1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 */ 12 13 /* Devmaps primary use is as a backend map for XDP BPF helper call 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 15 * spent some effort to ensure the datapath with redirect maps does not use 16 * any locking. This is a quick note on the details. 17 * 18 * We have three possible paths to get into the devmap control plane bpf 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 20 * will invoke an update, delete, or lookup operation. To ensure updates and 21 * deletes appear atomic from the datapath side xchg() is used to modify the 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for 24 * an rcu grace period before free'ing the old data structures. This ensures the 25 * datapath always has a valid copy. However, the datapath does a "flush" 26 * operation that pushes any pending packets in the driver outside the RCU 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed 29 * until all bits are cleared indicating outstanding flush operations have 30 * completed. 31 * 32 * BPF syscalls may race with BPF program calls on any of the update, delete 33 * or lookup operations. As noted above the xchg() operation also keep the 34 * netdev_map consistent in this case. From the devmap side BPF programs 35 * calling into these operations are the same as multiple user space threads 36 * making system calls. 37 * 38 * Finally, any of the above may race with a netdev_unregister notifier. The 39 * unregister notifier must search for net devices in the map structure that 40 * contain a reference to the net device and remove them. This is a two step 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 42 * check to see if the ifindex is the same as the net_device being removed. 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is 44 * removed, in the case of a concurrent update or delete operation it is 45 * possible that the initially referenced dev is no longer in the map. As the 46 * notifier hook walks the map we know that new dev references can not be 47 * added by the user because core infrastructure ensures dev_get_by_index() 48 * calls will fail at this point. 49 */ 50 #include <linux/bpf.h> 51 #include <linux/filter.h> 52 53 struct bpf_dtab_netdev { 54 struct net_device *dev; 55 struct bpf_dtab *dtab; 56 unsigned int bit; 57 struct rcu_head rcu; 58 }; 59 60 struct bpf_dtab { 61 struct bpf_map map; 62 struct bpf_dtab_netdev **netdev_map; 63 unsigned long __percpu *flush_needed; 64 struct list_head list; 65 }; 66 67 static DEFINE_SPINLOCK(dev_map_lock); 68 static LIST_HEAD(dev_map_list); 69 70 static u64 dev_map_bitmap_size(const union bpf_attr *attr) 71 { 72 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long); 73 } 74 75 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 76 { 77 struct bpf_dtab *dtab; 78 int err = -EINVAL; 79 u64 cost; 80 81 if (!capable(CAP_NET_ADMIN)) 82 return ERR_PTR(-EPERM); 83 84 /* check sanity of attributes */ 85 if (attr->max_entries == 0 || attr->key_size != 4 || 86 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 87 return ERR_PTR(-EINVAL); 88 89 dtab = kzalloc(sizeof(*dtab), GFP_USER); 90 if (!dtab) 91 return ERR_PTR(-ENOMEM); 92 93 /* mandatory map attributes */ 94 dtab->map.map_type = attr->map_type; 95 dtab->map.key_size = attr->key_size; 96 dtab->map.value_size = attr->value_size; 97 dtab->map.max_entries = attr->max_entries; 98 dtab->map.map_flags = attr->map_flags; 99 dtab->map.numa_node = bpf_map_attr_numa_node(attr); 100 101 /* make sure page count doesn't overflow */ 102 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 103 cost += dev_map_bitmap_size(attr) * num_possible_cpus(); 104 if (cost >= U32_MAX - PAGE_SIZE) 105 goto free_dtab; 106 107 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 108 109 /* if map size is larger than memlock limit, reject it early */ 110 err = bpf_map_precharge_memlock(dtab->map.pages); 111 if (err) 112 goto free_dtab; 113 114 err = -ENOMEM; 115 116 /* A per cpu bitfield with a bit per possible net device */ 117 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr), 118 __alignof__(unsigned long), 119 GFP_KERNEL | __GFP_NOWARN); 120 if (!dtab->flush_needed) 121 goto free_dtab; 122 123 