xref: /openbmc/linux/kernel/bpf/devmap.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 struct xdp_dev_bulk_queue {
56 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 	struct list_head flush_node;
58 	struct net_device *dev;
59 	struct net_device *dev_rx;
60 	unsigned int count;
61 };
62 
63 struct bpf_dtab_netdev {
64 	struct net_device *dev; /* must be first member, due to tracepoint */
65 	struct hlist_node index_hlist;
66 	struct bpf_dtab *dtab;
67 	struct bpf_prog *xdp_prog;
68 	struct rcu_head rcu;
69 	unsigned int idx;
70 	struct bpf_devmap_val val;
71 };
72 
73 struct bpf_dtab {
74 	struct bpf_map map;
75 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
76 	struct list_head list;
77 
78 	/* these are only used for DEVMAP_HASH type maps */
79 	struct hlist_head *dev_index_head;
80 	spinlock_t index_lock;
81 	unsigned int items;
82 	u32 n_buckets;
83 };
84 
85 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
88 
89 static struct hlist_head *dev_map_create_hash(unsigned int entries)
90 {
91 	int i;
92 	struct hlist_head *hash;
93 
94 	hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL);
95 	if (hash != NULL)
96 		for (i = 0; i < entries; i++)
97 			INIT_HLIST_HEAD(&hash[i]);
98 
99 	return hash;
100 }
101 
102 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
103 						    int idx)
104 {
105 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
106 }
107 
108 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
109 {
110 	u32 valsize = attr->value_size;
111 	u64 cost = 0;
112 	int err;
113 
114 	/* check sanity of attributes. 2 value sizes supported:
115 	 * 4 bytes: ifindex
116 	 * 8 bytes: ifindex + prog fd
117 	 */
118 	if (attr->max_entries == 0 || attr->key_size != 4 ||
119 	    (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
120 	     valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
121 	    attr->map_flags & ~DEV_CREATE_FLAG_MASK)
122 		return -EINVAL;
123 
124 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
125 	 * verifier prevents writes from the BPF side
126 	 */
127 	attr->map_flags |= BPF_F_RDONLY_PROG;
128 
129 
130 	bpf_map_init_from_attr(&dtab->map, attr);
131 
132 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
133 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
134 
135 		if (!dtab->n_buckets) /* Overflow check */
136 			return -EINVAL;
137 		cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
138 	} else {
139 		cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
140 	}
141 
142 	/* if map size is larger than memlock limit, reject it */
143 	err = bpf_map_charge_init(&dtab->map.memory, cost);
144 	if (err)
145 		return -EINVAL;
146 
147 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
148 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets);
149 		if (!dtab->dev_index_head)
150 			goto free_charge;
151 
152 		spin_lock_init(&dtab->index_lock);
153 	} else {
154 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
155 						      sizeof(struct bpf_dtab_netdev *),
156 						      dtab->map.numa_node);
157 		if (!dtab->netdev_map)
158 			goto free_charge;
159 	}
160 
161 	return 0;
162 
163 free_charge:
164 	bpf_map_charge_finish(&dtab->map.memory);
165 	return -ENOMEM;
166 }
167 
168 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
169 {
170 	struct bpf_dtab *dtab;
171 	int err;
172 
173 	if (!capable(CAP_NET_ADMIN))
174 		return ERR_PTR(-EPERM);
175 
176 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
177 	if (!dtab)
178 		return ERR_PTR(-ENOMEM);
179 
180 	err = dev_map_init_map(dtab, attr);
181 	if (err) {
182 		kfree(dtab);
183 		return ERR_PTR(err);
184 	}
185 
186 	spin_lock(&dev_map_lock);
187 	list_add_tail_rcu(&dtab->list, &dev_map_list);
188 	spin_unlock(&dev_map_lock);
189 
190 	return &dtab->map;
191 }
192 
193 static void dev_map_free(struct bpf_map *map)
194 {
195 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
196 	int i;
197 
198 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
199 	 * so the programs (can be more than one that used this map) were
200 	 * disconnected from events. The following synchronize_rcu() guarantees
201 	 * both rcu read critical sections complete and waits for
202 	 * preempt-disable regions (NAPI being the relevant context here) so we
203 	 * are certain there will be no further reads against the netdev_map and
204 	 * all flush operations are complete. Flush operations can only be done
205 	 * from NAPI context for this reason.
