xref: /openbmc/linux/kernel/bpf/devmap.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 struct xdp_dev_bulk_queue {
56 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 	struct list_head flush_node;
58 	struct net_device *dev;
59 	struct net_device *dev_rx;
60 	unsigned int count;
61 };
62 
63 struct bpf_dtab_netdev {
64 	struct net_device *dev; /* must be first member, due to tracepoint */
65 	struct hlist_node index_hlist;
66 	struct bpf_dtab *dtab;
67 	struct bpf_prog *xdp_prog;
68 	struct rcu_head rcu;
69 	unsigned int idx;
70 	struct bpf_devmap_val val;
71 };
72 
73 struct bpf_dtab {
74 	struct bpf_map map;
75 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
76 	struct list_head list;
77 
78 	/* these are only used for DEVMAP_HASH type maps */
79 	struct hlist_head *dev_index_head;
80 	spinlock_t index_lock;
81 	unsigned int items;
82 	u32 n_buckets;
83 };
84 
85 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
88 
89 static struct hlist_head *dev_map_create_hash(unsigned int entries,
90 					      int numa_node)
91 {
92 	int i;
93 	struct hlist_head *hash;
94 
95 	hash = bpf_map_area_alloc(entries * sizeof(*hash), numa_node);
96 	if (hash != NULL)
97 		for (i = 0; i < entries; i++)
98 			INIT_HLIST_HEAD(&hash[i]);
99 
100 	return hash;
101 }
102 
103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
104 						    int idx)
105 {
106 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
107 }
108 
109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
110 {
111 	u32 valsize = attr->value_size;
112 	u64 cost = 0;
113 	int err;
114 
115 	/* check sanity of attributes. 2 value sizes supported:
116 	 * 4 bytes: ifindex
117 	 * 8 bytes: ifindex + prog fd
118 	 */
119 	if (attr->max_entries == 0 || attr->key_size != 4 ||
120 	    (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
121 	     valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
122 	    attr->map_flags & ~DEV_CREATE_FLAG_MASK)
123 		return -EINVAL;
124 
125 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
126 	 * verifier prevents writes from the BPF side
127 	 */
128 	attr->map_flags |= BPF_F_RDONLY_PROG;
129 
130 
131 	bpf_map_init_from_attr(&dtab->map, attr);
132 
133 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
134 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
135 
136 		if (!dtab->n_buckets) /* Overflow check */
137 			return -EINVAL;
138 		cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
139 	} else {
140 		cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
141 	}
142 
143 	/* if map size is larger than memlock limit, reject it */
144 	err = bpf_map_charge_init(&dtab->map.memory, cost);
145 	if (err)
146 		return -EINVAL;
147 
148 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
149 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
150 							   dtab->map.numa_node);
151 		if (!dtab->dev_index_head)
152 			goto free_charge;
153 
154 		spin_lock_init(&dtab->index_lock);
155 	} else {
156 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
157 						      sizeof(struct bpf_dtab_netdev *),
158 						      dtab->map.numa_node);
159 		if (!dtab->netdev_map)
160 			goto free_charge;
161 	}
162 
163 	return 0;
164 
165 free_charge:
166 	bpf_map_charge_finish(&dtab->map.memory);
167 	return -ENOMEM;
168 }
169 
170 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
171 {
172 	struct bpf_dtab *dtab;
173 	int err;
174 
175 	if (!capable(CAP_NET_ADMIN))
176 		return ERR_PTR(-EPERM);
177 
178 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
179 	if (!dtab)
180 		return ERR_PTR(-ENOMEM);
181 
182 	err = dev_map_init_map(dtab, attr);
183 	if (err) {
184 		kfree(dtab);
185 		return ERR_PTR(err);
186 	}
187 
188 	spin_lock(&dev_map_lock);
189 	list_add_tail_rcu(&dtab->list, &dev_map_list);
190 	spin_unlock(&dev_map_lock);
191 
192 	return &dtab->map;
193 }
194 
195 static void dev_map_free(struct bpf_map *map)
196 {
197 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
198 	int i;
199 
200 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
201 	 * so the programs (can be more than one that used this map) were
202 	 * disconnected from events. The following synchronize_rcu() guarantees
203 	 * both rcu read critical sections complete and waits for
204 	 * preempt-disable regions (NAPI being the relevant context here) so we
205 	 * are certain there will be no further reads against the netdev_map and
206 	 * all flush operations are complete. Flush operations can only be done
207 	 * from NAPI context for this reason.
