xref: /openbmc/linux/kernel/bpf/devmap.c (revision 7a2eb736)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 #define DEV_MAP_BULK_SIZE 16
56 struct bpf_dtab_netdev;
57 
58 struct xdp_bulk_queue {
59 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
60 	struct list_head flush_node;
61 	struct net_device *dev_rx;
62 	struct bpf_dtab_netdev *obj;
63 	unsigned int count;
64 };
65 
66 struct bpf_dtab_netdev {
67 	struct net_device *dev; /* must be first member, due to tracepoint */
68 	struct hlist_node index_hlist;
69 	struct bpf_dtab *dtab;
70 	struct xdp_bulk_queue __percpu *bulkq;
71 	struct rcu_head rcu;
72 	unsigned int idx; /* keep track of map index for tracepoint */
73 };
74 
75 struct bpf_dtab {
76 	struct bpf_map map;
77 	struct bpf_dtab_netdev **netdev_map;
78 	struct list_head __percpu *flush_list;
79 	struct list_head list;
80 
81 	/* these are only used for DEVMAP_HASH type maps */
82 	struct hlist_head *dev_index_head;
83 	spinlock_t index_lock;
84 	unsigned int items;
85 	u32 n_buckets;
86 };
87 
88 static DEFINE_SPINLOCK(dev_map_lock);
89 static LIST_HEAD(dev_map_list);
90 
91 static struct hlist_head *dev_map_create_hash(unsigned int entries)
92 {
93 	int i;
94 	struct hlist_head *hash;
95 
96 	hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL);
97 	if (hash != NULL)
98 		for (i = 0; i < entries; i++)
99 			INIT_HLIST_HEAD(&hash[i]);
100 
101 	return hash;
102 }
103 
104 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
105 {
106 	int err, cpu;
107 	u64 cost;
108 
109 	/* check sanity of attributes */
110 	if (attr->max_entries == 0 || attr->key_size != 4 ||
111 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
112 		return -EINVAL;
113 
114 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
115 	 * verifier prevents writes from the BPF side
116 	 */
117 	attr->map_flags |= BPF_F_RDONLY_PROG;
118 
119 
120 	bpf_map_init_from_attr(&dtab->map, attr);
121 
122 	/* make sure page count doesn't overflow */
123 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
124 	cost += sizeof(struct list_head) * num_possible_cpus();
125 
126 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
127 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
128 
129 		if (!dtab->n_buckets) /* Overflow check */
130 			return -EINVAL;
131 		cost += sizeof(struct hlist_head) * dtab->n_buckets;
132 	}
133 
134 	/* if map size is larger than memlock limit, reject it */
135 	err = bpf_map_charge_init(&dtab->map.memory, cost);
136 	if (err)
137 		return -EINVAL;
138 
139 	dtab->flush_list = alloc_percpu(struct list_head);
140 	if (!dtab->flush_list)
141 		goto free_charge;
142 
143 	for_each_possible_cpu(cpu)
144 		INIT_LIST_HEAD(per_cpu_ptr(dtab->flush_list, cpu));
145 
146 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
147 					      sizeof(struct bpf_dtab_netdev *),
148 					      dtab->map.numa_node);
149 	if (!dtab->netdev_map)
150 		goto free_percpu;
151 
152 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
153 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets);
154 		if (!dtab->dev_index_head)
155 			goto free_map_area;
156 
157 		spin_lock_init(&dtab->index_lock);
158 	}
159 
160 	return 0;
161 
162 free_map_area:
163 	bpf_map_area_free(dtab->netdev_map);
164 free_percpu:
165 	free_percpu(dtab->flush_list);
166 free_charge:
167 	bpf_map_charge_finish(&dtab->map.memory);
168 	return -ENOMEM;
169 }
170 
171 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
172 {
173 	struct bpf_dtab *dtab;
174 	int err;
175 
176 	if (!capable(CAP_NET_ADMIN))
177 		return ERR_PTR(-EPERM);
178 
179 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
180 	if (!dtab)
181 		return ERR_PTR(-ENOMEM);
182 
183 	err = dev_map_init_map(dtab, attr);
184 	if (err) {
185 		kfree(dtab);
186 		return ERR_PTR(err);
187 	}
188 
189 	spin_lock(&dev_map_lock);
190 	list_add_tail_rcu(&dtab->list, &dev_map_list);
191 	spin_unlock(&dev_map_lock);
192 
193 	return &dtab->map;
194 }
195 
196 static void dev_map_free(struct bpf_map *map)
197 {
198 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
199 	int i, cpu;
200 
201 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
202 	 * so the programs (can be more than one that used this map) were
203 	 * disconnected from events. Wait for outstanding critical sections in
204 	 * these programs to complete. The rcu critical section only guarantees
205 	 * no further reads against netdev_map. It does __not__ ensure pending
206 	 * flush operations (if any) are complete.
