1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 */ 12 13 /* Devmaps primary use is as a backend map for XDP BPF helper call 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 15 * spent some effort to ensure the datapath with redirect maps does not use 16 * any locking. This is a quick note on the details. 17 * 18 * We have three possible paths to get into the devmap control plane bpf 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 20 * will invoke an update, delete, or lookup operation. To ensure updates and 21 * deletes appear atomic from the datapath side xchg() is used to modify the 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for 24 * an rcu grace period before free'ing the old data structures. This ensures the 25 * datapath always has a valid copy. However, the datapath does a "flush" 26 * operation that pushes any pending packets in the driver outside the RCU 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed 29 * until all bits are cleared indicating outstanding flush operations have 30 * completed. 31 * 32 * BPF syscalls may race with BPF program calls on any of the update, delete 33 * or lookup operations. As noted above the xchg() operation also keep the 34 * netdev_map consistent in this case. From the devmap side BPF programs 35 * calling into these operations are the same as multiple user space threads 36 * making system calls. 37 * 38 * Finally, any of the above may race with a netdev_unregister notifier. The 39 * unregister notifier must search for net devices in the map structure that 40 * contain a reference to the net device and remove them. This is a two step 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 42 * check to see if the ifindex is the same as the net_device being removed. 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is 44 * removed, in the case of a concurrent update or delete operation it is 45 * possible that the initially referenced dev is no longer in the map. As the 46 * notifier hook walks the map we know that new dev references can not be 47 * added by the user because core infrastructure ensures dev_get_by_index() 48 * calls will fail at this point. 49 */ 50 #include <linux/bpf.h> 51 #include <linux/filter.h> 52 53 struct bpf_dtab_netdev { 54 struct net_device *dev; 55 struct bpf_dtab *dtab; 56 unsigned int bit; 57 struct rcu_head rcu; 58 }; 59 60 struct bpf_dtab { 61 struct bpf_map map; 62 struct bpf_dtab_netdev **netdev_map; 63 unsigned long __percpu *flush_needed; 64 struct list_head list; 65 }; 66 67 static DEFINE_SPINLOCK(dev_map_lock); 68 static LIST_HEAD(dev_map_list); 69 70 static u64 dev_map_bitmap_size(const union bpf_attr *attr) 71 { 72 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long); 73 } 74 75 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 76 { 77 struct bpf_dtab *dtab; 78 u64 cost; 79 int err; 80 81 /* check sanity of attributes */ 82 if (attr->max_entries == 0 || attr->key_size != 4 || 83 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 84 return ERR_PTR(-EINVAL); 85 86 dtab = kzalloc(sizeof(*dtab), GFP_USER); 87 if (!dtab) 88 return ERR_PTR(-ENOMEM); 89 90 /* mandatory map attributes */ 91 dtab->map.map_type = attr->map_type; 92 dtab->map.key_size = attr->key_size; 93 dtab->map.value_size = attr->value_size; 94 dtab->map.max_entries = attr->max_entries; 95 dtab->map.map_flags = attr->map_flags; 96 dtab->map.numa_node = bpf_map_attr_numa_node(attr); 97 98 /* make sure page count doesn't overflow */ 99 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 100 cost += dev_map_bitmap_size(attr) * num_possible_cpus(); 101 if (cost >= U32_MAX - PAGE_SIZE) 102 goto free_dtab; 103 104 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 105 106 /* if map size is larger than memlock limit, reject it early */ 107 err = bpf_map_precharge_memlock(dtab->map.pages); 108 if (err) 109 goto free_dtab; 110 111 /* A per cpu bitfield with a bit per possible net device */ 112 dtab->flush_needed = __alloc_percpu(dev_map_bitmap_size(attr), 113 __alignof__(unsigned long)); 114 if (!dtab->flush_needed) 115 goto free_dtab; 116 117 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 118 sizeof(struct bpf_dtab_netdev *), 119 dtab->map.numa_node); 120 if (!dtab->netdev_map) 121 goto free_dtab; 122 123 spin_lock(&dev_map_lock); 124 list_add_tail_rcu(&dtab->list, &dev_map_list); 125 spin_unlock(&dev_map_lock); 126 127 return &dtab->map; 128 free_dtab: 129 free_percpu(dtab->flush_needed); 130 kfree(dtab); 131 return ERR_PTR(-ENOMEM); 132 } 133 134 static void dev_map_free(struct bpf_map *map) 135 { 136 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 137 int i, cpu; 138 139 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 140 * so the programs (can be more than one that used this map) were 141 * disconnected from events. Wait for outstanding critical sections in 142 * these programs to complete. The rcu critical section only guarantees 143 * no further reads against netdev_map. It does __not__ ensure pending 144 * flush operations (if any) are complete. 