1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 #include <linux/btf_ids.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 struct bpf_prog *xdp_prog; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct hlist_node index_hlist; 68 struct bpf_dtab *dtab; 69 struct bpf_prog *xdp_prog; 70 struct rcu_head rcu; 71 unsigned int idx; 72 struct bpf_devmap_val val; 73 }; 74 75 struct bpf_dtab { 76 struct bpf_map map; 77 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 78 struct list_head list; 79 80 /* these are only used for DEVMAP_HASH type maps */ 81 struct hlist_head *dev_index_head; 82 spinlock_t index_lock; 83 unsigned int items; 84 u32 n_buckets; 85 }; 86 87 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 88 static DEFINE_SPINLOCK(dev_map_lock); 89 static LIST_HEAD(dev_map_list); 90 91 static struct hlist_head *dev_map_create_hash(unsigned int entries, 92 int numa_node) 93 { 94 int i; 95 struct hlist_head *hash; 96 97 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 98 if (hash != NULL) 99 for (i = 0; i < entries; i++) 100 INIT_HLIST_HEAD(&hash[i]); 101 102 return hash; 103 } 104 105 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 106 int idx) 107 { 108 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 109 } 110 111 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 112 { 113 u32 valsize = attr->value_size; 114 115 /* check sanity of attributes. 2 value sizes supported: 116 * 4 bytes: ifindex 117 * 8 bytes: ifindex + prog fd 118 */ 119 if (attr->max_entries == 0 || attr->key_size != 4 || 120 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 121 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 122 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 123 return -EINVAL; 124 125 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 126 * verifier prevents writes from the BPF side 127 */ 128 attr->map_flags |= BPF_F_RDONLY_PROG; 129 130 131 bpf_map_init_from_attr(&dtab->map, attr); 132 133 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 134 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 135 136 if (!dtab->n_buckets) /* Overflow check */ 137 return -EINVAL; 138 } 139 140 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 141 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 142 dtab->map.numa_node); 143 if (!dtab->dev_index_head) 144 return -ENOMEM; 145 146 spin_lock_init(&dtab->index_lock); 147 } else { 148 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 149 sizeof(struct bpf_dtab_netdev *), 150 dtab->map.numa_node); 151 if (!dtab->netdev_map) 152 return -ENOMEM; 153 } 154 155 return 0; 156 } 157 158 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 159 { 160 struct bpf_dtab *dtab; 161 int err; 162 163 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); 164 if (!dtab) 165 return ERR_PTR(-ENOMEM); 166 167 err = dev_map_init_map(dtab, attr); 168 if (err) { 169 bpf_map_area_free(dtab); 170 return ERR_PTR(err); 171 } 172 173 spin_lock(&dev_map_lock); 174 list_add_tail_rcu(&dtab->list, &dev_map_list); 175 spin_unlock(&dev_map_lock); 176 177 return &dtab->map; 178 } 179 180 static void dev_map_free(struct bpf_map *map) 181 { 182 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 183 int i; 184 185 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 186 * so the programs (can be more than one that used this map) were 187 * disconnected from events. The following synchronize_rcu() guarantees 188 * both rcu read critical sections complete and waits for 189 * preempt-disable regions (NAPI being the relevant context here) so we 190 * are certain there will be no further reads against the netdev_map and 191 * all flush operations are complete. Flush operations can only be done 192 * from NAPI context for this reason. 