xref: /openbmc/linux/kernel/bpf/devmap.c (revision 8ee90c5c)
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15  * spent some effort to ensure the datapath with redirect maps does not use
16  * any locking. This is a quick note on the details.
17  *
18  * We have three possible paths to get into the devmap control plane bpf
19  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20  * will invoke an update, delete, or lookup operation. To ensure updates and
21  * deletes appear atomic from the datapath side xchg() is used to modify the
22  * netdev_map array. Then because the datapath does a lookup into the netdev_map
23  * array (read-only) from an RCU critical section we use call_rcu() to wait for
24  * an rcu grace period before free'ing the old data structures. This ensures the
25  * datapath always has a valid copy. However, the datapath does a "flush"
26  * operation that pushes any pending packets in the driver outside the RCU
27  * critical section. Each bpf_dtab_netdev tracks these pending operations using
28  * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29  * until all bits are cleared indicating outstanding flush operations have
30  * completed.
31  *
32  * BPF syscalls may race with BPF program calls on any of the update, delete
33  * or lookup operations. As noted above the xchg() operation also keep the
34  * netdev_map consistent in this case. From the devmap side BPF programs
35  * calling into these operations are the same as multiple user space threads
36  * making system calls.
37  *
38  * Finally, any of the above may race with a netdev_unregister notifier. The
39  * unregister notifier must search for net devices in the map structure that
40  * contain a reference to the net device and remove them. This is a two step
41  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42  * check to see if the ifindex is the same as the net_device being removed.
43  * When removing the dev a cmpxchg() is used to ensure the correct dev is
44  * removed, in the case of a concurrent update or delete operation it is
45  * possible that the initially referenced dev is no longer in the map. As the
46  * notifier hook walks the map we know that new dev references can not be
47  * added by the user because core infrastructure ensures dev_get_by_index()
48  * calls will fail at this point.
49  */
50 #include <linux/bpf.h>
51 #include <linux/filter.h>
52 
53 struct bpf_dtab_netdev {
54 	struct net_device *dev;
55 	struct bpf_dtab *dtab;
56 	unsigned int bit;
57 	struct rcu_head rcu;
58 };
59 
60 struct bpf_dtab {
61 	struct bpf_map map;
62 	struct bpf_dtab_netdev **netdev_map;
63 	unsigned long __percpu *flush_needed;
64 	struct list_head list;
65 };
66 
67 static DEFINE_SPINLOCK(dev_map_lock);
68 static LIST_HEAD(dev_map_list);
69 
70 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
71 {
72 	return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
73 }
74 
75 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
76 {
77 	struct bpf_dtab *dtab;
78 	int err = -EINVAL;
79 	u64 cost;
80 
81 	if (!capable(CAP_NET_ADMIN))
82 		return ERR_PTR(-EPERM);
83 
84 	/* check sanity of attributes */
85 	if (attr->max_entries == 0 || attr->key_size != 4 ||
86 	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
87 		return ERR_PTR(-EINVAL);
88 
89 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
90 	if (!dtab)
91 		return ERR_PTR(-ENOMEM);
92 
93 	/* mandatory map attributes */
94 	dtab->map.map_type = attr->map_type;
95 	dtab->map.key_size = attr->key_size;
96 	dtab->map.value_size = attr->value_size;
97 	dtab->map.max_entries = attr->max_entries;
98 	dtab->map.map_flags = attr->map_flags;
99 	dtab->map.numa_node = bpf_map_attr_numa_node(attr);
100 
101 	/* make sure page count doesn't overflow */
102 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
103 	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
104 	if (cost >= U32_MAX - PAGE_SIZE)
105 		goto free_dtab;
106 
107 	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
108 
109 	/* if map size is larger than memlock limit, reject it early */
110 	err = bpf_map_precharge_memlock(dtab->map.pages);
111 	if (err)
112 		goto free_dtab;
113 
114 	err = -ENOMEM;
115 
116 	/* A per cpu bitfield with a bit per possible net device */
117 	dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
118 						__alignof__(unsigned long),
119 						GFP_KERNEL | __GFP_NOWARN);
120 	if (!dtab->flush_needed)
121 		goto free_dtab;
122 
123 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
124 					      sizeof(struct bpf_dtab_netdev *),
125 					      dtab->map.numa_node);
126 	if (!dtab->netdev_map)
127 		goto free_dtab;
128 
129 	spin_lock(&dev_map_lock);
130 	list_add_tail_rcu(&dtab->list, &dev_map_list);
131 	spin_unlock(&dev_map_lock);
132 
133 	return &dtab->map;
134 free_dtab:
135 	free_percpu(dtab->flush_needed);
136 	kfree(dtab);
137 	return ERR_PTR(err);
138 }
139 
140 static void dev_map_free(struct bpf_map *map)
141 {
142 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
143 	int i, cpu;
144 
145 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
146 	 * so the programs (can be more than one that used this map) were
147 	 * disconnected from events. Wait for outstanding critical sections in
148 	 * these programs to complete. The rcu critical section only guarantees
149 	 * no further reads against netdev_map. It does __not__ ensure pending
150 	 * flush operations (if any) are complete.
