1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 */ 12 13 /* Devmaps primary use is as a backend map for XDP BPF helper call 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 15 * spent some effort to ensure the datapath with redirect maps does not use 16 * any locking. This is a quick note on the details. 17 * 18 * We have three possible paths to get into the devmap control plane bpf 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 20 * will invoke an update, delete, or lookup operation. To ensure updates and 21 * deletes appear atomic from the datapath side xchg() is used to modify the 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for 24 * an rcu grace period before free'ing the old data structures. This ensures the 25 * datapath always has a valid copy. However, the datapath does a "flush" 26 * operation that pushes any pending packets in the driver outside the RCU 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed 29 * until all bits are cleared indicating outstanding flush operations have 30 * completed. 31 * 32 * BPF syscalls may race with BPF program calls on any of the update, delete 33 * or lookup operations. As noted above the xchg() operation also keep the 34 * netdev_map consistent in this case. From the devmap side BPF programs 35 * calling into these operations are the same as multiple user space threads 36 * making system calls. 37 * 38 * Finally, any of the above may race with a netdev_unregister notifier. The 39 * unregister notifier must search for net devices in the map structure that 40 * contain a reference to the net device and remove them. This is a two step 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 42 * check to see if the ifindex is the same as the net_device being removed. 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is 44 * removed, in the case of a concurrent update or delete operation it is 45 * possible that the initially referenced dev is no longer in the map. As the 46 * notifier hook walks the map we know that new dev references can not be 47 * added by the user because core infrastructure ensures dev_get_by_index() 48 * calls will fail at this point. 49 */ 50 #include <linux/bpf.h> 51 #include <linux/filter.h> 52 53 struct bpf_dtab_netdev { 54 struct net_device *dev; 55 struct bpf_dtab *dtab; 56 unsigned int bit; 57 struct rcu_head rcu; 58 }; 59 60 struct bpf_dtab { 61 struct bpf_map map; 62 struct bpf_dtab_netdev **netdev_map; 63 unsigned long __percpu *flush_needed; 64 struct list_head list; 65 }; 66 67 static DEFINE_SPINLOCK(dev_map_lock); 68 static LIST_HEAD(dev_map_list); 69 70 static u64 dev_map_bitmap_size(const union bpf_attr *attr) 71 { 72 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long); 73 } 74 75 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 76 { 77 struct bpf_dtab *dtab; 78 int err = -EINVAL; 79 u64 cost; 80 81 /* check sanity of attributes */ 82 if (attr->max_entries == 0 || attr->key_size != 4 || 83 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 84 return ERR_PTR(-EINVAL); 85 86 dtab = kzalloc(sizeof(*dtab), GFP_USER); 87 if (!dtab) 88 return ERR_PTR(-ENOMEM); 89 90 /* mandatory map attributes */ 91 dtab->map.map_type = attr->map_type; 92 dtab->map.key_size = attr->key_size; 93 dtab->map.value_size = attr->value_size; 94 dtab->map.max_entries = attr->max_entries; 95 dtab->map.map_flags = attr->map_flags; 96 dtab->map.numa_node = bpf_map_attr_numa_node(attr); 97 98 /* make sure page count doesn't overflow */ 99 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 100 cost += dev_map_bitmap_size(attr) * num_possible_cpus(); 101 if (cost >= U32_MAX - PAGE_SIZE) 102 goto free_dtab; 103 104 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 105 106 /* if map size is larger than memlock limit, reject it early */ 107 err = bpf_map_precharge_memlock(dtab->map.pages); 108 if (err) 109 goto free_dtab; 110 111 err = -ENOMEM; 112 113 /* A per cpu bitfield with a bit per possible net device */ 114 dtab->flush_needed = __alloc_percpu(dev_map_bitmap_size(attr), 115 __alignof__(unsigned long)); 116 if (!dtab->flush_needed) 117 goto free_dtab; 118 119 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 120 