206 	 */
207 
208 	spin_lock(&dev_map_lock);
209 	list_del_rcu(&dtab->list);
210 	spin_unlock(&dev_map_lock);
211 
212 	bpf_clear_redirect_map(map);
213 	synchronize_rcu();
214 
215 	/* Make sure prior __dev_map_entry_free() have completed. */
216 	rcu_barrier();
217 
218 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
219 		for (i = 0; i < dtab->n_buckets; i++) {
220 			struct bpf_dtab_netdev *dev;
221 			struct hlist_head *head;
222 			struct hlist_node *next;
223 
224 			head = dev_map_index_hash(dtab, i);
225 
226 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
227 				hlist_del_rcu(&dev->index_hlist);
228 				if (dev->xdp_prog)
229 					bpf_prog_put(dev->xdp_prog);
230 				dev_put(dev->dev);
231 				kfree(dev);
232 			}
233 		}
234 
235 		kfree(dtab->dev_index_head);
236 	} else {
237 		for (i = 0; i < dtab->map.max_entries; i++) {
238 			struct bpf_dtab_netdev *dev;
239 
240 			dev = dtab->netdev_map[i];
241 			if (!dev)
242 				continue;
243 
244 			if (dev->xdp_prog)
245 				bpf_prog_put(dev->xdp_prog);
246 			dev_put(dev->dev);
247 			kfree(dev);
248 		}
249 
250 		bpf_map_area_free(dtab->netdev_map);
251 	}
252 
253 	kfree(dtab);
254 }
255 
256 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
257 {
258 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
259 	u32 index = key ? *(u32 *)key : U32_MAX;
260 	u32 *next = next_key;
261 
262 	if (index >= dtab->map.max_entries) {
263 		*next = 0;
264 		return 0;
265 	}
266 
267 	if (index == dtab->map.max_entries - 1)
268 		return -ENOENT;
269 	*next = index + 1;
270 	return 0;
271 }
272 
273 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
274 {
275 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
276 	struct hlist_head *head = dev_map_index_hash(dtab, key);
277 	struct bpf_dtab_netdev *dev;
278 
279 	hlist_for_each_entry_rcu(dev, head, index_hlist,
280 				 lockdep_is_held(&dtab->index_lock))
281 		if (dev->idx == key)
282 			return dev;
283 
284 	return NULL;
285 }
286 
287 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
288 				    void *next_key)
289 {
290 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
291 	u32 idx, *next = next_key;
292 	struct bpf_dtab_netdev *dev, *next_dev;
293 	struct hlist_head *head;
294 	int i = 0;
295 
296 	if (!key)
297 		goto find_first;
298 
299 	idx = *(u32 *)key;
300 
301 	dev = __dev_map_hash_lookup_elem(map, idx);
302 	if (!dev)
303 		goto find_first;
304 
305 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
306 				    struct bpf_dtab_netdev, index_hlist);
307 
308 	if (next_dev) {
309 		*next = next_dev->idx;
310 		return 0;
311 	}
312 
313 	i = idx & (dtab->n_buckets - 1);
314 	i++;
315 
316  find_first:
317 	for (; i < dtab->n_buckets; i++) {
318 		head = dev_map_index_hash(dtab, i);
319 
320 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
321 					    struct bpf_dtab_netdev,
322 					    index_hlist);
323 		if (next_dev) {
324 			*next = next_dev->idx;
325 			return 0;
326 		}
327 	}
328 
329 	return -ENOENT;
330 }
331 
332 bool dev_map_can_have_prog(struct bpf_map *map)
333 {
334 	if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
335 	     map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
336 	    map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
337 		return true;
338 
339 	return false;
340 }
341 
342 static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
343 {
344 	struct net_device *dev = bq->dev;
345 	int sent = 0, drops = 0, err = 0;
346 	int i;
347 
348 	if (unlikely(!bq->count))
349 		return 0;
350 
351 	for (i = 0; i < bq->count; i++) {
352 		struct xdp_frame *xdpf = bq->q[i];
353 
354 		prefetch(xdpf);
355 	}
356 
357 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
358 	if (sent < 0) {
359 		err = sent;
360 		sent = 0;
361 		goto error;
362 	}
363 	drops = bq->count - sent;
364 out:
365 	bq->count = 0;
366 
367 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
368 	bq->dev_rx = NULL;
369 	__list_del_clearprev(&bq->flush_node);
370 	return 0;
371 error:
372 	/* If ndo_xdp_xmit fails with an errno, no frames have been
373 	 * xmit'ed and it's our responsibility to them free all.