208 	 */
209 
210 	spin_lock(&dev_map_lock);
211 	list_del_rcu(&dtab->list);
212 	spin_unlock(&dev_map_lock);
213 
214 	bpf_clear_redirect_map(map);
215 	synchronize_rcu();
216 
217 	/* Make sure prior __dev_map_entry_free() have completed. */
218 	rcu_barrier();
219 
220 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
221 		for (i = 0; i < dtab->n_buckets; i++) {
222 			struct bpf_dtab_netdev *dev;
223 			struct hlist_head *head;
224 			struct hlist_node *next;
225 
226 			head = dev_map_index_hash(dtab, i);
227 
228 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
229 				hlist_del_rcu(&dev->index_hlist);
230 				if (dev->xdp_prog)
231 					bpf_prog_put(dev->xdp_prog);
232 				dev_put(dev->dev);
233 				kfree(dev);
234 			}
235 		}
236 
237 		bpf_map_area_free(dtab->dev_index_head);
238 	} else {
239 		for (i = 0; i < dtab->map.max_entries; i++) {
240 			struct bpf_dtab_netdev *dev;
241 
242 			dev = dtab->netdev_map[i];
243 			if (!dev)
244 				continue;
245 
246 			if (dev->xdp_prog)
247 				bpf_prog_put(dev->xdp_prog);
248 			dev_put(dev->dev);
249 			kfree(dev);
250 		}
251 
252 		bpf_map_area_free(dtab->netdev_map);
253 	}
254 
255 	kfree(dtab);
256 }
257 
258 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
259 {
260 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
261 	u32 index = key ? *(u32 *)key : U32_MAX;
262 	u32 *next = next_key;
263 
264 	if (index >= dtab->map.max_entries) {
265 		*next = 0;
266 		return 0;
267 	}
268 
269 	if (index == dtab->map.max_entries - 1)
270 		return -ENOENT;
271 	*next = index + 1;
272 	return 0;
273 }
274 
275 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
276 {
277 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
278 	struct hlist_head *head = dev_map_index_hash(dtab, key);
279 	struct bpf_dtab_netdev *dev;
280 
281 	hlist_for_each_entry_rcu(dev, head, index_hlist,
282 				 lockdep_is_held(&dtab->index_lock))
283 		if (dev->idx == key)
284 			return dev;
285 
286 	return NULL;
287 }
288 
289 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
290 				    void *next_key)
291 {
292 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
293 	u32 idx, *next = next_key;
294 	struct bpf_dtab_netdev *dev, *next_dev;
295 	struct hlist_head *head;
296 	int i = 0;
297 
298 	if (!key)
299 		goto find_first;
300 
301 	idx = *(u32 *)key;
302 
303 	dev = __dev_map_hash_lookup_elem(map, idx);
304 	if (!dev)
305 		goto find_first;
306 
307 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
308 				    struct bpf_dtab_netdev, index_hlist);
309 
310 	if (next_dev) {
311 		*next = next_dev->idx;
312 		return 0;
313 	}
314 
315 	i = idx & (dtab->n_buckets - 1);
316 	i++;
317 
318  find_first:
319 	for (; i < dtab->n_buckets; i++) {
320 		head = dev_map_index_hash(dtab, i);
321 
322 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
323 					    struct bpf_dtab_netdev,
324 					    index_hlist);
325 		if (next_dev) {
326 			*next = next_dev->idx;
327 			return 0;
328 		}
329 	}
330 
331 	return -ENOENT;
332 }
333 
334 bool dev_map_can_have_prog(struct bpf_map *map)
335 {
336 	if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
337 	     map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
338 	    map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
339 		return true;
340 
341 	return false;
342 }
343 
344 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
345 {
346 	struct net_device *dev = bq->dev;
347 	int sent = 0, drops = 0, err = 0;
348 	int i;
349 
350 	if (unlikely(!bq->count))
351 		return;
352 
353 	for (i = 0; i < bq->count; i++) {
354 		struct xdp_frame *xdpf = bq->q[i];
355 
356 		prefetch(xdpf);
357 	}
358 
359 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
360 	if (sent < 0) {
361 		err = sent;
362 		sent = 0;
363 		goto error;
364 	}
365 	drops = bq->count - sent;
366 out:
367 	bq->count = 0;
368 
369 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
370 	bq->dev_rx = NULL;
371 	__list_del_clearprev(&bq->flush_node);
372 	return;
373 error:
374 	/* If ndo_xdp_xmit fails with an errno, no frames have been
375 	 * xmit'ed and it's our responsibility to them free all.