sizeof(struct bpf_dtab_netdev *), 121 dtab->map.numa_node); 122 if (!dtab->netdev_map) 123 goto free_dtab; 124 125 spin_lock(&dev_map_lock); 126 list_add_tail_rcu(&dtab->list, &dev_map_list); 127 spin_unlock(&dev_map_lock); 128 129 return &dtab->map; 130 free_dtab: 131 free_percpu(dtab->flush_needed); 132 kfree(dtab); 133 return ERR_PTR(err); 134 } 135 136 static void dev_map_free(struct bpf_map *map) 137 { 138 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 139 int i, cpu; 140 141 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 142 * so the programs (can be more than one that used this map) were 143 * disconnected from events. Wait for outstanding critical sections in 144 * these programs to complete. The rcu critical section only guarantees 145 * no further reads against netdev_map. It does __not__ ensure pending 146 * flush operations (if any) are complete. 147 */ 148 149 spin_lock(&dev_map_lock); 150 list_del_rcu(&dtab->list); 151 spin_unlock(&dev_map_lock); 152 153 synchronize_rcu(); 154 155 /* To ensure all pending flush operations have completed wait for flush 156 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 157 * Because the above synchronize_rcu() ensures the map is disconnected 158 * from the program we can assume no new bits will be set. 159 */ 160 for_each_online_cpu(cpu) { 161 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); 162 163 while (!bitmap_empty(bitmap, dtab->map.max_entries)) 164 cond_resched(); 165 } 166 167 for (i = 0; i < dtab->map.max_entries; i++) { 168 struct bpf_dtab_netdev *dev; 169 170 dev = dtab->netdev_map[i]; 171 if (!dev) 172 continue; 173 174 dev_put(dev->dev); 175 kfree(dev); 176 } 177 178 free_percpu(dtab->flush_needed); 179 bpf_map_area_free(dtab->netdev_map); 180 kfree(dtab); 181 } 182 183 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 184 { 185 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 186 u32 index = key ? *(u32 *)key : U32_MAX; 187 u32 *next = next_key; 188 189 if (index >= dtab->map.max_entries) { 190 *next = 0; 191 return 0; 192 } 193 194 if (index == dtab->map.max_entries - 1) 195 return -ENOENT; 196 *next = index + 1; 197 return 0; 198 } 199 200 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) 201 { 202 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 203 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 204 205 __set_bit(bit, bitmap); 206 } 207 208 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 209 * from the driver before returning from its napi->poll() routine. The poll() 210 * routine is called either from busy_poll context or net_rx_action signaled 211 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 212 * net device can be torn down. On devmap tear down we ensure the ctx bitmap 213 * is zeroed before completing to ensure all flush operations have completed. 214 */ 215 void __dev_map_flush(struct bpf_map *map) 216 { 217 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 218 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 219 u32 bit; 220 221 for_each_set_bit(bit, bitmap, map->max_entries) { 222 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); 223 struct net_device *netdev; 224 225 /* This is possible if the dev entry is removed by user space 226 * between xdp redirect and flush op. 227 */ 228 if (unlikely(!dev)) 229 continue; 230 231 __clear_bit(bit, bitmap); 232 netdev = dev->dev; 233 if (likely(netdev->netdev_ops->ndo_xdp_flush)) 234 netdev->netdev_ops->ndo_xdp_flush(netdev); 235 } 236 } 237 238 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 239 * update happens in parallel here a dev_put wont happen until after reading the 240 * ifindex. 