193 */ 194 195 spin_lock(&dev_map_lock); 196 list_del_rcu(&dtab->list); 197 spin_unlock(&dev_map_lock); 198 199 bpf_clear_redirect_map(map); 200 synchronize_rcu(); 201 202 /* Make sure prior __dev_map_entry_free() have completed. */ 203 rcu_barrier(); 204 205 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 206 for (i = 0; i < dtab->n_buckets; i++) { 207 struct bpf_dtab_netdev *dev; 208 struct hlist_head *head; 209 struct hlist_node *next; 210 211 head = dev_map_index_hash(dtab, i); 212 213 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 214 hlist_del_rcu(&dev->index_hlist); 215 if (dev->xdp_prog) 216 bpf_prog_put(dev->xdp_prog); 217 dev_put(dev->dev); 218 kfree(dev); 219 } 220 } 221 222 bpf_map_area_free(dtab->dev_index_head); 223 } else { 224 for (i = 0; i < dtab->map.max_entries; i++) { 225 struct bpf_dtab_netdev *dev; 226 227 dev = rcu_dereference_raw(dtab->netdev_map[i]); 228 if (!dev) 229 continue; 230 231 if (dev->xdp_prog) 232 bpf_prog_put(dev->xdp_prog); 233 dev_put(dev->dev); 234 kfree(dev); 235 } 236 237 bpf_map_area_free(dtab->netdev_map); 238 } 239 240 bpf_map_area_free(dtab); 241 } 242 243 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 244 { 245 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 246 u32 index = key ? *(u32 *)key : U32_MAX; 247 u32 *next = next_key; 248 249 if (index >= dtab->map.max_entries) { 250 *next = 0; 251 return 0; 252 } 253 254 if (index == dtab->map.max_entries - 1) 255 return -ENOENT; 256 *next = index + 1; 257 return 0; 258 } 259 260 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 261 * by local_bh_disable() (from XDP calls inside NAPI). The 262 * rcu_read_lock_bh_held() below makes lockdep accept both. 263 */ 264 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 265 { 266 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 267 struct hlist_head *head = dev_map_index_hash(dtab, key); 268 struct bpf_dtab_netdev *dev; 269 270 hlist_for_each_entry_rcu(dev, head, index_hlist, 271 lockdep_is_held(&dtab->index_lock)) 272 if (dev->idx == key) 273 return dev; 274 275 return NULL; 276 } 277 278 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 279 void *next_key) 280 { 281 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 282 u32 idx, *next = next_key; 283 struct bpf_dtab_netdev *dev, *next_dev; 284 struct hlist_head *head; 285 int i = 0; 286 287 if (!key) 288 goto find_first; 289 290 idx = *(u32 *)key; 291 292 dev = __dev_map_hash_lookup_elem(map, idx); 293 if (!dev) 294 goto find_first; 295 296 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 297 struct bpf_dtab_netdev, index_hlist); 298 299 if (next_dev) { 300 *next = next_dev->idx; 301 return 0; 302 } 303 304 i = idx & (dtab->n_buckets - 1); 305 i++; 306 307 find_first: 308 for (; i < dtab->n_buckets; i++) { 309 head = dev_map_index_hash(dtab, i); 310 311 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 312 struct bpf_dtab_netdev, 313 index_hlist); 314 if (next_dev) { 315 *next = next_dev->idx; 316 return 0; 317 } 318 } 319 320 return -ENOENT; 321 } 322 323 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 324 struct xdp_frame **frames, int n, 325 struct net_device *dev) 326 { 327 struct xdp_txq_info txq = { .dev = dev }; 328 struct xdp_buff xdp; 329 int i, nframes = 0; 330 331 for (i = 0; i < n; i++) { 332 struct xdp_frame *xdpf = frames[i]; 333 u32 act; 334 int err; 335 336 xdp_convert_frame_to_buff(xdpf, &xdp); 337 xdp.txq = &txq; 338 339 act = bpf_prog_run_xdp(xdp_prog, &xdp); 340 switch (act) { 341 case XDP_PASS: 342 err = xdp_update_frame_from_buff(&xdp, xdpf); 343 if (unlikely(err < 0)) 344 xdp_return_frame_rx_napi(xdpf); 345 else 346 frames[nframes++] = xdpf; 347 break; 348 default: 349 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); 350 fallthrough; 351 case XDP_ABORTED: 352 trace_xdp_exception(dev, xdp_prog, act); 353 fallthrough; 354 case XDP_DROP: 355 xdp_return_frame_rx_napi(xdpf); 356 break; 357 } 358 } 359 return nframes; /* sent frames count */ 360 } 361 362 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 363 { 364 struct net_device *dev = bq->dev; 365 unsigned int cnt = bq->count; 366 int sent = 0, err = 0; 367 int to_send = cnt; 368 int i; 369 370 if (unlikely(!cnt)) 371 return; 372 373 for (i = 0; i < cnt; i++) { 374 struct xdp_frame *xdpf = bq->q[i]; 375 376 prefetch(xdpf); 377 } 378 379 if (bq->xdp_prog) { 380 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 381 if (!to_send) 382 goto out; 383 } 384 385 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 386 if (sent < 0) { 387 /* If ndo_xdp_xmit fails with an errno, no frames have 388 * been xmit'ed. 389 */ 390 err = sent; 391 sent = 0; 392 } 393 394 /* If not all frames have been transmitted, it is our 395 * responsibility to free them 396 */ 397 for (i = sent; unlikely(i < to_send); i++) 398 xdp_return_frame_rx_napi(bq->q[i]); 399 400 out: 401 bq->count = 0; 402 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 403 } 404 405 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 406 * driver before returning from its napi->poll() routine. See the comment above 407 * xdp_do_flush() in filter.c. 408 */ 409 void __dev_flush(void) 410 { 411 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 412 struct xdp_dev_bulk_queue *bq, *tmp; 413 414 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 415 bq_xmit_all(bq, XDP_XMIT_FLUSH); 416 bq->dev_rx = NULL; 417 bq->xdp_prog = NULL; 418 __list_del_clearprev(&bq->flush_node); 419 } 420 } 421 422 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 423 * by local_bh_disable() (from XDP calls inside NAPI). The 424 * rcu_read_lock_bh_held() below makes lockdep accept both. 425 */ 426 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 427 { 428 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 429 struct bpf_dtab_netdev *obj; 430 431 if (key >= map->max_entries) 432 return NULL; 433 434 obj = rcu_dereference_check(dtab->netdev_map[key], 435 rcu_read_lock_bh_held()); 436 return obj; 437 } 438 439 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 440 * variable access, and map elements stick around. See comment above 441 * xdp_do_flush() in filter.c. 442 */ 443 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 444 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 445 { 446 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 447 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 448 449 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 450 bq_xmit_all(bq, 0); 451 452 /* Ingress dev_rx will be the same for all xdp_frame's in 453 * bulk_queue, because bq stored per-CPU and must be flushed 454 * from net_device drivers NAPI func end. 455 * 456 * Do the same with xdp_prog and flush_list since these fields 457 * are only ever modified together. 458 */ 459 if (!bq->dev_rx) { 460 bq->dev_rx = dev_rx; 461 bq->xdp_prog = xdp_prog; 462 list_add(&bq->flush_node, flush_list); 463 } 464 465 bq->q[bq->count++] = xdpf; 466 } 467 468 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 469 struct net_device *dev_rx, 470 struct bpf_prog *xdp_prog) 471 { 472 int err; 473 474 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 475 return -EOPNOTSUPP; 476 477 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 478 xdp_frame_has_frags(xdpf))) 479 return -EOPNOTSUPP; 480 481 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); 482 if (unlikely(err)) 483 return err; 484 485 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 486 return 0; 487 } 488 489 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 490 { 491 struct xdp_txq_info txq = { .dev = dst->dev }; 492 struct xdp_buff xdp; 493 u32 act; 494 495 if (!dst->xdp_prog) 496 return XDP_PASS; 497 498 __skb_pull(skb, skb->mac_len); 499 xdp.txq = &txq; 500 501 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 502 switch (act) { 503 case XDP_PASS: 504 __skb_push(skb, skb->mac_len); 505 break; 506 default: 507 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); 508 fallthrough; 509 case XDP_ABORTED: 510 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 511 fallthrough; 512 case XDP_DROP: 513 kfree_skb(skb); 514 break; 515 } 516 517 return act; 518 } 519 520 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 521 struct net_device *dev_rx) 522 { 523 return __xdp_enqueue(dev, xdpf, dev_rx, NULL); 524 } 525 526 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 527 struct net_device *dev_rx) 528 { 529 struct net_device *dev = dst->dev; 530 531 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); 532 } 533 534 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) 535 { 536 if (!obj) 537 return false; 538 539 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 540 return