 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 415 struct xdp_dev_bulk_queue *bq, *tmp; 416 417 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 418 bq_xmit_all(bq, XDP_XMIT_FLUSH); 419 bq->dev_rx = NULL; 420 bq->xdp_prog = NULL; 421 __list_del_clearprev(&bq->flush_node); 422 } 423 } 424 425 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 426 * by local_bh_disable() (from XDP calls inside NAPI). The 427 * rcu_read_lock_bh_held() below makes lockdep accept both. 428 */ 429 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 430 { 431 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 432 struct bpf_dtab_netdev *obj; 433 434 if (key >= map->max_entries) 435 return NULL; 436 437 obj = rcu_dereference_check(dtab->netdev_map[key], 438 rcu_read_lock_bh_held()); 439 return obj; 440 } 441 442 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 443 * variable access, and map elements stick around. See comment above 444 * xdp_do_flush() in filter.c. 445 */ 446 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 447 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 448 { 449 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 450 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 451 452 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 453 bq_xmit_all(bq, 0); 454 455 /* Ingress dev_rx will be the same for all xdp_frame's in 456 * bulk_queue, because bq stored per-CPU and must be flushed 457 * from net_device drivers NAPI func end. 458 * 459 * Do the same with xdp_prog and flush_list since these fields 460 * are only ever modified together. 461 */ 462 if (!bq->dev_rx) { 463 bq->dev_rx = dev_rx; 464 bq->xdp_prog = xdp_prog; 465 list_add(&bq->flush_node, flush_list); 466 } 467 468 bq->q[bq->count++] = xdpf; 469 } 470 471 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 472 struct net_device *dev_rx, 473 struct bpf_prog *xdp_prog) 474 { 475 int err; 476 477 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 478 return -EOPNOTSUPP; 479 480 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 481 xdp_frame_has_frags(xdpf))) 482 return -EOPNOTSUPP; 483 484 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); 485 if (unlikely(err)) 486 return err; 487 488 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 489 return 0; 490 } 491 492 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 493 { 494 struct xdp_txq_info txq = { .dev = dst->dev }; 495 struct xdp_buff xdp; 496 u32 act; 497 498 if (!dst->xdp_prog) 499 return XDP_PASS; 500 501 __skb_pull(skb, skb->mac_len); 502 xdp.txq = &txq; 503 504 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 505 switch (act) { 506 case XDP_PASS: 507 __skb_push(skb, skb->mac_len); 508 break; 509 default: 510 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); 511 fallthrough; 512 case XDP_ABORTED: 513 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 514 fallthrough; 515 case XDP_DROP: 516 kfree_skb(skb); 517 break; 518 } 519 520 return act; 521 } 522 523 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 524 struct net_device *dev_rx) 525 { 526 return __xdp_enqueue(dev, xdpf, dev_rx, NULL); 527 } 528 529 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 530 struct net_device *dev_rx) 531 { 532 struct net_device *dev = dst->dev; 533 534 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); 535 } 536 537 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) 538 { 539 if (!obj) 540 return false; 541 542 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 543 return false; 544 545 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 546 xdp_frame_has_frags(xdpf))) 547 return false; 548 549 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) 550 return false; 551 552 return true; 553 } 554 555 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 556 struct net_device *dev_rx, 557 struct xdp_frame *xdpf) 558 { 559 struct xdp_frame *nxdpf; 560 561 nxdpf = xdpf_clone(xdpf); 562 if (!nxdpf) 563 return -ENOMEM; 564 565 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 566 567 return 0; 568 } 569 570 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 571 { 572 while (num_excluded--) { 573 if (ifindex == excluded[num_excluded]) 574 return true; 575 } 576 return false; 577 } 578 579 /* Get ifindex of each upper device. 