xref: /openbmc/linux/kernel/bpf/devmap.c (revision 6a143a7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 struct xdp_dev_bulk_queue {
56 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 	struct list_head flush_node;
58 	struct net_device *dev;
59 	struct net_device *dev_rx;
60 	unsigned int count;
61 };
62 
63 struct bpf_dtab_netdev {
64 	struct net_device *dev; /* must be first member, due to tracepoint */
65 	struct hlist_node index_hlist;
66 	struct bpf_dtab *dtab;
67 	struct bpf_prog *xdp_prog;
68 	struct rcu_head rcu;
69 	unsigned int idx;
70 	struct bpf_devmap_val val;
71 };
72 
73 struct bpf_dtab {
74 	struct bpf_map map;
75 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
76 	struct list_head list;
77 
78 	/* these are only used for DEVMAP_HASH type maps */
79 	struct hlist_head *dev_index_head;
80 	spinlock_t index_lock;
81 	unsigned int items;
82 	u32 n_buckets;
83 };
84 
85 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
88 
89 static struct hlist_head *dev_map_create_hash(unsigned int entries,
90 					      int numa_node)
91 {
92 	int i;
93 	struct hlist_head *hash;
94 
95 	hash = bpf_map_area_alloc(entries * sizeof(*hash), numa_node);
96 	if (hash != NULL)
97 		for (i = 0; i < entries; i++)
98 			INIT_HLIST_HEAD(&hash[i]);
99 
100 	return hash;
101 }
102 
103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
104 						    int idx)
105 {
106 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
107 }
108 
109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
110 {
111 	u32 valsize = attr->value_size;
112 
113 	/* check sanity of attributes. 2 value sizes supported:
114 	 * 4 bytes: ifindex
115 	 * 8 bytes: ifindex + prog fd
116 	 */
117 	if (attr->max_entries == 0 || attr->key_size != 4 ||
118 	    (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
119 	     valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
120 	    attr->map_flags & ~DEV_CREATE_FLAG_MASK)
121 		return -EINVAL;
122 
123 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
124 	 * verifier prevents writes from the BPF side
125 	 */
126 	attr->map_flags |= BPF_F_RDONLY_PROG;
127 
128 
129 	bpf_map_init_from_attr(&dtab->map, attr);
130 
131 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
132 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
133 
134 		if (!dtab->n_buckets) /* Overflow check */
135 			return -EINVAL;
136 	}
137 
138 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
139 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
140 							   dtab->map.numa_node);
141 		if (!dtab->dev_index_head)
142 			return -ENOMEM;
143 
144 		spin_lock_init(&dtab->index_lock);
145 	} else {
146 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
147 						      sizeof(struct bpf_dtab_netdev *),
148 						      dtab->map.numa_node);
149 		if (!dtab->netdev_map)
150 			return -ENOMEM;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
157 {
158 	struct bpf_dtab *dtab;
159 	int err;
160 
161 	if (!capable(CAP_NET_ADMIN))
162 		return ERR_PTR(-EPERM);
163 
164 	dtab = kzalloc(sizeof(*dtab), GFP_USER | __GFP_ACCOUNT);
165 	if (!dtab)
166 		return ERR_PTR(-ENOMEM);
167 
168 	err = dev_map_init_map(dtab, attr);
169 	if (err) {
170 		kfree(dtab);
171 		return ERR_PTR(err);
172 	}
173 
174 	spin_lock(&dev_map_lock);
175 	list_add_tail_rcu(&dtab->list, &dev_map_list);
176 	spin_unlock(&dev_map_lock);
177 
178 	return &dtab->map;
179 }
180 
181 static void dev_map_free(struct bpf_map *map)
182 {
183 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
184 	int i;
185 
186 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
187 	 * so the programs (can be more than one that used this map) were
188 	 * disconnected from events. The following synchronize_rcu() guarantees
189 	 * both rcu read critical sections complete and waits for
190 	 * preempt-disable regions (NAPI being the relevant context here) so we
191 	 * are certain there will be no further reads against the netdev_map and
192 	 * all flush operations are complete. Flush operations can only be done
193 	 * from NAPI context for this reason.