151 	 */
152 
153 	spin_lock(&dev_map_lock);
154 	list_del_rcu(&dtab->list);
155 	spin_unlock(&dev_map_lock);
156 
157 	synchronize_rcu();
158 
159 	/* To ensure all pending flush operations have completed wait for flush
160 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
161 	 * Because the above synchronize_rcu() ensures the map is disconnected
162 	 * from the program we can assume no new bits will be set.
163 	 */
164 	for_each_online_cpu(cpu) {
165 		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
166 
167 		while (!bitmap_empty(bitmap, dtab->map.max_entries))
168 			cond_resched();
169 	}
170 
171 	for (i = 0; i < dtab->map.max_entries; i++) {
172 		struct bpf_dtab_netdev *dev;
173 
174 		dev = dtab->netdev_map[i];
175 		if (!dev)
176 			continue;
177 
178 		dev_put(dev->dev);
179 		kfree(dev);
180 	}
181 
182 	free_percpu(dtab->flush_needed);
183 	bpf_map_area_free(dtab->netdev_map);
184 	kfree(dtab);
185 }
186 
187 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
188 {
189 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
190 	u32 index = key ? *(u32 *)key : U32_MAX;
191 	u32 *next = next_key;
192 
193 	if (index >= dtab->map.max_entries) {
194 		*next = 0;
195 		return 0;
196 	}
197 
198 	if (index == dtab->map.max_entries - 1)
199 		return -ENOENT;
200 	*next = index + 1;
201 	return 0;
202 }
203 
204 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
205 {
206 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
207 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
208 
209 	__set_bit(bit, bitmap);
210 }
211 
212 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
213  * from the driver before returning from its napi->poll() routine. The poll()
214  * routine is called either from busy_poll context or net_rx_action signaled
215  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
216  * net device can be torn down. On devmap tear down we ensure the ctx bitmap
217  * is zeroed before completing to ensure all flush operations have completed.
218  */
219 void __dev_map_flush(struct bpf_map *map)
220 {
221 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
222 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
223 	u32 bit;
224 
225 	for_each_set_bit(bit, bitmap, map->max_entries) {
226 		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
227 		struct net_device *netdev;
228 
229 		/* This is possible if the dev entry is removed by user space
230 		 * between xdp redirect and flush op.
231 		 */
232 		if (unlikely(!dev))
233 			continue;
234 
235 		__clear_bit(bit, bitmap);
236 		netdev = dev->dev;
237 		if (likely(netdev->netdev_ops->ndo_xdp_flush))
238 			netdev->netdev_ops->ndo_xdp_flush(netdev);
239 	}
240 }
241 
242 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
243  * update happens in parallel here a dev_put wont happen until after reading the
244  * ifindex.