376 	 */
377 	for (i = 0; i < bq->count; i++) {
378 		struct xdp_frame *xdpf = bq->q[i];
379 
380 		xdp_return_frame_rx_napi(xdpf);
381 		drops++;
382 	}
383 	goto out;
384 }
385 
386 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
387  * from the driver before returning from its napi->poll() routine. The poll()
388  * routine is called either from busy_poll context or net_rx_action signaled
389  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
390  * net device can be torn down. On devmap tear down we ensure the flush list
391  * is empty before completing to ensure all flush operations have completed.
392  * When drivers update the bpf program they may need to ensure any flush ops
393  * are also complete. Using synchronize_rcu or call_rcu will suffice for this
394  * because both wait for napi context to exit.
395  */
396 void __dev_flush(void)
397 {
398 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
399 	struct xdp_dev_bulk_queue *bq, *tmp;
400 
401 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
402 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
403 }
404 
405 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
406  * update happens in parallel here a dev_put wont happen until after reading the
407  * ifindex.
408  */
409 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
410 {
411 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
412 	struct bpf_dtab_netdev *obj;
413 
414 	if (key >= map->max_entries)
415 		return NULL;
416 
417 	obj = READ_ONCE(dtab->netdev_map[key]);
418 	return obj;
419 }
420 
421 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
422  * Thus, safe percpu variable access.
423  */
424 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
425 		       struct net_device *dev_rx)
426 {
427 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
428 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
429 
430 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
431 		bq_xmit_all(bq, 0);
432 
433 	/* Ingress dev_rx will be the same for all xdp_frame's in
434 	 * bulk_queue, because bq stored per-CPU and must be flushed
435 	 * from net_device drivers NAPI func end.
436 	 */
437 	if (!bq->dev_rx)
438 		bq->dev_rx = dev_rx;
439 
440 	bq->q[bq->count++] = xdpf;
441 
442 	if (!bq->flush_node.prev)
443 		list_add(&bq->flush_node, flush_list);
444 }
445 
446 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
447 			       struct net_device *dev_rx)
448 {
449 	struct xdp_frame *xdpf;
450 	int err;
451 
452 	if (!dev->netdev_ops->ndo_xdp_xmit)
453 		return -EOPNOTSUPP;
454 
455 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
456 	if (unlikely(err))
457 		return err;
458 
459 	xdpf = xdp_convert_buff_to_frame(xdp);
460 	if (unlikely(!xdpf))
461 		return -EOVERFLOW;
462 
463 	bq_enqueue(dev, xdpf, dev_rx);
464 	return 0;
465 }
466 
467 static struct xdp_buff *dev_map_run_prog(struct net_device *dev,
468 					 struct xdp_buff *xdp,
469 					 struct bpf_prog *xdp_prog)
470 {
471 	struct xdp_txq_info txq = { .dev = dev };
472 	u32 act;
473 
474 	xdp_set_data_meta_invalid(xdp);
475 	xdp->txq = &txq;
476 
477 	act = bpf_prog_run_xdp(xdp_prog, xdp);
478 	switch (act) {
479 	case XDP_PASS:
480 		return xdp;
481 	case XDP_DROP:
482 		break;
483 	default:
484 		bpf_warn_invalid_xdp_action(act);
485 		fallthrough;
486 	case XDP_ABORTED:
487 		trace_xdp_exception(dev, xdp_prog, act);
488 		break;
489 	}
490 
491 	xdp_return_buff(xdp);
492 	return NULL;
493 }
494 
495 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
496 		    struct net_device *dev_rx)
497 {
498 	return __xdp_enqueue(dev, xdp, dev_rx);
499 }
500 