194 	 */
195 
196 	spin_lock(&dev_map_lock);
197 	list_del_rcu(&dtab->list);
198 	spin_unlock(&dev_map_lock);
199 
200 	synchronize_rcu();
201 
202 	/* Make sure prior __dev_map_entry_free() have completed. */
203 	rcu_barrier();
204 
205 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
206 		for (i = 0; i < dtab->n_buckets; i++) {
207 			struct bpf_dtab_netdev *dev;
208 			struct hlist_head *head;
209 			struct hlist_node *next;
210 
211 			head = dev_map_index_hash(dtab, i);
212 
213 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
214 				hlist_del_rcu(&dev->index_hlist);
215 				if (dev->xdp_prog)
216 					bpf_prog_put(dev->xdp_prog);
217 				dev_put(dev->dev);
218 				kfree(dev);
219 			}
220 		}
221 
222 		bpf_map_area_free(dtab->dev_index_head);
223 	} else {
224 		for (i = 0; i < dtab->map.max_entries; i++) {
225 			struct bpf_dtab_netdev *dev;
226 
227 			dev = dtab->netdev_map[i];
228 			if (!dev)
229 				continue;
230 
231 			if (dev->xdp_prog)
232 				bpf_prog_put(dev->xdp_prog);
233 			dev_put(dev->dev);
234 			kfree(dev);
235 		}
236 
237 		bpf_map_area_free(dtab->netdev_map);
238 	}
239 
240 	kfree(dtab);
241 }
242 
243 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
244 {
245 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
246 	u32 index = key ? *(u32 *)key : U32_MAX;
247 	u32 *next = next_key;
248 
249 	if (index >= dtab->map.max_entries) {
250 		*next = 0;
251 		return 0;
252 	}
253 
254 	if (index == dtab->map.max_entries - 1)
255 		return -ENOENT;
256 	*next = index + 1;
257 	return 0;
258 }
259 
260 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
261 {
262 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
263 	struct hlist_head *head = dev_map_index_hash(dtab, key);
264 	struct bpf_dtab_netdev *dev;
265 
266 	hlist_for_each_entry_rcu(dev, head, index_hlist,
267 				 lockdep_is_held(&dtab->index_lock))
268 		if (dev->idx == key)
269 			return dev;
270 
271 	return NULL;
272 }
273 
274 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
275 				    void *next_key)
276 {
277 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
278 	u32 idx, *next = next_key;
279 	struct bpf_dtab_netdev *dev, *next_dev;
280 	struct hlist_head *head;
281 	int i = 0;
282 
283 	if (!key)
284 		goto find_first;
285 
286 	idx = *(u32 *)key;
287 
288 	dev = __dev_map_hash_lookup_elem(map, idx);
289 	if (!dev)
290 		goto find_first;
291 
292 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
293 				    struct bpf_dtab_netdev, index_hlist);
294 
295 	if (next_dev) {
296 		*next = next_dev->idx;
297 		return 0;
298 	}
299 
300 	i = idx & (dtab->n_buckets - 1);
301 	i++;
302 
303  find_first:
304 	for (; i < dtab->n_buckets; i++) {
305 		head = dev_map_index_hash(dtab, i);
306 
307 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
308 					    struct bpf_dtab_netdev,
309 					    index_hlist);
310 		if (next_dev) {
311 			*next = next_dev->idx;
312 			return 0;
313 		}
314 	}
315 
316 	return -ENOENT;
317 }
318 
319 bool dev_map_can_have_prog(struct bpf_map *map)
320 {
321 	if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
322 	     map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
323 	    map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
324 		return true;
325 
326 	return false;
327 }
328 
329 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
330 {
331 	struct net_device *dev = bq->dev;
332 	int sent = 0, drops = 0, err = 0;
333 	int i;
334 
335 	if (unlikely(!bq->count))
336 		return;
337 
338 	for (i = 0; i < bq->count; i++) {
339 		struct xdp_frame *xdpf = bq->q[i];
340 
341 		prefetch(xdpf);
342 	}
343 
344 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
345 	if (sent < 0) {
346 		err = sent;
347 		sent = 0;
348 		goto error;
349 	}
350 	drops = bq->count - sent;
351 out:
352 	bq->count = 0;
353 
354 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
355 	bq->dev_rx = NULL;
356 	__list_del_clearprev(&bq->flush_node);
357 	return;
358 error:
359 	/* If ndo_xdp_xmit fails with an errno, no frames have been
360 	 * xmit'ed and it's our responsibility to them free all.