245  */
246 struct net_device  *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
247 {
248 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
249 	struct bpf_dtab_netdev *dev;
250 
251 	if (key >= map->max_entries)
252 		return NULL;
253 
254 	dev = READ_ONCE(dtab->netdev_map[key]);
255 	return dev ? dev->dev : NULL;
256 }
257 
258 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
259 {
260 	struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key);
261 
262 	return dev ? &dev->ifindex : NULL;
263 }
264 
265 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
266 {
267 	if (dev->dev->netdev_ops->ndo_xdp_flush) {
268 		struct net_device *fl = dev->dev;
269 		unsigned long *bitmap;
270 		int cpu;
271 
272 		for_each_online_cpu(cpu) {
273 			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
274 			__clear_bit(dev->bit, bitmap);
275 
276 			fl->netdev_ops->ndo_xdp_flush(dev->dev);
277 		}
278 	}
279 }
280 
281 static void __dev_map_entry_free(struct rcu_head *rcu)
282 {
283 	struct bpf_dtab_netdev *dev;
284 
285 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
286 	dev_map_flush_old(dev);
287 	dev_put(dev->dev);
288 	kfree(dev);
289 }
290 
291 static int dev_map_delete_elem(struct bpf_map *map, void *key)
292 {
293 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
294 	struct bpf_dtab_netdev *old_dev;
295 	int k = *(u32 *)key;
296 
297 	if (k >= map->max_entries)
298 		return -EINVAL;
299 
300 	/* Use call_rcu() here to ensure any rcu critical sections have
301 	 * completed, but this does not guarantee a flush has happened
302 	 * yet. Because driver side rcu_read_lock/unlock only protects the
303 	 * running XDP program. However, for pending flush operations the
304 	 * dev and ctx are stored in another per cpu map. And additionally,
305 	 * the driver tear down ensures all soft irqs are complete before
306 	 * removing the net device in the case of dev_put equals zero.
307 	 */
308 	old_dev = xchg(&dtab->netdev_map[k], NULL);
309 	if (old_dev)
310 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
311 	return 0;
312 }
313 
314 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
315 				u64 map_flags)
316 {
317 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
318 	struct net *net = current->nsproxy->net_ns;
319 	struct bpf_dtab_netdev *dev, *old_dev;
320 	u32 i = *(u32 *)key;
321 	u32 ifindex = *(u32 *)value;
322 
323 	if (unlikely(map_flags > BPF_EXIST))
324 		return -EINVAL;
325 	if (unlikely(i >= dtab->map.max_entries))
326 		return -E2BIG;
327 	if (unlikely(map_flags == BPF_NOEXIST))
328 		return -EEXIST;
329 
330 	if (!ifindex) {
331 		dev = NULL;
332 	} else {
333 		dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
334 				   map->numa_node);
335 		if (!dev)
336 			return -ENOMEM;
337 
338 		dev->dev = dev_get_by_index(net, ifindex);
339 		if (!dev->dev) {
340 			kfree(dev);
341 			return -EINVAL;
342 		}
343 
344 		dev->bit = i;
345 		dev->dtab = dtab;
346 	}
347 
348 	/* Use call_rcu() here to ensure rcu critical sections have completed
349 	 * Remembering the driver side flush operation will happen before the
350 	 * net device is removed.
351 	 */
352 	old_dev = xchg(&dtab->netdev_map[i], dev);
353 	if (old_dev)
354 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
355 
356 	return 0;
357 }
358 
359 const struct bpf_map_ops dev_map_ops = {
360 	.map_alloc = dev_map_alloc,
361 	.map_free = dev_map_free,
362 	.map_get_next_key = dev_map_get_next_key,
363 	.map_lookup_elem = dev_map_lookup_elem,
364 	.map_update_elem = dev_map_update_elem,
365 	.map_delete_elem = dev_map_delete_elem,
366 };
367 
368 static int dev_map_notification(struct notifier_block *notifier,
369 				ulong event, void *ptr)
370 {
371 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
372 	struct bpf_dtab *dtab;
373 	int i;
374 
375 	switch (event) {
376 	case NETDEV_UNREGISTER:
377 		/* This rcu_read_lock/unlock pair is needed because
378 		 * dev_map_list is an RCU list AND to ensure a delete
379 		 * operation does not free a netdev_map entry while we
380 		 * are comparing it against the netdev being unregistered.
381 		 */
382 		rcu_read_lock();
383 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
384 			for (i = 0; i < dtab->map.max_entries; i++) {
385 				struct bpf_dtab_netdev *dev, *odev;
386 
387 				dev = READ_ONCE(dtab->netdev_map[i]);
388 				if (!dev ||
389 				    dev->dev->ifindex != netdev->ifindex)
390 					continue;
391 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
392 				if (dev == odev)
393 					call_rcu(&dev->rcu,
394 						 __dev_map_entry_free);
395 			}
396 		}
397 		rcu_read_unlock();
398 		break;
399 	default:
400 		break;
401 	}
402 	return NOTIFY_OK;
403 }
404 
405 static struct notifier_block dev_map_notifier = {
406 	.notifier_call = dev_map_notification,
407 };
408 
409 static int __init dev_map_init(void)
410 {
411 	register_netdevice_notifier(&dev_map_notifier);
412 	return 0;
413 }
414 
415 subsys_initcall(dev_map_init);
416