'indexes' must be able to hold at 580 * least MAX_NEST_DEV elements. 581 * Returns the number of ifindexes added. 582 */ 583 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 584 { 585 struct net_device *upper; 586 struct list_head *iter; 587 int n = 0; 588 589 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 590 indexes[n++] = upper->ifindex; 591 } 592 return n; 593 } 594 595 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 596 struct bpf_map *map, bool exclude_ingress) 597 { 598 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 599 struct bpf_dtab_netdev *dst, *last_dst = NULL; 600 int excluded_devices[1+MAX_NEST_DEV]; 601 struct hlist_head *head; 602 int num_excluded = 0; 603 unsigned int i; 604 int err; 605 606 if (exclude_ingress) { 607 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 608 excluded_devices[num_excluded++] = dev_rx->ifindex; 609 } 610 611 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 612 for (i = 0; i < map->max_entries; i++) { 613 dst = rcu_dereference_check(dtab->netdev_map[i], 614 rcu_read_lock_bh_held()); 615 if (!is_valid_dst(dst, xdpf)) 616 continue; 617 618 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 619 continue; 620 621 /* we only need n-1 clones; last_dst enqueued below */ 622 if (!last_dst) { 623 last_dst = dst; 624 continue; 625 } 626 627 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 628 if (err) 629 return err; 630 631 last_dst = dst; 632 } 633 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 634 for (i = 0; i < dtab->n_buckets; i++) { 635 head = dev_map_index_hash(dtab, i); 636 hlist_for_each_entry_rcu(dst, head, index_hlist, 637 lockdep_is_held(&dtab->index_lock)) { 638 if (!is_valid_dst(dst, xdpf)) 639 continue; 640 641 if (is_ifindex_excluded(excluded_devices, num_excluded, 642 dst->dev->ifindex)) 643 continue; 644 645 /* we only need n-1 clones; last_dst enqueued below */ 646 if (!last_dst) { 647 last_dst = dst; 648 continue; 649 } 650 651 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 652 if (err) 653 return err; 654 655 last_dst = dst; 656 } 657 } 658 } 659 660 /* consume the last copy of the frame */ 661 if (last_dst) 662 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 663 else 664 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 665 666 return 0; 667 } 668 669 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 670 struct bpf_prog *xdp_prog) 671 { 672 int err; 673 674 err = xdp_ok_fwd_dev(dst->dev, skb->len); 675 if (unlikely(err)) 676 return err; 677 678 /* Redirect has already succeeded semantically at this point, so we just 679 * return 0 even if packet is dropped. Helper below takes care of 680 * freeing skb. 681 */ 682 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 683 return 0; 684 685 skb->dev = dst->dev; 686 generic_xdp_tx(skb, xdp_prog); 687 688 return 0; 689 } 690 691 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 692 struct sk_buff *skb, 693 struct bpf_prog *xdp_prog) 694 { 695 struct sk_buff *nskb; 696 int err; 697 698 nskb = skb_clone(skb, GFP_ATOMIC); 699 if (!nskb) 700 return -ENOMEM; 701 702 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 703 if (unlikely(err)) { 704 consume_skb(nskb); 705 return err; 706 } 707 708 return 0; 709 } 710 711 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 712 struct bpf_prog *xdp_prog, struct bpf_map *map, 713 bool exclude_ingress) 714 { 715 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 716 struct bpf_dtab_netdev *dst, *last_dst = NULL; 717 int excluded_devices[1+MAX_NEST_DEV]; 718 struct hlist_head *head; 719 struct hlist_node *next; 720 int num_excluded = 0; 721 unsigned int i; 722 int err; 723 724 if (exclude_ingress) { 725 num_excluded = get_upper_ifindexes(dev, excluded_devices); 726 