207 	 */
208 
209 	spin_lock(&dev_map_lock);
210 	list_del_rcu(&dtab->list);
211 	spin_unlock(&dev_map_lock);
212 
213 	bpf_clear_redirect_map(map);
214 	synchronize_rcu();
215 
216 	/* Make sure prior __dev_map_entry_free() have completed. */
217 	rcu_barrier();
218 
219 	/* To ensure all pending flush operations have completed wait for flush
220 	 * list to empty on _all_ cpus.
221 	 * Because the above synchronize_rcu() ensures the map is disconnected
222 	 * from the program we can assume no new items will be added.
223 	 */
224 	for_each_online_cpu(cpu) {
225 		struct list_head *flush_list = per_cpu_ptr(dtab->flush_list, cpu);
226 
227 		while (!list_empty(flush_list))
228 			cond_resched();
229 	}
230 
231 	for (i = 0; i < dtab->map.max_entries; i++) {
232 		struct bpf_dtab_netdev *dev;
233 
234 		dev = dtab->netdev_map[i];
235 		if (!dev)
236 			continue;
237 
238 		free_percpu(dev->bulkq);
239 		dev_put(dev->dev);
240 		kfree(dev);
241 	}
242 
243 	free_percpu(dtab->flush_list);
244 	bpf_map_area_free(dtab->netdev_map);
245 	kfree(dtab->dev_index_head);
246 	kfree(dtab);
247 }
248 
249 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
250 {
251 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
252 	u32 index = key ? *(u32 *)key : U32_MAX;
253 	u32 *next = next_key;
254 
255 	if (index >= dtab->map.max_entries) {
256 		*next = 0;
257 		return 0;
258 	}
259 
260 	if (index == dtab->map.max_entries - 1)
261 		return -ENOENT;
262 	*next = index + 1;
263 	return 0;
264 }
265 
266 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
267 						    int idx)
268 {
269 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
270 }
271 
272 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
273 {
274 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
275 	struct hlist_head *head = dev_map_index_hash(dtab, key);
276 	struct bpf_dtab_netdev *dev;
277 
278 	hlist_for_each_entry_rcu(dev, head, index_hlist)
279 		if (dev->idx == key)
280 			return dev;
281 
282 	return NULL;
283 }
284 
285 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
286 				    void *next_key)
287 {
288 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
289 	u32 idx, *next = next_key;
290 	struct bpf_dtab_netdev *dev, *next_dev;
291 	struct hlist_head *head;
292 	int i = 0;
293 
294 	if (!key)
295 		goto find_first;
296 
297 	idx = *(u32 *)key;
298 
299 	dev = __dev_map_hash_lookup_elem(map, idx);
300 	if (!dev)
301 		goto find_first;
302 
303 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
304 				    struct bpf_dtab_netdev, index_hlist);
305 
306 	if (next_dev) {
307 		*next = next_dev->idx;
308 		return 0;
309 	}
310 
311 	i = idx & (dtab->n_buckets - 1);
312 	i++;
313 
314  find_first:
315 	for (; i < dtab->n_buckets; i++) {
316 		head = dev_map_index_hash(dtab, i);
317 
318 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
319 					    struct bpf_dtab_netdev,
320 					    index_hlist);
321 		if (next_dev) {
322 			*next = next_dev->idx;
323 			return 0;
324 		}
325 	}
326 
327 	return -ENOENT;
328 }
329 
330 static int bq_xmit_all(struct xdp_bulk_queue *bq, u32 flags,
331 		       bool in_napi_ctx)
332 {
333 	struct bpf_dtab_netdev *obj = bq->obj;
334 	struct net_device *dev = obj->dev;
335 	int sent = 0, drops = 0, err = 0;
336 	int i;
337 
338 	if (unlikely(!bq->count))
339 		return 0;
340 
341 	for (i = 0; i < bq->count; i++) {
342 		struct xdp_frame *xdpf = bq->q[i];
343 
344 		prefetch(xdpf);
345 	}
346 
347 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
348 	if (sent < 0) {
349 		err = sent;
350 		sent = 0;
351 		goto error;
352 	}
353 	drops = bq->count - sent;
354 out:
355 	bq->count = 0;
356 
357 	trace_xdp_devmap_xmit(&obj->dtab->map, obj->idx,
358 			      sent, drops, bq->dev_rx, dev, err);
359 	bq->dev_rx = NULL;
360 	__list_del_clearprev(&bq->flush_node);
361 	return 0;
362 error:
363 	/* If ndo_xdp_xmit fails with an errno, no frames have been
364 	 * xmit'ed and it's our responsibility to them free all.