501 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
502 		    struct net_device *dev_rx)
503 {
504 	struct net_device *dev = dst->dev;
505 
506 	if (dst->xdp_prog) {
507 		xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog);
508 		if (!xdp)
509 			return 0;
510 	}
511 	return __xdp_enqueue(dev, xdp, dev_rx);
512 }
513 
514 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
515 			     struct bpf_prog *xdp_prog)
516 {
517 	int err;
518 
519 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
520 	if (unlikely(err))
521 		return err;
522 	skb->dev = dst->dev;
523 	generic_xdp_tx(skb, xdp_prog);
524 
525 	return 0;
526 }
527 
528 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
529 {
530 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
531 
532 	return obj ? &obj->val : NULL;
533 }
534 
535 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
536 {
537 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
538 								*(u32 *)key);
539 	return obj ? &obj->val : NULL;
540 }
541 
542 static void __dev_map_entry_free(struct rcu_head *rcu)
543 {
544 	struct bpf_dtab_netdev *dev;
545 
546 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
547 	if (dev->xdp_prog)
548 		bpf_prog_put(dev->xdp_prog);
549 	dev_put(dev->dev);
550 	kfree(dev);
551 }
552 
553 static int dev_map_delete_elem(struct bpf_map *map, void *key)
554 {
555 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
556 	struct bpf_dtab_netdev *old_dev;
557 	int k = *(u32 *)key;
558 
559 	if (k >= map->max_entries)
560 		return -EINVAL;
561 
562 	/* Use call_rcu() here to ensure any rcu critical sections have
563 	 * completed as well as any flush operations because call_rcu
564 	 * will wait for preempt-disable region to complete, NAPI in this
565 	 * context.  And additionally, the driver tear down ensures all
566 	 * soft irqs are complete before removing the net device in the
567 	 * case of dev_put equals zero.
568 	 */
569 	old_dev = xchg(&dtab->netdev_map[k], NULL);
570 	if (old_dev)
571 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
572 	return 0;
573 }
574 
575 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
576 {
577 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
578 	struct bpf_dtab_netdev *old_dev;
579 	int k = *(u32 *)key;
580 	unsigned long flags;
581 	int ret = -ENOENT;
582 
583 	spin_lock_irqsave(&dtab->index_lock, flags);
584 
585 	old_dev = __dev_map_hash_lookup_elem(map, k);
586 	if (old_dev) {
587 		dtab->items--;
588 		hlist_del_init_rcu(&old_dev->index_hlist);
589 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
590 		ret = 0;
591 	}
592 	spin_unlock_irqrestore(&dtab->index_lock, flags);
593 
594 	return ret;
595 }
596 
597 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
598 						    struct bpf_dtab *dtab,
599 						    struct bpf_devmap_val *val,
600 						    unsigned int idx)
601 {
602 	struct bpf_prog *prog = NULL;
603 	struct bpf_dtab_netdev *dev;
604 
605 	dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
606 			   dtab->map.numa_node);
607 	if (!dev)
608 		return ERR_PTR(-ENOMEM);
609 
610 	dev->dev = dev_get_by_index(net, val->ifindex);
611 	if (!dev->dev)
612 		goto err_out;
613 
614 	if (val->bpf_prog.fd > 0) {
615 		prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
616 					     BPF_PROG_TYPE_XDP, false);
617 		if (IS_ERR(prog))
618 			goto err_put_dev;
619 		if (prog->expected_attach_type != BPF_XDP_DEVMAP)
620 			goto err_put_prog;
621 	}
622 
623 	dev->idx = idx;
624 	dev->dtab = dtab;
625 	if (prog) {
626 		dev->xdp_prog = prog;
627 		dev->val.bpf_prog.id = prog->aux->id;
628 	} else {
629 		dev->xdp_prog = NULL;