361 	 */
362 	for (i = 0; i < bq->count; i++) {
363 		struct xdp_frame *xdpf = bq->q[i];
364 
365 		xdp_return_frame_rx_napi(xdpf);
366 		drops++;
367 	}
368 	goto out;
369 }
370 
371 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
372  * from the driver before returning from its napi->poll() routine. The poll()
373  * routine is called either from busy_poll context or net_rx_action signaled
374  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
375  * net device can be torn down. On devmap tear down we ensure the flush list
376  * is empty before completing to ensure all flush operations have completed.
377  * When drivers update the bpf program they may need to ensure any flush ops
378  * are also complete. Using synchronize_rcu or call_rcu will suffice for this
379  * because both wait for napi context to exit.
380  */
381 void __dev_flush(void)
382 {
383 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
384 	struct xdp_dev_bulk_queue *bq, *tmp;
385 
386 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
387 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
388 }
389 
390 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
391  * update happens in parallel here a dev_put wont happen until after reading the
392  * ifindex.
393  */
394 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
395 {
396 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
397 	struct bpf_dtab_netdev *obj;
398 
399 	if (key >= map->max_entries)
400 		return NULL;
401 
402 	obj = READ_ONCE(dtab->netdev_map[key]);
403 	return obj;
404 }
405 
406 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
407  * Thus, safe percpu variable access.
408  */
409 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
410 		       struct net_device *dev_rx)
411 {
412 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
413 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
414 
415 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
416 		bq_xmit_all(bq, 0);
417 
418 	/* Ingress dev_rx will be the same for all xdp_frame's in
419 	 * bulk_queue, because bq stored per-CPU and must be flushed
420 	 * from net_device drivers NAPI func end.
421 	 */
422 	if (!bq->dev_rx)
423 		bq->dev_rx = dev_rx;
424 
425 	bq->q[bq->count++] = xdpf;
426 
427 	if (!bq->flush_node.prev)
428 		list_add(&bq->flush_node, flush_list);
429 }
430 
431 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
432 			       struct net_device *dev_rx)
433 {
434 	struct xdp_frame *xdpf;
435 	int err;
436 
437 	if (!dev->netdev_ops->ndo_xdp_xmit)
438 		return -EOPNOTSUPP;
439 
440 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
441 	if (unlikely(err))
442 		return err;
443 
444 	xdpf = xdp_convert_buff_to_frame(xdp);
445 	if (unlikely(!xdpf))
446 		return -EOVERFLOW;
447 
448 	bq_enqueue(dev, xdpf, dev_rx);
449 	return 0;
450 }
451 
452 static struct xdp_buff *dev_map_run_prog(struct net_device *dev,
453 					 struct xdp_buff *xdp,
454 					 struct bpf_prog *xdp_prog)
455 {
456 	struct xdp_txq_info txq = { .dev = dev };
457 	u32 act;
458 
459 	xdp_set_data_meta_invalid(xdp);
460 	xdp->txq = &txq;
461 
462 	act = bpf_prog_run_xdp(xdp_prog, xdp);
463 	switch (act) {
464 	case XDP_PASS:
465 		return xdp;
466 	case XDP_DROP:
467 		break;
468 	default:
469 		bpf_warn_invalid_xdp_action(act);
470 		fallthrough;
471 	case XDP_ABORTED:
472 		trace_xdp_exception(dev, xdp_prog, act);
473 		break;
474 	}
475 
476 	xdp_return_buff(xdp);
477 	return NULL;
478 }
479 
480 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
481 		    struct net_device *dev_rx)
482 {
483 	return __xdp_enqueue(dev, xdp, dev_rx);
484 }
485 
486 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
487 		    struct net_device *dev_rx)
488 {