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 124 sizeof(struct bpf_dtab_netdev *), 125 dtab->map.numa_node); 126 if (!dtab->netdev_map) 127 goto free_dtab; 128 129 spin_lock(&dev_map_lock); 130 list_add_tail_rcu(&dtab->list, &dev_map_list); 131 spin_unlock(&dev_map_lock); 132 133 return &dtab->map; 134 free_dtab: 135 free_percpu(dtab->flush_needed); 136 kfree(dtab); 137 return ERR_PTR(err); 138 } 139 140 static void dev_map_free(struct bpf_map *map) 141 { 142 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 143 int i, cpu; 144 145 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 146 * so the programs (can be more than one that used this map) were 147 * disconnected from events. Wait for outstanding critical sections in 148 * these programs to complete. The rcu critical section only guarantees 149 * no further reads against netdev_map. It does __not__ ensure pending 150 * flush operations (if any) are complete. 151 */ 152 153 spin_lock(&dev_map_lock); 154 list_del_rcu(&dtab->list); 155 spin_unlock(&dev_map_lock); 156 157 synchronize_rcu(); 158 159 /* To ensure all pending flush operations have completed wait for flush 160 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 161 * Because the above synchronize_rcu() ensures the map is disconnected 162 * from the program we can assume no new bits will be set. 163 */ 164 for_each_online_cpu(cpu) { 165 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); 166 167 while (!bitmap_empty(bitmap, dtab->map.max_entries)) 168 cond_resched(); 169 } 170 171 for (i = 0; i < dtab->map.max_entries; i++) { 172 struct bpf_dtab_netdev *dev; 173 174 dev = dtab->netdev_map[i]; 175 if (!dev) 176 continue; 177 178 dev_put(dev->dev); 179 kfree(dev); 180 } 181 182 free_percpu(dtab->flush_needed); 183 bpf_map_area_free(dtab->netdev_map); 184 kfree(dtab); 185 } 186 187 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 188 { 189 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 190 u32 index = key ? *(u32 *)key : U32_MAX; 191 u32 *next = next_key; 192 193 if (index >= dtab->map.max_entries) { 194 *next = 0; 195 return 0; 196 } 197 198 if (index == dtab->map.max_entries - 1) 199 return -ENOENT; 200 *next = index + 1; 201 return 0; 202 } 203 204 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) 205 { 206 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 207 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 208 209 __set_bit(bit, bitmap); 210 } 211 212 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 213 * from the driver before returning from its napi->poll() routine. The poll() 214 * routine is called either from busy_poll context or net_rx_action signaled 215 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 216 * net device can be torn down. On devmap tear down we ensure the ctx bitmap 217 * is zeroed before completing to ensure all flush operations have completed. 218 */ 219 void __dev_map_flush(struct bpf_map *map) 220 { 221 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 222 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 223 u32 bit; 224 225 for_each_set_bit(bit, bitmap, map->max_entries) { 226 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); 227 struct net_device *netdev; 228 229 /* This is possible if the dev entry is removed by user space 230 * between xdp redirect and flush op. 231 */ 232 if (unlikely(!dev)) 233 continue; 234 235 __clear_bit(bit, bitmap); 236 netdev = dev->dev; 237 if (likely(netdev->netdev_ops->ndo_xdp_flush)) 238 netdev->netdev_ops->ndo_xdp_flush(netdev); 239 } 240 } 241 242 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 243 * update happens in parallel here a dev_put wont happen until after reading the 244 * ifindex. 