excluded_devices[num_excluded++] = dev->ifindex; 727 } 728 729 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 730 for (i = 0; i < map->max_entries; i++) { 731 dst = rcu_dereference_check(dtab->netdev_map[i], 732 rcu_read_lock_bh_held()); 733 if (!dst) 734 continue; 735 736 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 737 continue; 738 739 /* we only need n-1 clones; last_dst enqueued below */ 740 if (!last_dst) { 741 last_dst = dst; 742 continue; 743 } 744 745 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 746 if (err) 747 return err; 748 749 last_dst = dst; 750 751 } 752 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 753 for (i = 0; i < dtab->n_buckets; i++) { 754 head = dev_map_index_hash(dtab, i); 755 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 756 if (!dst) 757 continue; 758 759 if (is_ifindex_excluded(excluded_devices, num_excluded, 760 dst->dev->ifindex)) 761 continue; 762 763 /* we only need n-1 clones; last_dst enqueued below */ 764 if (!last_dst) { 765 last_dst = dst; 766 continue; 767 } 768 769 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 770 if (err) 771 return err; 772 773 last_dst = dst; 774 } 775 } 776 } 777 778 /* consume the first skb and return */ 779 if (last_dst) 780 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 781 782 /* dtab is empty */ 783 consume_skb(skb); 784 return 0; 785 } 786 787 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 788 { 789 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 790 791 return obj ? &obj->val : NULL; 792 } 793 794 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 795 { 796 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 797 *(u32 *)key); 798 return obj ? &obj->val : NULL; 799 } 800 801 static void __dev_map_entry_free(struct rcu_head *rcu) 802 { 803 struct bpf_dtab_netdev *dev; 804 805 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 806 if (dev->xdp_prog) 807 bpf_prog_put(dev->xdp_prog); 808 dev_put(dev->dev); 809 kfree(dev); 810 } 811 812 static int dev_map_delete_elem(struct bpf_map *map, void *key) 813 { 814 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 815 struct bpf_dtab_netdev *old_dev; 816 int k = *(u32 *)key; 817 818 if (k >= map->max_entries) 819 return -EINVAL; 820 821 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 822 if (old_dev) { 823 call_rcu(&old_dev->rcu, __dev_map_entry_free); 824 atomic_dec((atomic_t *)&dtab->items); 825 } 826 return 0; 827 } 828 829 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key) 830 { 831 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 832 struct bpf_dtab_netdev *old_dev; 833 int k = *(u32 *)key; 834 unsigned long flags; 835 int ret = -ENOENT; 836 837 spin_lock_irqsave(&dtab->index_lock, flags); 838 839 old_dev = __dev_map_hash_lookup_elem(map, k); 840 if (old_dev) { 841 dtab->items--; 842 hlist_del_init_rcu(&old_dev->index_hlist); 843 call_rcu(&old_dev->rcu, __dev_map_entry_free); 844 ret = 0; 845 } 846 spin_unlock_irqrestore(&dtab->index_lock, flags); 847 848 return ret; 849 } 850 851 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 852 struct bpf_dtab *dtab, 853 struct bpf_devmap_val *val, 854 unsigned int idx) 855 { 856 struct bpf_prog *prog = NULL; 857 struct bpf_dtab_netdev *dev; 858 859 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 860 GFP_NOWAIT | __GFP_NOWARN, 861 dtab->map.numa_node); 862 if (!dev) 863 return ERR_PTR(-ENOMEM); 864 865 dev->dev = dev_get_by_index(net, val->ifindex); 866 if (!dev->dev) 867 goto err_out; 868 869 if (val->bpf_prog.fd > 0) { 870 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 871 BPF_PROG_TYPE_XDP, false); 872 if (IS_ERR(prog)) 873 goto err_put_dev; 874 if (prog->expected_attach_type != BPF_XDP_DEVMAP || 875 !bpf_prog_map_compatible(&dtab->map, prog)) 876 goto err_put_prog; 877 } 878 879 dev->idx = idx; 880 dev->dtab = dtab; 881 if (prog) { 882 dev->xdp_prog = prog; 883 dev->val.bpf_prog.id = prog->aux->id; 884 } else { 885 dev->xdp_prog = NULL; 886 dev->val.bpf_prog.id = 0; 887 } 888 dev->val.ifindex = val->ifindex; 