489 	struct net_device *dev = dst->dev;
490 
491 	if (dst->xdp_prog) {
492 		xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog);
493 		if (!xdp)
494 			return 0;
495 	}
496 	return __xdp_enqueue(dev, xdp, dev_rx);
497 }
498 
499 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
500 			     struct bpf_prog *xdp_prog)
501 {
502 	int err;
503 
504 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
505 	if (unlikely(err))
506 		return err;
507 	skb->dev = dst->dev;
508 	generic_xdp_tx(skb, xdp_prog);
509 
510 	return 0;
511 }
512 
513 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
514 {
515 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
516 
517 	return obj ? &obj->val : NULL;
518 }
519 
520 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
521 {
522 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
523 								*(u32 *)key);
524 	return obj ? &obj->val : NULL;
525 }
526 
527 static void __dev_map_entry_free(struct rcu_head *rcu)
528 {
529 	struct bpf_dtab_netdev *dev;
530 
531 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
532 	if (dev->xdp_prog)
533 		bpf_prog_put(dev->xdp_prog);
534 	dev_put(dev->dev);
535 	kfree(dev);
536 }
537 
538 static int dev_map_delete_elem(struct bpf_map *map, void *key)
539 {
540 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
541 	struct bpf_dtab_netdev *old_dev;
542 	int k = *(u32 *)key;
543 
544 	if (k >= map->max_entries)
545 		return -EINVAL;
546 
547 	/* Use call_rcu() here to ensure any rcu critical sections have
548 	 * completed as well as any flush operations because call_rcu
549 	 * will wait for preempt-disable region to complete, NAPI in this
550 	 * context.  And additionally, the driver tear down ensures all
551 	 * soft irqs are complete before removing the net device in the
552 	 * case of dev_put equals zero.
553 	 */
554 	old_dev = xchg(&dtab->netdev_map[k], NULL);
555 	if (old_dev)
556 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
557 	return 0;
558 }
559 
560 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
561 {
562 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
563 	struct bpf_dtab_netdev *old_dev;
564 	int k = *(u32 *)key;
565 	unsigned long flags;
566 	int ret = -ENOENT;
567 
568 	spin_lock_irqsave(&dtab->index_lock, flags);
569 
570 	old_dev = __dev_map_hash_lookup_elem(map, k);
571 	if (old_dev) {
572 		dtab->items--;
573 		hlist_del_init_rcu(&old_dev->index_hlist);
574 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
575 		ret = 0;
576 	}
577 	spin_unlock_irqrestore(&dtab->index_lock, flags);
578 
579 	return ret;
580 }
581 
582 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
583 						    struct bpf_dtab *dtab,
584 						    struct bpf_devmap_val *val,
585 						    unsigned int idx)
586 {
587 	struct bpf_prog *prog = NULL;
588 	struct bpf_dtab_netdev *dev;
589 
590 	dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
591 				   GFP_ATOMIC | __GFP_NOWARN,
592 				   dtab->map.numa_node);
593 	if (!dev)
594 		return ERR_PTR(-ENOMEM);
595 
596 	dev->dev = dev_get_by_index(net, val->ifindex);
597 	if (!dev->dev)
598 		goto err_out;
599 
600 	if (val->bpf_prog.fd > 0) {
601 		prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
602 					     BPF_PROG_TYPE_XDP, false);
603 		if (IS_ERR(prog))
604 			goto err_put_dev;
605 		if (prog->expected_attach_type != BPF_XDP_DEVMAP)
606 			goto err_put_prog;
607 	}
608 
609 	dev->idx = idx;
610 	dev->dtab = dtab;
611 	if (prog) {
612 		dev->xdp_prog = prog;
613 		dev->val.bpf_prog.id = prog->aux->id;
614 	} else {
615 		dev->xdp_prog = NULL;
616 		dev->val.bpf_prog.id = 0;
617 	}
618 	dev->val.ifindex = val->ifindex;
619 
620 	return dev;
621 err_put_prog:
622 	bpf_prog_put(prog);
623 err_put_dev:
