xref: /openbmc/linux/kernel/bpf/devmap.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15  * spent some effort to ensure the datapath with redirect maps does not use
16  * any locking. This is a quick note on the details.
17  *
18  * We have three possible paths to get into the devmap control plane bpf
19  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20  * will invoke an update, delete, or lookup operation. To ensure updates and
21  * deletes appear atomic from the datapath side xchg() is used to modify the
22  * netdev_map array. Then because the datapath does a lookup into the netdev_map
23  * array (read-only) from an RCU critical section we use call_rcu() to wait for
24  * an rcu grace period before free'ing the old data structures. This ensures the
25  * datapath always has a valid copy. However, the datapath does a "flush"
26  * operation that pushes any pending packets in the driver outside the RCU
27  * critical section. Each bpf_dtab_netdev tracks these pending operations using
28  * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29  * until all bits are cleared indicating outstanding flush operations have
30  * completed.
31  *
32  * BPF syscalls may race with BPF program calls on any of the update, delete
33  * or lookup operations. As noted above the xchg() operation also keep the
34  * netdev_map consistent in this case. From the devmap side BPF programs
35  * calling into these operations are the same as multiple user space threads
36  * making system calls.
37  *
38  * Finally, any of the above may race with a netdev_unregister notifier. The
39  * unregister notifier must search for net devices in the map structure that
40  * contain a reference to the net device and remove them. This is a two step
41  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42  * check to see if the ifindex is the same as the net_device being removed.
43  * When removing the dev a cmpxchg() is used to ensure the correct dev is
44  * removed, in the case of a concurrent update or delete operation it is
45  * possible that the initially referenced dev is no longer in the map. As the
46  * notifier hook walks the map we know that new dev references can not be
47  * added by the user because core infrastructure ensures dev_get_by_index()
48  * calls will fail at this point.
49  */
50 #include <linux/bpf.h>
51 #include <net/xdp.h>
52 #include <linux/filter.h>
53 #include <trace/events/xdp.h>
54 
55 #define DEV_CREATE_FLAG_MASK \
56 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
57 
58 #define DEV_MAP_BULK_SIZE 16
59 struct xdp_bulk_queue {
60 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
61 	struct net_device *dev_rx;
62 	unsigned int count;
63 };
64 
65 struct bpf_dtab_netdev {
66 	struct net_device *dev; /* must be first member, due to tracepoint */
67 	struct bpf_dtab *dtab;
68 	unsigned int bit;
69 	struct xdp_bulk_queue __percpu *bulkq;
70 	struct rcu_head rcu;
71 };
72 
73 struct bpf_dtab {
74 	struct bpf_map map;
75 	struct bpf_dtab_netdev **netdev_map;
76 	unsigned long __percpu *flush_needed;
77 	struct list_head list;
78 };
79 
80 static DEFINE_SPINLOCK(dev_map_lock);
81 static LIST_HEAD(dev_map_list);
82 
83 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
84 {
85 	return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
86 }
87 
88 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
89 {
90 	struct bpf_dtab *dtab;
91 	int err = -EINVAL;
92 	u64 cost;
93 
94 	if (!capable(CAP_NET_ADMIN))
95 		return ERR_PTR(-EPERM);
96 
97 	/* check sanity of attributes */
98 	if (attr->max_entries == 0 || attr->key_size != 4 ||
99 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
100 		return ERR_PTR(-EINVAL);
101 
102 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
103 	if (!dtab)
104 		return ERR_PTR(-ENOMEM);
105 
106 	bpf_map_init_from_attr(&dtab->map, attr);
107 
108 	/* make sure page count doesn't overflow */
109 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
110 	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
111 	if (cost >= U32_MAX - PAGE_SIZE)
112 		goto free_dtab;
113 
114 	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
115 
116 	/* if map size is larger than memlock limit, reject it early */
117 	err = bpf_map_precharge_memlock(dtab->map.pages);
118 	if (err)
119 		goto free_dtab;
120 
121 	err = -ENOMEM;
122 
123 	/* A per cpu bitfield with a bit per possible net device */
124 	dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
125 						__alignof__(unsigned long),
126 						GFP_KERNEL | __GFP_NOWARN);
127 	if (!dtab->flush_needed)
128 		goto free_dtab;
129 
130 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
131 					      sizeof(struct bpf_dtab_netdev *),
132 					      dtab->map.numa_node);
133 	if (!dtab->netdev_map)
134 		goto free_dtab;
135 
136 	spin_lock(&dev_map_lock);
137 	list_add_tail_rcu(&dtab->list, &dev_map_list);
138 	spin_unlock(&dev_map_lock);
139 
140 	return &dtab->map;
141 free_dtab:
142 	free_percpu(dtab->flush_needed);
143 	kfree(dtab);
144 	return ERR_PTR(err);
145 }
146 
147 static void dev_map_free(struct bpf_map *map)
148 {
149 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
150 	int i, cpu;
151 
152 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
153 	 * so the programs (can be more than one that used this map) were
154 	 * disconnected from events. Wait for outstanding critical sections in
155 	 * these programs to complete. The rcu critical section only guarantees
156 	 * no further reads against netdev_map. It does __not__ ensure pending
157 	 * flush operations (if any) are complete.