false; 541 542 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 543 xdp_frame_has_frags(xdpf))) 544 return false; 545 546 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) 547 return false; 548 549 return true; 550 } 551 552 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 553 struct net_device *dev_rx, 554 struct xdp_frame *xdpf) 555 { 556 struct xdp_frame *nxdpf; 557 558 nxdpf = xdpf_clone(xdpf); 559 if (!nxdpf) 560 return -ENOMEM; 561 562 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 563 564 return 0; 565 } 566 567 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 568 { 569 while (num_excluded--) { 570 if (ifindex == excluded[num_excluded]) 571 return true; 572 } 573 return false; 574 } 575 576 /* Get ifindex of each upper device. 'indexes' must be able to hold at 577 * least MAX_NEST_DEV elements. 578 * Returns the number of ifindexes added. 579 */ 580 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 581 { 582 struct net_device *upper; 583 struct list_head *iter; 584 int n = 0; 585 586 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 587 indexes[n++] = upper->ifindex; 588 } 589 return n; 590 } 591 592 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 593 struct bpf_map *map, bool exclude_ingress) 594 { 595 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 596 struct bpf_dtab_netdev *dst, *last_dst = NULL; 597 int excluded_devices[1+MAX_NEST_DEV]; 598 struct hlist_head *head; 599 int num_excluded = 0; 600 unsigned int i; 601 int err; 602 603 if (exclude_ingress) { 604 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 605 excluded_devices[num_excluded++] = dev_rx->ifindex; 606 } 607 608 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 609 for (i = 0; i < map->max_entries; i++) { 610 dst = rcu_dereference_check(dtab->netdev_map[i], 611 rcu_read_lock_bh_held()); 612 if (!is_valid_dst(dst, xdpf)) 613 continue; 614 615 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 616 continue; 617 618 /* we only need n-1 clones; last_dst enqueued below */ 619 if (!last_dst) { 620 last_dst = dst; 621 continue; 622 } 623 624 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 625 if (err) 626 return err; 627 628 last_dst = dst; 629 } 630 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 631 for (i = 0; i < dtab->n_buckets; i++) { 632 head = dev_map_index_hash(dtab, i); 633 hlist_for_each_entry_rcu(dst, head, index_hlist, 634 lockdep_is_held(&dtab->index_lock)) { 635 if (!is_valid_dst(dst, xdpf)) 636 continue; 637 638 if (is_ifindex_excluded(excluded_devices, num_excluded, 639 dst->dev->ifindex)) 640 continue; 641 642 /* we only need n-1 clones; last_dst enqueued below */ 643 if (!last_dst) { 644 last_dst = dst; 645 continue; 646 } 647 648 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 649 if (err) 650 return err; 651 652 last_dst = dst; 653 } 654 } 655 } 656 657 /* consume the last copy of the frame */ 658 if (last_dst) 659 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 660 else 661 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 662 663 return 0; 664 } 665 666 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 667 struct bpf_prog *xdp_prog) 668 { 669 int err; 670 671 err = xdp_ok_fwd_dev(dst->dev, skb->len); 672 if (unlikely(err)) 673 return err; 674 675 /* Redirect has already succeeded semantically at this point, so we just 676 * return 0 even if packet is dropped. Helper below takes care of 677 * freeing skb. 678 */ 679 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 680 return 0; 681 682 skb->dev = dst->dev; 683 generic_xdp_tx(skb, xdp_prog); 684 685 return 0; 686 } 687 688 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 689 struct sk_buff *skb, 690 struct bpf_prog *xdp_prog) 691 { 692 struct sk_buff *nskb; 693 int err; 694 695 nskb = skb_clone(skb, GFP_ATOMIC); 696 if (!nskb) 697 return -ENOMEM; 698 699 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 700 if (unlikely(err)) { 701 consume_skb(nskb); 702 return err; 703 } 704 705 return 0; 706 } 707 708 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 709 struct bpf_prog *xdp_prog, struct bpf_map *map, 710 bool exclude_ingress) 711 { 712 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 713 struct bpf_dtab_netdev *dst, *last_dst = NULL; 714 int excluded_devices[1+MAX_NEST_DEV]; 715 struct hlist_head *head; 716 struct hlist_node *next; 717 int num_excluded = 0; 718 unsigned int i; 719 int err; 720 721 if (exclude_ingress) { 722 num_excluded = get_upper_ifindexes(dev, excluded_devices); 723 excluded_devices[num_excluded++] = dev->ifindex; 724 } 725 726 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 727 for (i = 0; i < map->max_entries; i++) { 728 dst = rcu_dereference_check(dtab->netdev_map[i], 729 rcu_read_lock_bh_held()); 730 if (!dst) 731 continue; 732 733 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 734 continue; 735 736 /* we only need n-1 clones; last_dst enqueued below */ 737 if (!last_dst) { 738 last_dst = dst; 739 continue; 740 } 741 742 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 743 if (err) 744 return err; 745 746 last_dst = dst; 747 748 } 749 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 750 for (i = 0; i < dtab->n_buckets; i++) { 751 head = dev_map_index_hash(dtab, i); 752 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 753 if (!dst) 754 continue; 755 756 if (is_ifindex_excluded(excluded_devices, num_excluded, 757 dst->dev->ifindex)) 758 continue; 759 760 /* we only need n-1 clones; last_dst enqueued below */ 761 if (!last_dst) { 762 last_dst = dst; 763 continue; 764 } 765 766 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 767 if (err) 768 return err; 769 770 last_dst = dst; 771 } 772 } 773 } 774 775 /* consume the first skb and return */ 776 if (last_dst) 777 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 778 779 /* dtab is empty */ 780 consume_skb(skb); 781 return 0; 782 } 783 784 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 785 { 786 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 787 788 return obj ? &obj->val : NULL; 789 } 790 791 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 792 { 793 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 794 *(u32 *)key); 795 return obj ? &obj->val : NULL; 796 } 797 798 static void __dev_map_entry_free(struct rcu_head *rcu) 799 { 800 struct bpf_dtab_netdev *dev; 801 802 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 803 if (dev->xdp_prog) 804 bpf_prog_put(dev->xdp_prog); 805 dev_put(dev->dev); 806 kfree(dev); 807 } 808 809 static long dev_map_delete_elem(struct bpf_map *map, void *key) 810 { 811 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 812 struct bpf_dtab_netdev *old_dev; 813 int k = *(u32 *)key; 814 815 if (k >= map->max_entries) 816 return -EINVAL; 817 818 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 819 if (old_dev) { 820 call_rcu(&old_dev->rcu, __dev_map_entry_free); 821 atomic_dec((atomic_t *)&dtab->items); 822 } 823 return 0; 824 } 825 826 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) 827 { 828 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 829 struct bpf_dtab_netdev *old_dev; 830 int k = *(u32 *)key; 831 unsigned long flags; 832 int ret = -ENOENT; 833 834 spin_lock_irqsave(&dtab->index_lock, flags); 835 836 old_dev = __dev_map_hash_lookup_elem(map, k); 837 if (old_dev) { 838 dtab->items--; 839 hlist_del_init_rcu(&old_dev->index_hlist); 840 call_rcu(&old_dev->rcu, __dev_map_entry_free); 841 ret = 0; 842 } 843 spin_unlock_irqrestore(&dtab->index_lock, flags); 844 845 return ret; 846 } 847 848 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 849 struct bpf_dtab *dtab, 850 struct bpf_devmap_val *val, 851 unsigned int idx) 852 { 853 struct bpf_prog *prog = NULL; 854 struct bpf_dtab_netdev *dev; 855 856 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 857 GFP_NOWAIT | __GFP_NOWARN, 858 dtab->map.numa_node); 859 if (!dev) 860 return ERR_PTR(-ENOMEM); 861 862 dev->dev = dev_get_by_index(net, val->ifindex); 863 if (!dev->dev) 864 goto err_out; 865 866 if (val->bpf_prog.fd > 0) { 867 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 868 BPF_PROG_TYPE_XDP, false); 869 if (IS_ERR(prog)) 870 goto err_put_dev; 871 if (prog->expected_attach_type != BPF_XDP_DEVMAP || 872 !bpf_prog_map_compatible(&dtab->map, prog)) 873 