630 		dev->val.bpf_prog.id = 0;
631 	}
632 	dev->val.ifindex = val->ifindex;
633 
634 	return dev;
635 err_put_prog:
636 	bpf_prog_put(prog);
637 err_put_dev:
638 	dev_put(dev->dev);
639 err_out:
640 	kfree(dev);
641 	return ERR_PTR(-EINVAL);
642 }
643 
644 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
645 				 void *key, void *value, u64 map_flags)
646 {
647 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
648 	struct bpf_dtab_netdev *dev, *old_dev;
649 	struct bpf_devmap_val val = {};
650 	u32 i = *(u32 *)key;
651 
652 	if (unlikely(map_flags > BPF_EXIST))
653 		return -EINVAL;
654 	if (unlikely(i >= dtab->map.max_entries))
655 		return -E2BIG;
656 	if (unlikely(map_flags == BPF_NOEXIST))
657 		return -EEXIST;
658 
659 	/* already verified value_size <= sizeof val */
660 	memcpy(&val, value, map->value_size);
661 
662 	if (!val.ifindex) {
663 		dev = NULL;
664 		/* can not specify fd if ifindex is 0 */
665 		if (val.bpf_prog.fd > 0)
666 			return -EINVAL;
667 	} else {
668 		dev = __dev_map_alloc_node(net, dtab, &val, i);
669 		if (IS_ERR(dev))
670 			return PTR_ERR(dev);
671 	}
672 
673 	/* Use call_rcu() here to ensure rcu critical sections have completed
674 	 * Remembering the driver side flush operation will happen before the
675 	 * net device is removed.
676 	 */
677 	old_dev = xchg(&dtab->netdev_map[i], dev);
678 	if (old_dev)
679 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
680 
681 	return 0;
682 }
683 
684 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
685 			       u64 map_flags)
686 {
687 	return __dev_map_update_elem(current->nsproxy->net_ns,
688 				     map, key, value, map_flags);
689 }
690 
691 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
692 				     void *key, void *value, u64 map_flags)
693 {
694 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
695 	struct bpf_dtab_netdev *dev, *old_dev;
696 	struct bpf_devmap_val val = {};
697 	u32 idx = *(u32 *)key;
698 	unsigned long flags;
699 	int err = -EEXIST;
700 
701 	/* already verified value_size <= sizeof val */
702 	memcpy(&val, value, map->value_size);
703 
704 	if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
705 		return -EINVAL;
706 
707 	spin_lock_irqsave(&dtab->index_lock, flags);
708 
709 	old_dev = __dev_map_hash_lookup_elem(map, idx);
710 	if (old_dev && (map_flags & BPF_NOEXIST))
711 		goto out_err;
712 
713 	dev = __dev_map_alloc_node(net, dtab, &val, idx);
714 	if (IS_ERR(dev)) {
715 		err = PTR_ERR(dev);
716 		goto out_err;
717 	}
718 
719 	if (old_dev) {
720 		hlist_del_rcu(&old_dev->index_hlist);
721 	} else {
722 		if (dtab->items >= dtab->map.max_entries) {
723 			spin_unlock_irqrestore(&dtab->index_lock, flags);
724 			call_rcu(&dev->rcu, __dev_map_entry_free);
725 			return -E2BIG;
726 		}
727 		dtab->items++;
728 	}
729 
730 	hlist_add_head_rcu(&dev->index_hlist,
731 			   dev_map_index_hash(dtab, idx));
732 	spin_unlock_irqrestore(&dtab->index_lock, flags);
733 
734 	if (old_dev)
735 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
736 
737 	return 0;
738 
739 out_err:
740 	spin_unlock_irqrestore(&dtab->index_lock, flags);
741 	return err;
742 }
743 
744 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
745 				   u64 map_flags)
746 {
747 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
748 					 map, key, value, map_flags);
749 }
750 
751 static int dev_map_btf_id;
752 const struct bpf_map_ops dev_map_ops = {
753 	.map_meta_equal = bpf_map_meta_equal,
754 	.map_alloc = dev_map_alloc,
755 	.map_free = dev_map_free,
756 	.map_get_next_key = dev_map_get_next_key,
757 	.map_lookup_elem = dev_map_lookup_elem,