365 	 */
366 	for (i = 0; i < bq->count; i++) {
367 		struct xdp_frame *xdpf = bq->q[i];
368 
369 		/* RX path under NAPI protection, can return frames faster */
370 		if (likely(in_napi_ctx))
371 			xdp_return_frame_rx_napi(xdpf);
372 		else
373 			xdp_return_frame(xdpf);
374 		drops++;
375 	}
376 	goto out;
377 }
378 
379 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
380  * from the driver before returning from its napi->poll() routine. The poll()
381  * routine is called either from busy_poll context or net_rx_action signaled
382  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
383  * net device can be torn down. On devmap tear down we ensure the flush list
384  * is empty before completing to ensure all flush operations have completed.
385  */
386 void __dev_map_flush(struct bpf_map *map)
387 {
388 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
389 	struct list_head *flush_list = this_cpu_ptr(dtab->flush_list);
390 	struct xdp_bulk_queue *bq, *tmp;
391 
392 	rcu_read_lock();
393 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
394 		bq_xmit_all(bq, XDP_XMIT_FLUSH, true);
395 	rcu_read_unlock();
396 }
397 
398 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
399  * update happens in parallel here a dev_put wont happen until after reading the
400  * ifindex.
401  */
402 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
403 {
404 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
405 	struct bpf_dtab_netdev *obj;
406 
407 	if (key >= map->max_entries)
408 		return NULL;
409 
410 	obj = READ_ONCE(dtab->netdev_map[key]);
411 	return obj;
412 }
413 
414 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
415  * Thus, safe percpu variable access.
416  */
417 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
418 		      struct net_device *dev_rx)
419 
420 {
421 	struct list_head *flush_list = this_cpu_ptr(obj->dtab->flush_list);
422 	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
423 
424 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
425 		bq_xmit_all(bq, 0, true);
426 
427 	/* Ingress dev_rx will be the same for all xdp_frame's in
428 	 * bulk_queue, because bq stored per-CPU and must be flushed
429 	 * from net_device drivers NAPI func end.
430 	 */
431 	if (!bq->dev_rx)
432 		bq->dev_rx = dev_rx;
433 
434 	bq->q[bq->count++] = xdpf;
435 
436 	if (!bq->flush_node.prev)
437 		list_add(&bq->flush_node, flush_list);
438 
439 	return 0;
440 }
441 
442 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
443 		    struct net_device *dev_rx)
444 {
445 	struct net_device *dev = dst->dev;
446 	struct xdp_frame *xdpf;
447 	int err;
448 
449 	if (!dev->netdev_ops->ndo_xdp_xmit)
450 		return -EOPNOTSUPP;
451 
452 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
453 	if (unlikely(err))
454 		return err;
455 
456 	xdpf = convert_to_xdp_frame(xdp);
457 	if (unlikely(!xdpf))
458 		return -EOVERFLOW;
459 
460 	return bq_enqueue(dst, xdpf, dev_rx);
461 }
462 
463 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
464 			     struct bpf_prog *xdp_prog)
465 {
466 	int err;
467 
468 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
469 	if (unlikely(err))
470 		return err;
471 	skb->dev = dst->dev;
472 	generic_xdp_tx(skb, xdp_prog);
473 
474 	return 0;
475 }
476 
477 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
478 {
479 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
480 	struct net_device *dev = obj ? obj->dev : NULL;
481 
482 	return dev ? &dev->ifindex : NULL;
483 }
484 
485 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
486 {
487 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
488 								*(u32 *)key);
489 	struct net_device *dev = obj ? obj->dev : NULL;
490 
491 	return dev ? &dev->ifindex : NULL;
492 }
493 
494 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
495 {