goto err_put_prog; 874 } 875 876 dev->idx = idx; 877 dev->dtab = dtab; 878 if (prog) { 879 dev->xdp_prog = prog; 880 dev->val.bpf_prog.id = prog->aux->id; 881 } else { 882 dev->xdp_prog = NULL; 883 dev->val.bpf_prog.id = 0; 884 } 885 dev->val.ifindex = val->ifindex; 886 887 return dev; 888 err_put_prog: 889 bpf_prog_put(prog); 890 err_put_dev: 891 dev_put(dev->dev); 892 err_out: 893 kfree(dev); 894 return ERR_PTR(-EINVAL); 895 } 896 897 static long __dev_map_update_elem(struct net *net, struct bpf_map *map, 898 void *key, void *value, u64 map_flags) 899 { 900 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 901 struct bpf_dtab_netdev *dev, *old_dev; 902 struct bpf_devmap_val val = {}; 903 u32 i = *(u32 *)key; 904 905 if (unlikely(map_flags > BPF_EXIST)) 906 return -EINVAL; 907 if (unlikely(i >= dtab->map.max_entries)) 908 return -E2BIG; 909 if (unlikely(map_flags == BPF_NOEXIST)) 910 return -EEXIST; 911 912 /* already verified value_size <= sizeof val */ 913 memcpy(&val, value, map->value_size); 914 915 if (!val.ifindex) { 916 dev = NULL; 917 /* can not specify fd if ifindex is 0 */ 918 if (val.bpf_prog.fd > 0) 919 return -EINVAL; 920 } else { 921 dev = __dev_map_alloc_node(net, dtab, &val, i); 922 if (IS_ERR(dev)) 923 return PTR_ERR(dev); 924 } 925 926 /* Use call_rcu() here to ensure rcu critical sections have completed 927 * Remembering the driver side flush operation will happen before the 928 * net device is removed. 929 */ 930 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 931 if (old_dev) 932 call_rcu(&old_dev->rcu, __dev_map_entry_free); 933 else 934 atomic_inc((atomic_t *)&dtab->items); 935 936 return 0; 937 } 938 939 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, 940 u64 map_flags) 941 { 942 return __dev_map_update_elem(current->nsproxy->net_ns, 943 map, key, value, map_flags); 944 } 945 946 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 947 void *key, void *value, u64 map_flags) 948 { 949 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 950 struct bpf_dtab_netdev *dev, *old_dev; 951 struct bpf_devmap_val val = {}; 952 u32 idx = *(u32 *)key; 953 unsigned long flags; 954 int err = -EEXIST; 955 956 /* already verified value_size <= sizeof val */ 957 memcpy(&val, value, map->value_size); 958 959 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 960 return -EINVAL; 961 962 spin_lock_irqsave(&dtab->index_lock, flags); 963 964 old_dev = __dev_map_hash_lookup_elem(map, idx); 965 if (old_dev && (map_flags & BPF_NOEXIST)) 966 goto out_err; 967 968 dev = __dev_map_alloc_node(net, dtab, &val, idx); 969 if (IS_ERR(dev)) { 970 err = PTR_ERR(dev); 971 goto out_err; 972 } 973 974 if (old_dev) { 975 hlist_del_rcu(&old_dev->index_hlist); 976 } else { 977 if (dtab->items >= dtab->map.max_entries) { 978 spin_unlock_irqrestore(&dtab->index_lock, flags); 979 call_rcu(&dev->rcu, __dev_map_entry_free); 980 return -E2BIG; 981 } 982 dtab->items++; 983 } 984 985 hlist_add_head_rcu(&dev->index_hlist, 986 dev_map_index_hash(dtab, idx)); 987 spin_unlock_irqrestore(&dtab->index_lock, flags); 988 989 if (old_dev) 990 call_rcu(&old_dev->rcu, __dev_map_entry_free); 991 992 return 0; 993 994 out_err: 995 spin_unlock_irqrestore(&dtab->index_lock, flags); 996 return err; 997 } 998 999 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 1000 u64 map_flags) 1001 { 1002 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1003 map, key, value, map_flags); 1004 } 1005 1006 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1007 { 1008 return __bpf_xdp_redirect_map(map, ifindex, flags, 1009 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1010 __dev_map_lookup_elem); 1011 } 1012 1013 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1014 { 1015 return __bpf_xdp_redirect_map(map, ifindex, flags, 1016 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1017 __dev_map_hash_lookup_elem); 1018 } 1019 1020 static u64 dev_map_mem_usage(const struct bpf_map *map) 1021 { 1022 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 1023 u64 usage = sizeof(struct bpf_dtab); 1024 1025 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) 1026 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); 