758 	.map_update_elem = dev_map_update_elem,
759 	.map_delete_elem = dev_map_delete_elem,
760 	.map_check_btf = map_check_no_btf,
761 	.map_btf_name = "bpf_dtab",
762 	.map_btf_id = &dev_map_btf_id,
763 };
764 
765 static int dev_map_hash_map_btf_id;
766 const struct bpf_map_ops dev_map_hash_ops = {
767 	.map_meta_equal = bpf_map_meta_equal,
768 	.map_alloc = dev_map_alloc,
769 	.map_free = dev_map_free,
770 	.map_get_next_key = dev_map_hash_get_next_key,
771 	.map_lookup_elem = dev_map_hash_lookup_elem,
772 	.map_update_elem = dev_map_hash_update_elem,
773 	.map_delete_elem = dev_map_hash_delete_elem,
774 	.map_check_btf = map_check_no_btf,
775 	.map_btf_name = "bpf_dtab",
776 	.map_btf_id = &dev_map_hash_map_btf_id,
777 };
778 
779 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
780 				       struct net_device *netdev)
781 {
782 	unsigned long flags;
783 	u32 i;
784 
785 	spin_lock_irqsave(&dtab->index_lock, flags);
786 	for (i = 0; i < dtab->n_buckets; i++) {
787 		struct bpf_dtab_netdev *dev;
788 		struct hlist_head *head;
789 		struct hlist_node *next;
790 
791 		head = dev_map_index_hash(dtab, i);
792 
793 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
794 			if (netdev != dev->dev)
795 				continue;
796 
797 			dtab->items--;
798 			hlist_del_rcu(&dev->index_hlist);
799 			call_rcu(&dev->rcu, __dev_map_entry_free);
800 		}
801 	}
802 	spin_unlock_irqrestore(&dtab->index_lock, flags);
803 }
804 
805 static int dev_map_notification(struct notifier_block *notifier,
806 				ulong event, void *ptr)
807 {
808 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
809 	struct bpf_dtab *dtab;
810 	int i, cpu;
811 
812 	switch (event) {
813 	case NETDEV_REGISTER:
814 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
815 			break;
816 
817 		/* will be freed in free_netdev() */
818 		netdev->xdp_bulkq =
819 			__alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue),
820 					   sizeof(void *), GFP_ATOMIC);
821 		if (!netdev->xdp_bulkq)
822 			return NOTIFY_BAD;
823 
824 		for_each_possible_cpu(cpu)
825 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
826 		break;
827 	case NETDEV_UNREGISTER:
828 		/* This rcu_read_lock/unlock pair is needed because
829 		 * dev_map_list is an RCU list AND to ensure a delete
830 		 * operation does not free a netdev_map entry while we
831 		 * are comparing it against the netdev being unregistered.
832 		 */
833 		rcu_read_lock();
834 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
835 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
836 				dev_map_hash_remove_netdev(dtab, netdev);
837 				continue;
838 			}
839 
840 			for (i = 0; i < dtab->map.max_entries; i++) {
841 				struct bpf_dtab_netdev *dev, *odev;
842 
843 				dev = READ_ONCE(dtab->netdev_map[i]);
844 				if (!dev || netdev != dev->dev)
845 					continue;
846 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
847 				if (dev == odev)
848 					call_rcu(&dev->rcu,
849 						 __dev_map_entry_free);
850 			}
851 		}
852 		rcu_read_unlock();
853 		break;
854 	default:
855 		break;
856 	}
857 	return NOTIFY_OK;
858 }
859 
860 static struct notifier_block dev_map_notifier = {
861 	.notifier_call = dev_map_notification,
862 };
863 
864 static int __init dev_map_init(void)
865 {
866 	int cpu;
867 
868 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
869 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
870 		     offsetof(struct _bpf_dtab_netdev, dev));
871 	register_netdevice_notifier(&dev_map_notifier);
872 
873 	for_each_possible_cpu(cpu)
874 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
875 	return 0;
876 }
877 
878 subsys_initcall(dev_map_init);
879