496 	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
497 		struct xdp_bulk_queue *bq;
498 		int cpu;
499 
500 		rcu_read_lock();
501 		for_each_online_cpu(cpu) {
502 			bq = per_cpu_ptr(dev->bulkq, cpu);
503 			bq_xmit_all(bq, XDP_XMIT_FLUSH, false);
504 		}
505 		rcu_read_unlock();
506 	}
507 }
508 
509 static void __dev_map_entry_free(struct rcu_head *rcu)
510 {
511 	struct bpf_dtab_netdev *dev;
512 
513 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
514 	dev_map_flush_old(dev);
515 	free_percpu(dev->bulkq);
516 	dev_put(dev->dev);
517 	kfree(dev);
518 }
519 
520 static int dev_map_delete_elem(struct bpf_map *map, void *key)
521 {
522 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
523 	struct bpf_dtab_netdev *old_dev;
524 	int k = *(u32 *)key;
525 
526 	if (k >= map->max_entries)
527 		return -EINVAL;
528 
529 	/* Use call_rcu() here to ensure any rcu critical sections have
530 	 * completed, but this does not guarantee a flush has happened
531 	 * yet. Because driver side rcu_read_lock/unlock only protects the
532 	 * running XDP program. However, for pending flush operations the
533 	 * dev and ctx are stored in another per cpu map. And additionally,
534 	 * the driver tear down ensures all soft irqs are complete before
535 	 * removing the net device in the case of dev_put equals zero.
536 	 */
537 	old_dev = xchg(&dtab->netdev_map[k], NULL);
538 	if (old_dev)
539 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
540 	return 0;
541 }
542 
543 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
544 {
545 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
546 	struct bpf_dtab_netdev *old_dev;
547 	int k = *(u32 *)key;
548 	unsigned long flags;
549 	int ret = -ENOENT;
550 
551 	spin_lock_irqsave(&dtab->index_lock, flags);
552 
553 	old_dev = __dev_map_hash_lookup_elem(map, k);
554 	if (old_dev) {
555 		dtab->items--;
556 		hlist_del_init_rcu(&old_dev->index_hlist);
557 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
558 		ret = 0;
559 	}
560 	spin_unlock_irqrestore(&dtab->index_lock, flags);
561 
562 	return ret;
563 }
564 
565 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
566 						    struct bpf_dtab *dtab,
567 						    u32 ifindex,
568 						    unsigned int idx)
569 {
570 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
571 	struct bpf_dtab_netdev *dev;
572 	struct xdp_bulk_queue *bq;
573 	int cpu;
574 
575 	dev = kmalloc_node(sizeof(*dev), gfp, dtab->map.numa_node);
576 	if (!dev)
577 		return ERR_PTR(-ENOMEM);
578 
579 	dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
580 					sizeof(void *), gfp);
581 	if (!dev->bulkq) {
582 		kfree(dev);
583 		return ERR_PTR(-ENOMEM);
584 	}
585 
586 	for_each_possible_cpu(cpu) {
587 		bq = per_cpu_ptr(dev->bulkq, cpu);
588 		bq->obj = dev;
589 	}
590 
591 	dev->dev = dev_get_by_index(net, ifindex);
592 	if (!dev->dev) {
593 		free_percpu(dev->bulkq);
594 		kfree(dev);
595 		return ERR_PTR(-EINVAL);
596 	}
597 
598 	dev->idx = idx;
599 	dev->dtab = dtab;
600 
601 	return dev;
602 }
603 
604 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
605 				 void *key, void *value, u64 map_flags)
606 {
607 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
608 	struct bpf_dtab_netdev *dev, *old_dev;
609 	u32 ifindex = *(u32 *)value;
610 	u32 i = *(u32 *)key;
611 
612 	if (unlikely(map_flags > BPF_EXIST))
613 		return -EINVAL;
614 	if (unlikely(i >= dtab->map.max_entries))
615 		return -E2BIG;
616 	if (unlikely(map_flags == BPF_NOEXIST))
617 		return -EEXIST;
618 
619 	if (!ifindex) {
620 		dev = NULL;
621 	} else {
622 		dev = __dev_map_alloc_node(net, dtab, ifindex, i);
623 		if (IS_ERR(dev))
624 			return PTR_ERR(dev);
625 	}
626 
627 	/* Use call_rcu() here to ensure rcu critical sections have completed
628 	 * Remembering the driver side flush operation will happen before the
629 	 * net device is removed.