374 	 */
375 	for (i = 0; i < bq->count; i++) {
376 		struct xdp_frame *xdpf = bq->q[i];
377 
378 		xdp_return_frame_rx_napi(xdpf);
379 		drops++;
380 	}
381 	goto out;
382 }
383 
384 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
385  * from the driver before returning from its napi->poll() routine. The poll()
386  * routine is called either from busy_poll context or net_rx_action signaled
387  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
388  * net device can be torn down. On devmap tear down we ensure the flush list
389  * is empty before completing to ensure all flush operations have completed.
390  * When drivers update the bpf program they may need to ensure any flush ops
391  * are also complete. Using synchronize_rcu or call_rcu will suffice for this
392  * because both wait for napi context to exit.
393  */
394 void __dev_flush(void)
395 {
396 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
397 	struct xdp_dev_bulk_queue *bq, *tmp;
398 
399 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
400 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
401 }
402 
403 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
404  * update happens in parallel here a dev_put wont happen until after reading the
405  * ifindex.
406  */
407 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
408 {
409 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
410 	struct bpf_dtab_netdev *obj;
411 
412 	if (key >= map->max_entries)
413 		return NULL;
414 
415 	obj = READ_ONCE(dtab->netdev_map[key]);
416 	return obj;
417 }
418 
419 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
420  * Thus, safe percpu variable access.
421  */
422 static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
423 		      struct net_device *dev_rx)
424 {
425 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
426 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
427 
428 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
429 		bq_xmit_all(bq, 0);
430 
431 	/* Ingress dev_rx will be the same for all xdp_frame's in
432 	 * bulk_queue, because bq stored per-CPU and must be flushed
433 	 * from net_device drivers NAPI func end.
434 	 */
435 	if (!bq->dev_rx)
436 		bq->dev_rx = dev_rx;
437 
438 	bq->q[bq->count++] = xdpf;
439 
440 	if (!bq->flush_node.prev)
441 		list_add(&bq->flush_node, flush_list);
442 
443 	return 0;
444 }
445 
446 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
447 			       struct net_device *dev_rx)
448 {
449 	struct xdp_frame *xdpf;
450 	int err;
451 
452 	if (!dev->netdev_ops->ndo_xdp_xmit)
453 		return -EOPNOTSUPP;
454 
455 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
456 	if (unlikely(err))
457 		return err;
458 
459 	xdpf = xdp_convert_buff_to_frame(xdp);
460 	if (unlikely(!xdpf))
461 		return -EOVERFLOW;
462 
463 	return bq_enqueue(dev, xdpf, dev_rx);
464 }
465 
466 static struct xdp_buff *dev_map_run_prog(struct net_device *dev,
467 					 struct xdp_buff *xdp,
468 					 struct bpf_prog *xdp_prog)
469 {
470 	struct xdp_txq_info txq = { .dev = dev };
471 	u32 act;
472 
473 	xdp_set_data_meta_invalid(xdp);
474 	xdp->txq = &txq;
475 
476 	act = bpf_prog_run_xdp(xdp_prog, xdp);
477 	switch (act) {
478 	case XDP_PASS:
479 		return xdp;
480 	case XDP_DROP:
481 		break;
482 	default:
483 		bpf_warn_invalid_xdp_action(act);
484 		fallthrough;
485 	case XDP_ABORTED:
486 		trace_xdp_exception(dev, xdp_prog, act);
487 		break;
488 	}
489 
490 	xdp_return_buff(xdp);
491 	return NULL;
492 }
493 
494 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