624 	dev_put(dev->dev);
625 err_out:
626 	kfree(dev);
627 	return ERR_PTR(-EINVAL);
628 }
629 
630 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
631 				 void *key, void *value, u64 map_flags)
632 {
633 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
634 	struct bpf_dtab_netdev *dev, *old_dev;
635 	struct bpf_devmap_val val = {};
636 	u32 i = *(u32 *)key;
637 
638 	if (unlikely(map_flags > BPF_EXIST))
639 		return -EINVAL;
640 	if (unlikely(i >= dtab->map.max_entries))
641 		return -E2BIG;
642 	if (unlikely(map_flags == BPF_NOEXIST))
643 		return -EEXIST;
644 
645 	/* already verified value_size <= sizeof val */
646 	memcpy(&val, value, map->value_size);
647 
648 	if (!val.ifindex) {
649 		dev = NULL;
650 		/* can not specify fd if ifindex is 0 */
651 		if (val.bpf_prog.fd > 0)
652 			return -EINVAL;
653 	} else {
654 		dev = __dev_map_alloc_node(net, dtab, &val, i);
655 		if (IS_ERR(dev))
656 			return PTR_ERR(dev);
657 	}
658 
659 	/* Use call_rcu() here to ensure rcu critical sections have completed
660 	 * Remembering the driver side flush operation will happen before the
661 	 * net device is removed.
662 	 */
663 	old_dev = xchg(&dtab->netdev_map[i], dev);
664 	if (old_dev)
665 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
666 
667 	return 0;
668 }
669 
670 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
671 			       u64 map_flags)
672 {
673 	return __dev_map_update_elem(current->nsproxy->net_ns,
674 				     map, key, value, map_flags);
675 }
676 
677 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
678 				     void *key, void *value, u64 map_flags)
679 {
680 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
681 	struct bpf_dtab_netdev *dev, *old_dev;
682 	struct bpf_devmap_val val = {};
683 	u32 idx = *(u32 *)key;
684 	unsigned long flags;
685 	int err = -EEXIST;
686 
687 	/* already verified value_size <= sizeof val */
688 	memcpy(&val, value, map->value_size);
689 
690 	if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
691 		return -EINVAL;
692 
693 	spin_lock_irqsave(&dtab->index_lock, flags);
694 
695 	old_dev = __dev_map_hash_lookup_elem(map, idx);
696 	if (old_dev && (map_flags & BPF_NOEXIST))
697 		goto out_err;
698 
699 	dev = __dev_map_alloc_node(net, dtab, &val, idx);
700 	if (IS_ERR(dev)) {
701 		err = PTR_ERR(dev);
702 		goto out_err;
703 	}
704 
705 	if (old_dev) {
706 		hlist_del_rcu(&old_dev->index_hlist);
707 	} else {
708 		if (dtab->items >= dtab->map.max_entries) {
709 			spin_unlock_irqrestore(&dtab->index_lock, flags);
710 			call_rcu(&dev->rcu, __dev_map_entry_free);
711 			return -E2BIG;
712 		}
713 		dtab->items++;
714 	}
715 
716 	hlist_add_head_rcu(&dev->index_hlist,
717 			   dev_map_index_hash(dtab, idx));
718 	spin_unlock_irqrestore(&dtab->index_lock, flags);
719 
720 	if (old_dev)
721 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
722 
723 	return 0;
724 
725 out_err:
726 	spin_unlock_irqrestore(&dtab->index_lock, flags);
727 	return err;
728 }
729 
730 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
731 				   u64 map_flags)
732 {
733 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
734 					 map, key, value, map_flags);
735 }
736 
737 static int dev_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
738 {
739 	return __bpf_xdp_redirect_map(map, ifindex, flags, __dev_map_lookup_elem);
740 }
741 
742 static int dev_hash_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
743 {
744 	return __bpf_xdp_redirect_map(map, ifindex, flags, __dev_map_hash_lookup_elem);
745 }
746 
747 static int dev_map_btf_id;
748 const struct bpf_map_ops dev_map_ops = {
749 	.map_meta_equal = bpf_map_meta_equal,
750 	.map_alloc = dev_map_alloc,
751 	.map_free = dev_map_free,