158 	 */
159 
160 	spin_lock(&dev_map_lock);
161 	list_del_rcu(&dtab->list);
162 	spin_unlock(&dev_map_lock);
163 
164 	bpf_clear_redirect_map(map);
165 	synchronize_rcu();
166 
167 	/* Make sure prior __dev_map_entry_free() have completed. */
168 	rcu_barrier();
169 
170 	/* To ensure all pending flush operations have completed wait for flush
171 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
172 	 * Because the above synchronize_rcu() ensures the map is disconnected
173 	 * from the program we can assume no new bits will be set.
174 	 */
175 	for_each_online_cpu(cpu) {
176 		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
177 
178 		while (!bitmap_empty(bitmap, dtab->map.max_entries))
179 			cond_resched();
180 	}
181 
182 	for (i = 0; i < dtab->map.max_entries; i++) {
183 		struct bpf_dtab_netdev *dev;
184 
185 		dev = dtab->netdev_map[i];
186 		if (!dev)
187 			continue;
188 
189 		dev_put(dev->dev);
190 		kfree(dev);
191 	}
192 
193 	free_percpu(dtab->flush_needed);
194 	bpf_map_area_free(dtab->netdev_map);
195 	kfree(dtab);
196 }
197 
198 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
199 {
200 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
201 	u32 index = key ? *(u32 *)key : U32_MAX;
202 	u32 *next = next_key;
203 
204 	if (index >= dtab->map.max_entries) {
205 		*next = 0;
206 		return 0;
207 	}
208 
209 	if (index == dtab->map.max_entries - 1)
210 		return -ENOENT;
211 	*next = index + 1;
212 	return 0;
213 }
214 
215 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
216 {
217 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
218 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
219 
220 	__set_bit(bit, bitmap);
221 }
222 
223 static int bq_xmit_all(struct bpf_dtab_netdev *obj,
224 		       struct xdp_bulk_queue *bq, u32 flags,
225 		       bool in_napi_ctx)
226 {
227 	struct net_device *dev = obj->dev;
228 	int sent = 0, drops = 0, err = 0;
229 	int i;
230 
231 	if (unlikely(!bq->count))
232 		return 0;
233 
234 	for (i = 0; i < bq->count; i++) {
235 		struct xdp_frame *xdpf = bq->q[i];
236 
237 		prefetch(xdpf);
238 	}
239 
240 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
241 	if (sent < 0) {
242 		err = sent;
243 		sent = 0;
244 		goto error;
245 	}
246 	drops = bq->count - sent;
247 out:
248 	bq->count = 0;
249 
250 	trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
251 			      sent, drops, bq->dev_rx, dev, err);
252 	bq->dev_rx = NULL;
253 	return 0;
254 error:
255 	/* If ndo_xdp_xmit fails with an errno, no frames have been
256 	 * xmit'ed and it's our responsibility to them free all.