241 */ 242 struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 243 { 244 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 245 struct bpf_dtab_netdev *dev; 246 247 if (key >= map->max_entries) 248 return NULL; 249 250 dev = READ_ONCE(dtab->netdev_map[key]); 251 return dev ? dev->dev : NULL; 252 } 253 254 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 255 { 256 struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key); 257 258 return dev ? &dev->ifindex : NULL; 259 } 260 261 static void dev_map_flush_old(struct bpf_dtab_netdev *dev) 262 { 263 if (dev->dev->netdev_ops->ndo_xdp_flush) { 264 struct net_device *fl = dev->dev; 265 unsigned long *bitmap; 266 int cpu; 267 268 for_each_online_cpu(cpu) { 269 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); 270 __clear_bit(dev->bit, bitmap); 271 272 fl->netdev_ops->ndo_xdp_flush(dev->dev); 273 } 274 } 275 } 276 277 static void __dev_map_entry_free(struct rcu_head *rcu) 278 { 279 struct bpf_dtab_netdev *dev; 280 281 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 282 dev_map_flush_old(dev); 283 dev_put(dev->dev); 284 kfree(dev); 285 } 286 287 static int dev_map_delete_elem(struct bpf_map *map, void *key) 288 { 289 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 290 struct bpf_dtab_netdev *old_dev; 291 int k = *(u32 *)key; 292 293 if (k >= map->max_entries) 294 return -EINVAL; 295 296 /* Use call_rcu() here to ensure any rcu critical sections have 297 * completed, but this does not guarantee a flush has happened 298 * yet. Because driver side rcu_read_lock/unlock only protects the 299 * running XDP program. However, for pending flush operations the 300 * dev and ctx are stored in another per cpu map. And additionally, 301 * the driver tear down ensures all soft irqs are complete before 302 * removing the net device in the case of dev_put equals zero. 303 */ 304 old_dev = xchg(&dtab->netdev_map[k], NULL); 305 if (old_dev) 306 call_rcu(&old_dev->rcu, __dev_map_entry_free); 307 return 0; 308 } 309 310 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 311 u64 map_flags) 312 { 313 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 314 struct net *net = current->nsproxy->net_ns; 315 struct bpf_dtab_netdev *dev, *old_dev; 316 u32 i = *(u32 *)key; 317 u32 ifindex = *(u32 *)value; 318 319 if (unlikely(map_flags > BPF_EXIST)) 320 return -EINVAL; 321 if (unlikely(i >= dtab->map.max_entries)) 322 return -E2BIG; 323 if (unlikely(map_flags == BPF_NOEXIST)) 324 return -EEXIST; 325 326 if (!ifindex) { 327 dev = NULL; 328 } else { 329 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, 330 map->numa_node); 331 if (!dev) 332 return -ENOMEM; 333 334 dev->dev = dev_get_by_index(net, ifindex); 335 if (!dev->dev) { 336 kfree(dev); 337 return -EINVAL; 338 } 339 340 dev->bit = i; 341 dev->dtab = dtab; 342 } 343 344 /* Use call_rcu() here to ensure rcu critical sections have completed 345 * Remembering the driver side flush operation will happen before the 346 * net device is removed. 347 */ 348 old_dev = xchg(&dtab->netdev_map[i], dev); 349 if (old_dev) 350 call_rcu(&old_dev->rcu, __dev_map_entry_free); 351 352 return 0; 353 } 354 355 const struct bpf_map_ops dev_map_ops = { 356 .map_alloc = dev_map_alloc, 357 .map_free = dev_map_free, 358 .map_get_next_key = dev_map_get_next_key, 359 .map_lookup_elem = dev_map_lookup_elem, 360 .map_update_elem = dev_map_update_elem, 361 .map_delete_elem = dev_map_delete_elem, 362 }; 363 364 static int dev_map_notification(struct notifier_block *notifier, 365 ulong event, void *ptr) 366 { 367 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 368 struct bpf_dtab *dtab; 369 int i; 370 371 switch (event) { 372 case NETDEV_UNREGISTER: 373 /* This rcu_read_lock/unlock pair is needed because 374 * dev_map_list is an RCU list AND to ensure a delete 375 * operation does not free a netdev_map entry while we 376 * are comparing it against the netdev being unregistered. 377 */ 378 rcu_read_lock(); 379 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 380 for (i = 0; i < dtab->map.max_entries; i++) { 381 struct bpf_dtab_netdev *dev, *odev; 382 383 dev = READ_ONCE(dtab->netdev_map[i]); 384 if (!dev || 385 dev->dev->ifindex != netdev->ifindex) 386 continue; 387 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 388 if (dev == odev) 389 call_rcu(&dev->rcu, 390 __dev_map_entry_free); 391 } 392 } 393 rcu_read_unlock(); 394 break; 395 default: 396 break; 397 } 398 return NOTIFY_OK; 399 } 400 401 static struct notifier_block dev_map_notifier = { 402 .notifier_call = dev_map_notification, 403 }; 404 405 static int __init dev_map_init(void) 406 { 407 register_netdevice_notifier(&dev_map_notifier); 408 return 0; 409 } 410 411 subsys_initcall(dev_map_init); 412