245 */ 246 struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 247 { 248 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 249 struct bpf_dtab_netdev *dev; 250 251 if (key >= map->max_entries) 252 return NULL; 253 254 dev = READ_ONCE(dtab->netdev_map[key]); 255 return dev ? dev->dev : NULL; 256 } 257 258 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 259 { 260 struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key); 261 262 return dev ? &dev->ifindex : NULL; 263 } 264 265 static void dev_map_flush_old(struct bpf_dtab_netdev *dev) 266 { 267 if (dev->dev->netdev_ops->ndo_xdp_flush) { 268 struct net_device *fl = dev->dev; 269 unsigned long *bitmap; 270 int cpu; 271 272 for_each_online_cpu(cpu) { 273 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); 274 __clear_bit(dev->bit, bitmap); 275 276 fl->netdev_ops->ndo_xdp_flush(dev->dev); 277 } 278 } 279 } 280 281 static void __dev_map_entry_free(struct rcu_head *rcu) 282 { 283 struct bpf_dtab_netdev *dev; 284 285 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 286 dev_map_flush_old(dev); 287 dev_put(dev->dev); 288 kfree(dev); 289 } 290 291 static int dev_map_delete_elem(struct bpf_map *map, void *key) 292 { 293 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 294 struct bpf_dtab_netdev *old_dev; 295 int k = *(u32 *)key; 296 297 if (k >= map->max_entries) 298 return -EINVAL; 299 300 /* Use call_rcu() here to ensure any rcu critical sections have 301 * completed, but this does not guarantee a flush has happened 302 * yet. Because driver side rcu_read_lock/unlock only protects the 303 * running XDP program. However, for pending flush operations the 304 * dev and ctx are stored in another per cpu map. And additionally, 305 * the driver tear down ensures all soft irqs are complete before 306 * removing the net device in the case of dev_put equals zero. 307 */ 308 old_dev = xchg(&dtab->netdev_map[k], NULL); 309 if (old_dev) 310 call_rcu(&old_dev->rcu, __dev_map_entry_free); 311 return 0; 312 } 313 314 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 315 u64 map_flags) 316 { 317 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 318 struct net *net = current->nsproxy->net_ns; 319 struct bpf_dtab_netdev *dev, *old_dev; 320 u32 i = *(u32 *)key; 321 u32 ifindex = *(u32 *)value; 322 323 if (unlikely(map_flags > BPF_EXIST)) 324 return -EINVAL; 325 if (unlikely(i >= dtab->map.max_entries)) 326 return -E2BIG; 327 if (unlikely(map_flags == BPF_NOEXIST)) 328 return -EEXIST; 329 330 if (!ifindex) { 331 dev = NULL; 332 } else { 333 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, 334 map->numa_node); 335 if (!dev) 336 return -ENOMEM; 337 338 dev->dev = dev_get_by_index(net, ifindex); 339 if (!dev->dev) { 340 kfree(dev); 341 return -EINVAL; 342 } 343 344 dev->bit = i; 345 dev->dtab = dtab; 346 } 347 348 /* Use call_rcu() here to ensure rcu critical sections have completed 349 * Remembering the driver side flush operation will happen before the 350 * net device is removed. 351 */ 352 old_dev = xchg(&dtab->netdev_map[i], dev); 353 if (old_dev) 354 call_rcu(&old_dev->rcu, __dev_map_entry_free); 355 356 return 0; 357 } 358 359 const struct bpf_map_ops dev_map_ops = { 360 .map_alloc = dev_map_alloc, 361 .map_free = dev_map_free, 362 .map_get_next_key = dev_map_get_next_key, 363 .map_lookup_elem = dev_map_lookup_elem, 364 .map_update_elem = dev_map_update_elem, 365 .map_delete_elem = dev_map_delete_elem, 366 }; 367 368 static int dev_map_notification(struct notifier_block *notifier, 369 ulong event, void *ptr) 370 { 371 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 372 struct bpf_dtab *dtab; 373 int i; 374 375 switch (event) { 376 case NETDEV_UNREGISTER: 377 /* This rcu_read_lock/unlock pair is needed because 378 * dev_map_list is an RCU list AND to ensure a delete 379 * operation does not free a netdev_map entry while we 380 * are comparing it against the netdev being unregistered. 381 */ 382 rcu_read_lock(); 383 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 384 for (i = 0; i < dtab->map.max_entries; i++) { 385 struct bpf_dtab_netdev *dev, *odev; 386 387 dev = READ_ONCE(dtab->netdev_map[i]); 388 if (!dev || 389 dev->dev->ifindex != netdev->ifindex) 390 continue; 391 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 392 if (dev == odev) 393 call_rcu(&dev->rcu, 394 __dev_map_entry_free); 395 } 396 } 397 rcu_read_unlock(); 398 break; 399 default: 400 break; 401 } 402 return NOTIFY_OK; 403 } 404 405 static struct notifier_block dev_map_notifier = { 406 .notifier_call = dev_map_notification, 407 }; 408 409 static int __init dev_map_init(void) 410 { 411 register_netdevice_notifier(&dev_map_notifier); 412 return 0; 413 } 414 415 subsys_initcall(dev_map_init); 416