257 	 */
258 	for (i = 0; i < bq->count; i++) {
259 		struct xdp_frame *xdpf = bq->q[i];
260 
261 		/* RX path under NAPI protection, can return frames faster */
262 		if (likely(in_napi_ctx))
263 			xdp_return_frame_rx_napi(xdpf);
264 		else
265 			xdp_return_frame(xdpf);
266 		drops++;
267 	}
268 	goto out;
269 }
270 
271 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
272  * from the driver before returning from its napi->poll() routine. The poll()
273  * routine is called either from busy_poll context or net_rx_action signaled
274  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
275  * net device can be torn down. On devmap tear down we ensure the ctx bitmap
276  * is zeroed before completing to ensure all flush operations have completed.
277  */
278 void __dev_map_flush(struct bpf_map *map)
279 {
280 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
281 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
282 	u32 bit;
283 
284 	for_each_set_bit(bit, bitmap, map->max_entries) {
285 		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
286 		struct xdp_bulk_queue *bq;
287 
288 		/* This is possible if the dev entry is removed by user space
289 		 * between xdp redirect and flush op.
290 		 */
291 		if (unlikely(!dev))
292 			continue;
293 
294 		__clear_bit(bit, bitmap);
295 
296 		bq = this_cpu_ptr(dev->bulkq);
297 		bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
298 	}
299 }
300 
301 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
302  * update happens in parallel here a dev_put wont happen until after reading the
303  * ifindex.
304  */
305 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
306 {
307 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
308 	struct bpf_dtab_netdev *obj;
309 
310 	if (key >= map->max_entries)
311 		return NULL;
312 
313 	obj = READ_ONCE(dtab->netdev_map[key]);
314 	return obj;
315 }
316 
317 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
318  * Thus, safe percpu variable access.
319  */
320 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
321 		      struct net_device *dev_rx)
322 
323 {
324 	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
325 
326 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
327 		bq_xmit_all(obj, bq, 0, true);
328 
329 	/* Ingress dev_rx will be the same for all xdp_frame's in
330 	 * bulk_queue, because bq stored per-CPU and must be flushed
331 	 * from net_device drivers NAPI func end.
332 	 */
333 	if (!bq->dev_rx)
334 		bq->dev_rx = dev_rx;
335 
336 	bq->q[bq->count++] = xdpf;
337 	return 0;
338 }
339 
340 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
341 		    struct net_device *dev_rx)
342 {
343 	struct net_device *dev = dst->dev;
344 	struct xdp_frame *xdpf;
345 	int err;
346 
347 	if (!dev->netdev_ops->ndo_xdp_xmit)
348 		return -EOPNOTSUPP;
349 
350 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
351 	if (unlikely(err))
352 		return err;
353 
354 	xdpf = convert_to_xdp_frame(xdp);
355 	if (unlikely(!xdpf))
356 		return -EOVERFLOW;
357 
358 	return bq_enqueue(dst, xdpf, dev_rx);
359 }
360 
361 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
362 			     struct bpf_prog *xdp_prog)
363 {
364 	int err;
365 
366 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
367 	if (unlikely(err))
368 		return err;
369 	skb->dev = dst->dev;
370 	generic_xdp_tx(skb, xdp_prog);
371 
372 	return 0;
373 }
374 
375 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
376 {
377 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
378 	struct net_device *dev = obj ? obj->dev : NULL;
379 
380 	return dev ? &dev->ifindex : NULL;
381 }
382 
383 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
384 {
385 	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
386 		struct xdp_bulk_queue *bq;
387 		unsigned long *bitmap;
388 
389 		int cpu;
390 
391 		for_each_online_cpu(cpu) {
392 			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
393 			__clear_bit(dev->bit, bitmap);
394 
395 			bq = per_cpu_ptr(dev->bulkq, cpu);
396 			bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
397 		}
398 	}
399 }
400 
401 static void __dev_map_entry_free(struct rcu_head *rcu)
402 {
403 	struct bpf_dtab_netdev *dev;
404 
405 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
406 	dev_map_flush_old(dev);
407 	free_percpu(dev->bulkq);
408 	dev_put(dev->dev);
409 	kfree(dev);
410 }
411 
412 static int dev_map_delete_elem(struct bpf_map *map, void *key)
413 {
414 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
415 	struct bpf_dtab_netdev *old_dev;
416 	int k = *(u32 *)key;
417 
418 	if (k >= map->max_entries)
419 		return -EINVAL;
420 
421 	/* Use call_rcu() here to ensure any rcu critical sections have
422 	 * completed, but this does not guarantee a flush has happened
423 	 * yet. Because driver side rcu_read_lock/unlock only protects the
424 	 * running XDP program. However, for pending flush operations the
425 	 * dev and ctx are stored in another per cpu map. And additionally,
426 	 * the driver tear down ensures all soft irqs are complete before
427 	 * removing the net device in the case of dev_put equals zero.