752 	.map_get_next_key = dev_map_get_next_key,
753 	.map_lookup_elem = dev_map_lookup_elem,
754 	.map_update_elem = dev_map_update_elem,
755 	.map_delete_elem = dev_map_delete_elem,
756 	.map_check_btf = map_check_no_btf,
757 	.map_btf_name = "bpf_dtab",
758 	.map_btf_id = &dev_map_btf_id,
759 	.map_redirect = dev_map_redirect,
760 };
761 
762 static int dev_map_hash_map_btf_id;
763 const struct bpf_map_ops dev_map_hash_ops = {
764 	.map_meta_equal = bpf_map_meta_equal,
765 	.map_alloc = dev_map_alloc,
766 	.map_free = dev_map_free,
767 	.map_get_next_key = dev_map_hash_get_next_key,
768 	.map_lookup_elem = dev_map_hash_lookup_elem,
769 	.map_update_elem = dev_map_hash_update_elem,
770 	.map_delete_elem = dev_map_hash_delete_elem,
771 	.map_check_btf = map_check_no_btf,
772 	.map_btf_name = "bpf_dtab",
773 	.map_btf_id = &dev_map_hash_map_btf_id,
774 	.map_redirect = dev_hash_map_redirect,
775 };
776 
777 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
778 				       struct net_device *netdev)
779 {
780 	unsigned long flags;
781 	u32 i;
782 
783 	spin_lock_irqsave(&dtab->index_lock, flags);
784 	for (i = 0; i < dtab->n_buckets; i++) {
785 		struct bpf_dtab_netdev *dev;
786 		struct hlist_head *head;
787 		struct hlist_node *next;
788 
789 		head = dev_map_index_hash(dtab, i);
790 
791 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
792 			if (netdev != dev->dev)
793 				continue;
794 
795 			dtab->items--;
796 			hlist_del_rcu(&dev->index_hlist);
797 			call_rcu(&dev->rcu, __dev_map_entry_free);
798 		}
799 	}
800 	spin_unlock_irqrestore(&dtab->index_lock, flags);
801 }
802 
803 static int dev_map_notification(struct notifier_block *notifier,
804 				ulong event, void *ptr)
805 {
806 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
807 	struct bpf_dtab *dtab;
808 	int i, cpu;
809 
810 	switch (event) {
811 	case NETDEV_REGISTER:
812 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
813 			break;
814 
815 		/* will be freed in free_netdev() */
816 		netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
817 		if (!netdev->xdp_bulkq)
818 			return NOTIFY_BAD;
819 
820 		for_each_possible_cpu(cpu)
821 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
822 		break;
823 	case NETDEV_UNREGISTER:
824 		/* This rcu_read_lock/unlock pair is needed because
825 		 * dev_map_list is an RCU list AND to ensure a delete
826 		 * operation does not free a netdev_map entry while we
827 		 * are comparing it against the netdev being unregistered.
828 		 */
829 		rcu_read_lock();
830 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
831 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
832 				dev_map_hash_remove_netdev(dtab, netdev);
833 				continue;
834 			}
835 
836 			for (i = 0; i < dtab->map.max_entries; i++) {
837 				struct bpf_dtab_netdev *dev, *odev;
838 
839 				dev = READ_ONCE(dtab->netdev_map[i]);
840 				if (!dev || netdev != dev->dev)
841 					continue;
842 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
843 				if (dev == odev)
844 					call_rcu(&dev->rcu,
845 						 __dev_map_entry_free);
846 			}
847 		}
848 		rcu_read_unlock();
849 		break;
850 	default:
851 		break;
852 	}
853 	return NOTIFY_OK;
854 }
855 
856 static struct notifier_block dev_map_notifier = {
857 	.notifier_call = dev_map_notification,
858 };
859 
860 static int __init dev_map_init(void)
861 {
862 	int cpu;
863 
864 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
865 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
866 		     offsetof(struct _bpf_dtab_netdev, dev));
867 	register_netdevice_notifier(&dev_map_notifier);
868 
869 	for_each_possible_cpu(cpu)
870 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
871 	return 0;
872 }
873 
874 subsys_initcall(dev_map_init);
875