495 		    struct net_device *dev_rx)
496 {
497 	return __xdp_enqueue(dev, xdp, dev_rx);
498 }
499 
500 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
501 		    struct net_device *dev_rx)
502 {
503 	struct net_device *dev = dst->dev;
504 
505 	if (dst->xdp_prog) {
506 		xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog);
507 		if (!xdp)
508 			return 0;
509 	}
510 	return __xdp_enqueue(dev, xdp, dev_rx);
511 }
512 
513 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
514 			     struct bpf_prog *xdp_prog)
515 {
516 	int err;
517 
518 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
519 	if (unlikely(err))
520 		return err;
521 	skb->dev = dst->dev;
522 	generic_xdp_tx(skb, xdp_prog);
523 
524 	return 0;
525 }
526 
527 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
528 {
529 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
530 
531 	return obj ? &obj->val : NULL;
532 }
533 
534 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
535 {
536 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
537 								*(u32 *)key);
538 	return obj ? &obj->val : NULL;
539 }
540 
541 static void __dev_map_entry_free(struct rcu_head *rcu)
542 {
543 	struct bpf_dtab_netdev *dev;
544 
545 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
546 	if (dev->xdp_prog)
547 		bpf_prog_put(dev->xdp_prog);
548 	dev_put(dev->dev);
549 	kfree(dev);
550 }
551 
552 static int dev_map_delete_elem(struct bpf_map *map, void *key)
553 {
554 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
555 	struct bpf_dtab_netdev *old_dev;
556 	int k = *(u32 *)key;
557 
558 	if (k >= map->max_entries)
559 		return -EINVAL;
560 
561 	/* Use call_rcu() here to ensure any rcu critical sections have
562 	 * completed as well as any flush operations because call_rcu
563 	 * will wait for preempt-disable region to complete, NAPI in this
564 	 * context.  And additionally, the driver tear down ensures all
565 	 * soft irqs are complete before removing the net device in the
566 	 * case of dev_put equals zero.
567 	 */
568 	old_dev = xchg(&dtab->netdev_map[k], NULL);
569 	if (old_dev)
570 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
571 	return 0;
572 }
573 
574 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
575 {
576 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
577 	struct bpf_dtab_netdev *old_dev;
578 	int k = *(u32 *)key;
579 	unsigned long flags;
580 	int ret = -ENOENT;
581 
582 	spin_lock_irqsave(&dtab->index_lock, flags);
583 
584 	old_dev = __dev_map_hash_lookup_elem(map, k);
585 	if (old_dev) {
586 		dtab->items--;
587 		hlist_del_init_rcu(&old_dev->index_hlist);
588 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
589 		ret = 0;
590 	}
591 	spin_unlock_irqrestore(&dtab->index_lock, flags);
592 
593 	return ret;
594 }
595 
596 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
597 						    struct bpf_dtab *dtab,
598 						    struct bpf_devmap_val *val,
599 						    unsigned int idx)
600 {
601 	struct bpf_prog *prog = NULL;
602 	struct bpf_dtab_netdev *dev;
603 
604 	dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
605 			   dtab->map.numa_node);
606 	if (!dev)
607 		return ERR_PTR(-ENOMEM);
608 
609 	dev->dev = dev_get_by_index(net, val->ifindex);
610 	if (!dev->dev)
611 		goto err_out;
612 
613 	if (val->bpf_prog.fd > 0) {
614 		prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
615 					     BPF_PROG_TYPE_XDP, false);
616 		if (IS_ERR(prog))
617 			goto err_put_dev;
618 		if (prog->expected_attach_type != BPF_XDP_DEVMAP)
619 			goto err_put_prog;
620 	}
621 
622 	dev->idx = idx;