428 	 */
429 	old_dev = xchg(&dtab->netdev_map[k], NULL);
430 	if (old_dev)
431 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
432 	return 0;
433 }
434 
435 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
436 				u64 map_flags)
437 {
438 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
439 	struct net *net = current->nsproxy->net_ns;
440 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
441 	struct bpf_dtab_netdev *dev, *old_dev;
442 	u32 i = *(u32 *)key;
443 	u32 ifindex = *(u32 *)value;
444 
445 	if (unlikely(map_flags > BPF_EXIST))
446 		return -EINVAL;
447 	if (unlikely(i >= dtab->map.max_entries))
448 		return -E2BIG;
449 	if (unlikely(map_flags == BPF_NOEXIST))
450 		return -EEXIST;
451 
452 	if (!ifindex) {
453 		dev = NULL;
454 	} else {
455 		dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
456 		if (!dev)
457 			return -ENOMEM;
458 
459 		dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
460 						sizeof(void *), gfp);
461 		if (!dev->bulkq) {
462 			kfree(dev);
463 			return -ENOMEM;
464 		}
465 
466 		dev->dev = dev_get_by_index(net, ifindex);
467 		if (!dev->dev) {
468 			free_percpu(dev->bulkq);
469 			kfree(dev);
470 			return -EINVAL;
471 		}
472 
473 		dev->bit = i;
474 		dev->dtab = dtab;
475 	}
476 
477 	/* Use call_rcu() here to ensure rcu critical sections have completed
478 	 * Remembering the driver side flush operation will happen before the
479 	 * net device is removed.
480 	 */
481 	old_dev = xchg(&dtab->netdev_map[i], dev);
482 	if (old_dev)
483 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
484 
485 	return 0;
486 }
487 
488 const struct bpf_map_ops dev_map_ops = {
489 	.map_alloc = dev_map_alloc,
490 	.map_free = dev_map_free,
491 	.map_get_next_key = dev_map_get_next_key,
492 	.map_lookup_elem = dev_map_lookup_elem,
493 	.map_update_elem = dev_map_update_elem,
494 	.map_delete_elem = dev_map_delete_elem,
495 	.map_check_btf = map_check_no_btf,
496 };
497 
498 static int dev_map_notification(struct notifier_block *notifier,
499 				ulong event, void *ptr)
500 {
501 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
502 	struct bpf_dtab *dtab;
503 	int i;
504 
505 	switch (event) {
506 	case NETDEV_UNREGISTER:
507 		/* This rcu_read_lock/unlock pair is needed because
508 		 * dev_map_list is an RCU list AND to ensure a delete
509 		 * operation does not free a netdev_map entry while we
510 		 * are comparing it against the netdev being unregistered.
511 		 */
512 		rcu_read_lock();
513 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
514 			for (i = 0; i < dtab->map.max_entries; i++) {
515 				struct bpf_dtab_netdev *dev, *odev;
516 
517 				dev = READ_ONCE(dtab->netdev_map[i]);
518 				if (!dev || netdev != dev->dev)
519 					continue;
520 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
521 				if (dev == odev)
522 					call_rcu(&dev->rcu,
523 						 __dev_map_entry_free);
524 			}
525 		}
526 		rcu_read_unlock();
527 		break;
528 	default:
529 		break;
530 	}
531 	return NOTIFY_OK;
532 }
533 
534 static struct notifier_block dev_map_notifier = {
535 	.notifier_call = dev_map_notification,
536 };
537 
538 static int __init dev_map_init(void)
539 {
540 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
541 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
542 		     offsetof(struct _bpf_dtab_netdev, dev));
543 	register_netdevice_notifier(&dev_map_notifier);
544 	return 0;
545 }
546 
547 subsys_initcall(dev_map_init);
548