1027 else 1028 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); 1029 usage += atomic_read((atomic_t *)&dtab->items) * 1030 (u64)sizeof(struct bpf_dtab_netdev); 1031 return usage; 1032 } 1033 1034 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) 1035 const struct bpf_map_ops dev_map_ops = { 1036 .map_meta_equal = bpf_map_meta_equal, 1037 .map_alloc = dev_map_alloc, 1038 .map_free = dev_map_free, 1039 .map_get_next_key = dev_map_get_next_key, 1040 .map_lookup_elem = dev_map_lookup_elem, 1041 .map_update_elem = dev_map_update_elem, 1042 .map_delete_elem = dev_map_delete_elem, 1043 .map_check_btf = map_check_no_btf, 1044 .map_mem_usage = dev_map_mem_usage, 1045 .map_btf_id = &dev_map_btf_ids[0], 1046 .map_redirect = dev_map_redirect, 1047 }; 1048 1049 const struct bpf_map_ops dev_map_hash_ops = { 1050 .map_meta_equal = bpf_map_meta_equal, 1051 .map_alloc = dev_map_alloc, 1052 .map_free = dev_map_free, 1053 .map_get_next_key = dev_map_hash_get_next_key, 1054 .map_lookup_elem = dev_map_hash_lookup_elem, 1055 .map_update_elem = dev_map_hash_update_elem, 1056 .map_delete_elem = dev_map_hash_delete_elem, 1057 .map_check_btf = map_check_no_btf, 1058 .map_mem_usage = dev_map_mem_usage, 1059 .map_btf_id = &dev_map_btf_ids[0], 1060 .map_redirect = dev_hash_map_redirect, 1061 }; 1062 1063 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1064 struct net_device *netdev) 1065 { 1066 unsigned long flags; 1067 u32 i; 1068 1069 spin_lock_irqsave(&dtab->index_lock, flags); 1070 for (i = 0; i < dtab->n_buckets; i++) { 1071 struct bpf_dtab_netdev *dev; 1072 struct hlist_head *head; 1073 struct hlist_node *next; 1074 1075 head = dev_map_index_hash(dtab, i); 1076 1077 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1078 if (netdev != dev->dev) 1079 continue; 1080 1081 dtab->items--; 1082 hlist_del_rcu(&dev->index_hlist); 1083 call_rcu(&dev->rcu, __dev_map_entry_free); 1084 } 1085 } 1086 spin_unlock_irqrestore(&dtab->index_lock, flags); 1087 } 1088 1089 static int dev_map_notification(struct notifier_block *notifier, 1090 ulong event, void *ptr) 1091 { 1092 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1093 struct bpf_dtab *dtab; 1094 int i, cpu; 1095 1096 switch (event) { 1097 case NETDEV_REGISTER: 1098 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1099 break; 1100 1101 /* will be freed in free_netdev() */ 1102 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1103 if (!netdev->xdp_bulkq) 1104 return NOTIFY_BAD; 1105 1106 for_each_possible_cpu(cpu) 1107 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1108 break; 1109 case NETDEV_UNREGISTER: 1110 /* This rcu_read_lock/unlock pair is needed because 1111 * dev_map_list is an RCU list AND to ensure a delete 1112 * operation does not free a netdev_map entry while we 1113 * are comparing it against the netdev being unregistered. 1114 */ 1115 rcu_read_lock(); 1116 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1117 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1118 dev_map_hash_remove_netdev(dtab, netdev); 1119 continue; 1120 } 1121 1122 for (i = 0; i < dtab->map.max_entries; i++) { 1123 struct bpf_dtab_netdev *dev, *odev; 1124 1125 dev = rcu_dereference(dtab->netdev_map[i]); 1126 if (!dev || netdev != dev->dev) 1127 continue; 1128 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1129 if (dev == odev) { 1130 call_rcu(&dev->rcu, 1131 __dev_map_entry_free); 1132 atomic_dec((atomic_t *)&dtab->items); 1133 } 1134 } 1135 } 1136 rcu_read_unlock(); 1137 break; 1138 default: 1139 break; 1140 } 1141 return NOTIFY_OK; 1142 } 1143 1144 static struct notifier_block dev_map_notifier = { 1145 .notifier_call = dev_map_notification, 1146 }; 1147 1148 static int __init dev_map_init(void) 1149 { 1150 int cpu; 1151 1152 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1153 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1154 offsetof(struct _bpf_dtab_netdev, dev)); 1155 register_netdevice_notifier(&dev_map_notifier); 1156 1157 for_each_possible_cpu(cpu) 1158 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 1159 return 0; 1160 } 1161 1162 subsys_initcall(dev_map_init); 1163