623 	dev->dtab = dtab;
624 	if (prog) {
625 		dev->xdp_prog = prog;
626 		dev->val.bpf_prog.id = prog->aux->id;
627 	} else {
628 		dev->xdp_prog = NULL;
629 		dev->val.bpf_prog.id = 0;
630 	}
631 	dev->val.ifindex = val->ifindex;
632 
633 	return dev;
634 err_put_prog:
635 	bpf_prog_put(prog);
636 err_put_dev:
637 	dev_put(dev->dev);
638 err_out:
639 	kfree(dev);
640 	return ERR_PTR(-EINVAL);
641 }
642 
643 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
644 				 void *key, void *value, u64 map_flags)
645 {
646 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
647 	struct bpf_dtab_netdev *dev, *old_dev;
648 	struct bpf_devmap_val val = {};
649 	u32 i = *(u32 *)key;
650 
651 	if (unlikely(map_flags > BPF_EXIST))
652 		return -EINVAL;
653 	if (unlikely(i >= dtab->map.max_entries))
654 		return -E2BIG;
655 	if (unlikely(map_flags == BPF_NOEXIST))
656 		return -EEXIST;
657 
658 	/* already verified value_size <= sizeof val */
659 	memcpy(&val, value, map->value_size);
660 
661 	if (!val.ifindex) {
662 		dev = NULL;
663 		/* can not specify fd if ifindex is 0 */
664 		if (val.bpf_prog.fd > 0)
665 			return -EINVAL;
666 	} else {
667 		dev = __dev_map_alloc_node(net, dtab, &val, i);
668 		if (IS_ERR(dev))
669 			return PTR_ERR(dev);
670 	}
671 
672 	/* Use call_rcu() here to ensure rcu critical sections have completed
673 	 * Remembering the driver side flush operation will happen before the
674 	 * net device is removed.
675 	 */
676 	old_dev = xchg(&dtab->netdev_map[i], dev);
677 	if (old_dev)
678 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
679 
680 	return 0;
681 }
682 
683 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
684 			       u64 map_flags)
685 {
686 	return __dev_map_update_elem(current->nsproxy->net_ns,
687 				     map, key, value, map_flags);
688 }
689 
690 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
691 				     void *key, void *value, u64 map_flags)
692 {
693 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
694 	struct bpf_dtab_netdev *dev, *old_dev;
695 	struct bpf_devmap_val val = {};
696 	u32 idx = *(u32 *)key;
697 	unsigned long flags;
698 	int err = -EEXIST;
699 
700 	/* already verified value_size <= sizeof val */
701 	memcpy(&val, value, map->value_size);
702 
703 	if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
704 		return -EINVAL;
705 
706 	spin_lock_irqsave(&dtab->index_lock, flags);
707 
708 	old_dev = __dev_map_hash_lookup_elem(map, idx);
709 	if (old_dev && (map_flags & BPF_NOEXIST))
710 		goto out_err;
711 
712 	dev = __dev_map_alloc_node(net, dtab, &val, idx);
713 	if (IS_ERR(dev)) {
714 		err = PTR_ERR(dev);
715 		goto out_err;
716 	}
717 
718 	if (old_dev) {
719 		hlist_del_rcu(&old_dev->index_hlist);
720 	} else {
721 		if (dtab->items >= dtab->map.max_entries) {
722 			spin_unlock_irqrestore(&dtab->index_lock, flags);
723 			call_rcu(&dev->rcu, __dev_map_entry_free);
724 			return -E2BIG;
725 		}
726 		dtab->items++;
727 	}
728 
729 	hlist_add_head_rcu(&dev->index_hlist,
730 			   dev_map_index_hash(dtab, idx));
731 	spin_unlock_irqrestore(&dtab->index_lock, flags);
732 
733 	if (old_dev)
734 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
735 
736 	return 0;
737 
738 out_err:
739 	spin_unlock_irqrestore(&dtab->index_lock, flags);
740 	return err;
741 }
742 
743 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
744 				   u64 map_flags)
745 {
746 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
747 					 map, key, value, map_flags);
748 }
749 
750 const struct bpf_map_ops dev_map_ops = {
751 	.map_alloc = dev_map_alloc,