630 	 */
631 	old_dev = xchg(&dtab->netdev_map[i], dev);
632 	if (old_dev)
633 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
634 
635 	return 0;
636 }
637 
638 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
639 			       u64 map_flags)
640 {
641 	return __dev_map_update_elem(current->nsproxy->net_ns,
642 				     map, key, value, map_flags);
643 }
644 
645 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
646 				     void *key, void *value, u64 map_flags)
647 {
648 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
649 	struct bpf_dtab_netdev *dev, *old_dev;
650 	u32 ifindex = *(u32 *)value;
651 	u32 idx = *(u32 *)key;
652 	unsigned long flags;
653 
654 	if (unlikely(map_flags > BPF_EXIST || !ifindex))
655 		return -EINVAL;
656 
657 	old_dev = __dev_map_hash_lookup_elem(map, idx);
658 	if (old_dev && (map_flags & BPF_NOEXIST))
659 		return -EEXIST;
660 
661 	dev = __dev_map_alloc_node(net, dtab, ifindex, idx);
662 	if (IS_ERR(dev))
663 		return PTR_ERR(dev);
664 
665 	spin_lock_irqsave(&dtab->index_lock, flags);
666 
667 	if (old_dev) {
668 		hlist_del_rcu(&old_dev->index_hlist);
669 	} else {
670 		if (dtab->items >= dtab->map.max_entries) {
671 			spin_unlock_irqrestore(&dtab->index_lock, flags);
672 			call_rcu(&dev->rcu, __dev_map_entry_free);
673 			return -E2BIG;
674 		}
675 		dtab->items++;
676 	}
677 
678 	hlist_add_head_rcu(&dev->index_hlist,
679 			   dev_map_index_hash(dtab, idx));
680 	spin_unlock_irqrestore(&dtab->index_lock, flags);
681 
682 	if (old_dev)
683 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
684 
685 	return 0;
686 }
687 
688 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
689 				   u64 map_flags)
690 {
691 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
692 					 map, key, value, map_flags);
693 }
694 
695 const struct bpf_map_ops dev_map_ops = {
696 	.map_alloc = dev_map_alloc,
697 	.map_free = dev_map_free,
698 	.map_get_next_key = dev_map_get_next_key,
699 	.map_lookup_elem = dev_map_lookup_elem,
700 	.map_update_elem = dev_map_update_elem,
701 	.map_delete_elem = dev_map_delete_elem,
702 	.map_check_btf = map_check_no_btf,
703 };
704 
705 const struct bpf_map_ops dev_map_hash_ops = {
706 	.map_alloc = dev_map_alloc,
707 	.map_free = dev_map_free,
708 	.map_get_next_key = dev_map_hash_get_next_key,
709 	.map_lookup_elem = dev_map_hash_lookup_elem,
710 	.map_update_elem = dev_map_hash_update_elem,
711 	.map_delete_elem = dev_map_hash_delete_elem,
712 	.map_check_btf = map_check_no_btf,
713 };
714 
715 static int dev_map_notification(struct notifier_block *notifier,
716 				ulong event, void *ptr)
717 {
718 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
719 	struct bpf_dtab *dtab;
720 	int i;
721 
722 	switch (event) {
723 	case NETDEV_UNREGISTER:
724 		/* This rcu_read_lock/unlock pair is needed because
725 		 * dev_map_list is an RCU list AND to ensure a delete
726 		 * operation does not free a netdev_map entry while we
727 		 * are comparing it against the netdev being unregistered.
728 		 */
729 		rcu_read_lock();
730 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
731 			for (i = 0; i < dtab->map.max_entries; i++) {
732 				struct bpf_dtab_netdev *dev, *odev;
733 
734 				dev = READ_ONCE(dtab->netdev_map[i]);
735 				if (!dev || netdev != dev->dev)
736 					continue;
737 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
738 				if (dev == odev)
739 					call_rcu(&dev->rcu,
740 						 __dev_map_entry_free);
741 			}
742 		}
743 		rcu_read_unlock();
744 		break;
745 	default:
746 		break;
747 	}
748 	return NOTIFY_OK;
749 }
750 
751 static struct notifier_block dev_map_notifier = {
752 	.notifier_call = dev_map_notification,
753 };
754 
755 static int __init dev_map_init(void)
756 {
757 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
758 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
759 		     offsetof(struct _bpf_dtab_netdev, dev));
760 	register_netdevice_notifier(&dev_map_notifier);
761 	return 0;
762 }
763 
764 subsys_initcall(dev_map_init);
765