889 890 return dev; 891 err_put_prog: 892 bpf_prog_put(prog); 893 err_put_dev: 894 dev_put(dev->dev); 895 err_out: 896 kfree(dev); 897 return ERR_PTR(-EINVAL); 898 } 899 900 static int __dev_map_update_elem(struct net *net, struct bpf_map *map, 901 void *key, void *value, u64 map_flags) 902 { 903 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 904 struct bpf_dtab_netdev *dev, *old_dev; 905 struct bpf_devmap_val val = {}; 906 u32 i = *(u32 *)key; 907 908 if (unlikely(map_flags > BPF_EXIST)) 909 return -EINVAL; 910 if (unlikely(i >= dtab->map.max_entries)) 911 return -E2BIG; 912 if (unlikely(map_flags == BPF_NOEXIST)) 913 return -EEXIST; 914 915 /* already verified value_size <= sizeof val */ 916 memcpy(&val, value, map->value_size); 917 918 if (!val.ifindex) { 919 dev = NULL; 920 /* can not specify fd if ifindex is 0 */ 921 if (val.bpf_prog.fd > 0) 922 return -EINVAL; 923 } else { 924 dev = __dev_map_alloc_node(net, dtab, &val, i); 925 if (IS_ERR(dev)) 926 return PTR_ERR(dev); 927 } 928 929 /* Use call_rcu() here to ensure rcu critical sections have completed 930 * Remembering the driver side flush operation will happen before the 931 * net device is removed. 932 */ 933 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 934 if (old_dev) 935 call_rcu(&old_dev->rcu, __dev_map_entry_free); 936 else 937 atomic_inc((atomic_t *)&dtab->items); 938 939 return 0; 940 } 941 942 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 943 u64 map_flags) 944 { 945 return __dev_map_update_elem(current->nsproxy->net_ns, 946 map, key, value, map_flags); 947 } 948 949 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 950 void *key, void *value, u64 map_flags) 951 { 952 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 953 struct bpf_dtab_netdev *dev, *old_dev; 954 struct bpf_devmap_val val = {}; 955 u32 idx = *(u32 *)key; 956 unsigned long flags; 957 int err = -EEXIST; 958 959 /* already verified value_size <= sizeof val */ 960 memcpy(&val, value, map->value_size); 961 962 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 963 return -EINVAL; 964 965 spin_lock_irqsave(&dtab->index_lock, flags); 966 967 old_dev = __dev_map_hash_lookup_elem(map, idx); 968 if (old_dev && (map_flags & BPF_NOEXIST)) 969 goto out_err; 970 971 dev = __dev_map_alloc_node(net, dtab, &val, idx); 972 if (IS_ERR(dev)) { 973 err = PTR_ERR(dev); 974 goto out_err; 975 } 976 977 if (old_dev) { 978 hlist_del_rcu(&old_dev->index_hlist); 979 } else { 980 if (dtab->items >= dtab->map.max_entries) { 981 spin_unlock_irqrestore(&dtab->index_lock, flags); 982 call_rcu(&dev->rcu, __dev_map_entry_free); 983 return -E2BIG; 984 } 985 dtab->items++; 986 } 987 988 hlist_add_head_rcu(&dev->index_hlist, 989 dev_map_index_hash(dtab, idx)); 990 spin_unlock_irqrestore(&dtab->index_lock, flags); 991 992 if (old_dev) 993 call_rcu(&old_dev->rcu, __dev_map_entry_free); 994 995 return 0; 996 997 out_err: 998 spin_unlock_irqrestore(&dtab->index_lock, flags); 999 return err; 1000 } 1001 1002 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 1003 u64 map_flags) 1004 { 1005 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1006 map, key, value, map_flags); 1007 } 1008 1009 static int dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1010 { 1011 return __bpf_xdp_redirect_map(map, ifindex, flags, 1012 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1013 __dev_map_lookup_elem); 1014 } 1015 1016 static int dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1017 { 1018 return __bpf_xdp_redirect_map(map, ifindex, flags, 1019 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1020 __dev_map_hash_lookup_elem); 1021 } 1022 1023 static u64 dev_map_mem_usage(const struct bpf_map *map) 1024 { 1025 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 1026 u64 usage = sizeof(struct bpf_dtab); 1027 1028 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) 1029 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); 1030 else 1031 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); 1032 usage += atomic_read((atomic_t *)&dtab->items) * 1033 (u64)sizeof(struct bpf_dtab_netdev); 1034 return usage; 1035 } 1036 1037 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) 1038 const struct bpf_map_ops dev_map_ops = { 1039 .map_meta_equal = bpf_map_meta_equal, 1040 .map_alloc = dev_map_alloc, 1041 .map_free = dev_map_free, 1042 .map_get_next_key = dev_map_get_next_key, 1043 .map_lookup_elem = dev_map_lookup_elem, 1044 .map_update_elem = dev_map_update_elem, 1045 .map_delete_elem = dev_map_delete_elem, 1046 .map_check_btf = map_check_no_btf, 1047 .map_mem_usage = dev_map_mem_usage, 1048 .map_btf_id = &dev_map_btf_ids[0], 1049 .map_redirect = dev_map_redirect, 1050 }; 1051 1052 const struct bpf_map_ops dev_map_hash_ops = { 1053 .map_meta_equal = bpf_map_meta_equal, 1054 .map_alloc = dev_map_alloc, 1055 .map_free = dev_map_free, 1056 .map_get_next_key = dev_map_hash_get_next_key, 1057 .map_lookup_elem = dev_map_hash_lookup_elem, 1058 .map_update_elem = dev_map_hash_update_elem, 1059 .map_delete_elem = dev_map_hash_delete_elem, 1060 .map_check_btf = map_check_no_btf, 1061 .map_mem_usage = dev_map_mem_usage, 1062 .map_btf_id = &dev_map_btf_ids[0], 1063 .map_redirect = dev_hash_map_redirect, 1064 }; 1065 1066 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1067 struct net_device *netdev) 1068 { 1069 unsigned long flags; 1070 u32 i; 1071 1072 spin_lock_irqsave(&dtab->index_lock, flags); 1073 for (i = 0; i < dtab->n_buckets; i++) { 1074 struct bpf_dtab_netdev *dev; 1075 struct hlist_head *head; 1076 struct hlist_node *next; 1077 1078 head = dev_map_index_hash(dtab, i); 1079 1080 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1081 if (netdev != dev->dev) 1082 continue; 1083 1084 dtab->items--; 1085 hlist_del_rcu(&dev->index_hlist); 1086 call_rcu(&dev->rcu, __dev_map_entry_free); 1087 } 1088 } 1089 spin_unlock_irqrestore(&dtab->index_lock, flags); 1090 } 1091 1092 static int dev_map_notification(struct notifier_block *notifier, 1093 ulong event, void *ptr) 1094 { 1095 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1096 struct bpf_dtab *dtab; 1097 int i, cpu; 1098 1099 switch (event) { 1100 case NETDEV_REGISTER: 1101 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1102 break; 1103 1104 /* will be freed in free_netdev() */ 1105 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1106 if (!netdev->xdp_bulkq) 1107 return NOTIFY_BAD; 1108 1109 for_each_possible_cpu(cpu) 1110 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1111 break; 1112 case NETDEV_UNREGISTER: 1113 /* This rcu_read_lock/unlock pair is needed because 1114 * dev_map_list is an RCU list AND to ensure a delete 1115 * operation does not free a netdev_map entry while we 1116 * are comparing it against the netdev being unregistered. 1117 */ 1118 rcu_read_lock(); 1119 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1120 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1121 dev_map_hash_remove_netdev(dtab, netdev); 1122 continue; 1123 } 1124 1125 for (i = 0; i < dtab->map.max_entries; i++) { 1126 struct bpf_dtab_netdev *dev, *odev; 1127 1128 dev = rcu_dereference(dtab->netdev_map[i]); 1129 if (!dev || netdev != dev->dev) 1130 continue; 1131 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1132 if (dev == odev) { 1133 call_rcu(&dev->rcu, 1134 __dev_map_entry_free); 1135 atomic_dec((atomic_t *)&dtab->items); 1136 } 1137 } 1138 } 1139 rcu_read_unlock(); 1140 break; 1141 default: 1142 break; 1143 } 1144 return NOTIFY_OK; 1145 } 1146 1147 static struct notifier_block dev_map_notifier = { 1148 .notifier_call = dev_map_notification, 1149 }; 1150 1151 static int __init dev_map_init(void) 1152 { 1153 int cpu; 1154 1155 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1156 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1157 offsetof(struct _bpf_dtab_netdev, dev)); 1158 register_netdevice_notifier(&dev_map_notifier); 1159 1160 for_each_possible_cpu(cpu) 1161 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 1162 return 0; 1163 } 1164 1165 subsys_initcall(dev_map_init); 1166