752 	.map_free = dev_map_free,
753 	.map_get_next_key = dev_map_get_next_key,
754 	.map_lookup_elem = dev_map_lookup_elem,
755 	.map_update_elem = dev_map_update_elem,
756 	.map_delete_elem = dev_map_delete_elem,
757 	.map_check_btf = map_check_no_btf,
758 };
759 
760 const struct bpf_map_ops dev_map_hash_ops = {
761 	.map_alloc = dev_map_alloc,
762 	.map_free = dev_map_free,
763 	.map_get_next_key = dev_map_hash_get_next_key,
764 	.map_lookup_elem = dev_map_hash_lookup_elem,
765 	.map_update_elem = dev_map_hash_update_elem,
766 	.map_delete_elem = dev_map_hash_delete_elem,
767 	.map_check_btf = map_check_no_btf,
768 };
769 
770 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
771 				       struct net_device *netdev)
772 {
773 	unsigned long flags;
774 	u32 i;
775 
776 	spin_lock_irqsave(&dtab->index_lock, flags);
777 	for (i = 0; i < dtab->n_buckets; i++) {
778 		struct bpf_dtab_netdev *dev;
779 		struct hlist_head *head;
780 		struct hlist_node *next;
781 
782 		head = dev_map_index_hash(dtab, i);
783 
784 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
785 			if (netdev != dev->dev)
786 				continue;
787 
788 			dtab->items--;
789 			hlist_del_rcu(&dev->index_hlist);
790 			call_rcu(&dev->rcu, __dev_map_entry_free);
791 		}
792 	}
793 	spin_unlock_irqrestore(&dtab->index_lock, flags);
794 }
795 
796 static int dev_map_notification(struct notifier_block *notifier,
797 				ulong event, void *ptr)
798 {
799 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
800 	struct bpf_dtab *dtab;
801 	int i, cpu;
802 
803 	switch (event) {
804 	case NETDEV_REGISTER:
805 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
806 			break;
807 
808 		/* will be freed in free_netdev() */
809 		netdev->xdp_bulkq =
810 			__alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue),
811 					   sizeof(void *), GFP_ATOMIC);
812 		if (!netdev->xdp_bulkq)
813 			return NOTIFY_BAD;
814 
815 		for_each_possible_cpu(cpu)
816 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
817 		break;
818 	case NETDEV_UNREGISTER:
819 		/* This rcu_read_lock/unlock pair is needed because
820 		 * dev_map_list is an RCU list AND to ensure a delete
821 		 * operation does not free a netdev_map entry while we
822 		 * are comparing it against the netdev being unregistered.
823 		 */
824 		rcu_read_lock();
825 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
826 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
827 				dev_map_hash_remove_netdev(dtab, netdev);
828 				continue;
829 			}
830 
831 			for (i = 0; i < dtab->map.max_entries; i++) {
832 				struct bpf_dtab_netdev *dev, *odev;
833 
834 				dev = READ_ONCE(dtab->netdev_map[i]);
835 				if (!dev || netdev != dev->dev)
836 					continue;
837 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
838 				if (dev == odev)
839 					call_rcu(&dev->rcu,
840 						 __dev_map_entry_free);
841 			}
842 		}
843 		rcu_read_unlock();
844 		break;
845 	default:
846 		break;
847 	}
848 	return NOTIFY_OK;
849 }
850 
851 static struct notifier_block dev_map_notifier = {
852 	.notifier_call = dev_map_notification,
853 };
854 
855 static int __init dev_map_init(void)
856 {
857 	int cpu;
858 
859 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
860 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
861 		     offsetof(struct _bpf_dtab_netdev, dev));
862 	register_netdevice_notifier(&dev_map_notifier);
863 
864 	for_each_possible_cpu(cpu)
865 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
866 	return 0;
867 }
868 
869 subsys_initcall(dev_map_init);
870