145 */ 146 147 spin_lock(&dev_map_lock); 148 list_del_rcu(&dtab->list); 149 spin_unlock(&dev_map_lock); 150 151 synchronize_rcu(); 152 153 /* To ensure all pending flush operations have completed wait for flush 154 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 155 * Because the above synchronize_rcu() ensures the map is disconnected 156 * from the program we can assume no new bits will be set. 157 */ 158 for_each_online_cpu(cpu) { 159 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); 160 161 while (!bitmap_empty(bitmap, dtab->map.max_entries)) 162 cond_resched(); 163 } 164 165 for (i = 0; i < dtab->map.max_entries; i++) { 166 struct bpf_dtab_netdev *dev; 167 168 dev = dtab->netdev_map[i]; 169 if (!dev) 170 continue; 171 172 dev_put(dev->dev); 173 kfree(dev); 174 } 175 176 free_percpu(dtab->flush_needed); 177 bpf_map_area_free(dtab->netdev_map); 178 kfree(dtab); 179 } 180 181 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 182 { 183 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 184 u32 index = key ? *(u32 *)key : U32_MAX; 185 u32 *next = next_key; 186 187 if (index >= dtab->map.max_entries) { 188 *next = 0; 189 return 0; 190 } 191 192 if (index == dtab->map.max_entries - 1) 193 return -ENOENT; 194 *next = index + 1; 195 return 0; 196 } 197 198 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) 199 { 200 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 201 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 202 203 __set_bit(bit, bitmap); 204 } 205 206 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 207 * from the driver before returning from its napi->poll() routine. The poll() 208 * routine is called either from busy_poll context or net_rx_action signaled 209 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 210 * net device can be torn down. On devmap tear down we ensure the ctx bitmap 211 * is zeroed before completing to ensure all flush operations have completed. 212 */ 213 void __dev_map_flush(struct bpf_map *map) 214 { 215 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 216 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 217 u32 bit; 218 219 for_each_set_bit(bit, bitmap, map->max_entries) { 220 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); 221 struct net_device *netdev; 222 223 /* This is possible if the dev entry is removed by user space 224 * between xdp redirect and flush op. 225 */ 226 if (unlikely(!dev)) 227 continue; 228 229 __clear_bit(bit, bitmap); 230 netdev = dev->dev; 231 if (likely(netdev->netdev_ops->ndo_xdp_flush)) 232 netdev->netdev_ops->ndo_xdp_flush(netdev); 233 } 234 } 235 236 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 237 * update happens in parallel here a dev_put wont happen until after reading the 238 * ifindex. 239 */ 240 struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 241 { 242 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 243 struct bpf_dtab_netdev *dev; 244 245 if (key >= map->max_entries) 246 return NULL; 247 248 dev = READ_ONCE(dtab->netdev_map[key]); 249 return dev ? dev->dev : NULL; 250 } 251 252 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 253 { 254 struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key); 255 256 return dev ? &dev->ifindex : NULL; 257 } 258 259 static void dev_map_flush_old(struct bpf_dtab_netdev *dev) 260 { 261 if (dev->dev->netdev_ops->ndo_xdp_flush) { 262 struct net_device *fl = dev->dev; 263 unsigned long *bitmap; 264 int cpu; 265 266 for_each_online_cpu(cpu) { 267 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); 268 __clear_bit(dev->bit, bitmap); 269 270 fl->netdev_ops->ndo_xdp_flush(dev->dev); 271 } 272 } 273 } 274 275 static void __dev_map_entry_free(struct rcu_head *rcu) 276 { 277 struct bpf_dtab_netdev *dev; 278 279 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 280 dev_map_flush_old(dev); 281 dev_put(dev->dev); 282 kfree(dev); 283 } 284 285 static int dev_map_delete_elem(struct bpf_map *map, void *key) 286 { 287 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 288 struct bpf_dtab_netdev *old_dev; 289 int k = *(u32 *)key; 290 291 if (k >= map->max_entries) 292 return -EINVAL; 293 294 /* Use call_rcu() here to ensure any rcu critical sections have 295 * completed, but this does not guarantee a flush has happened 296 * yet. Because driver side rcu_read_lock/unlock only protects the 297 * running XDP program. However, for pending flush operations the 298 * dev and ctx are stored in another per cpu map. And additionally, 299 * the driver tear down ensures all soft irqs are complete before 300 * removing the net device in the case of dev_put equals zero. 301 */ 302 old_dev = xchg(&dtab->netdev_map[k], NULL); 303 if (old_dev) 304 call_rcu(&old_dev->rcu, __dev_map_entry_free); 305 return 0; 306 } 307 308 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 309 u64 map_flags) 310 { 311 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 312 struct net *net = current->nsproxy->net_ns; 313 struct bpf_dtab_netdev *dev, *old_dev; 314 u32 i = *(u32 *)key; 315 u32 ifindex = *(u32 *)value; 316 317 if (unlikely(map_flags > BPF_EXIST)) 318 return -EINVAL; 319 if (unlikely(i >= dtab->map.max_entries)) 320 return -E2BIG; 321 if (unlikely(map_flags == BPF_NOEXIST)) 322 return -EEXIST; 323 324 if (!ifindex) { 325 dev = NULL; 326 } else { 327 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, 328 map->numa_node); 329 if (!dev) 330 return -ENOMEM; 331 332 dev->dev = dev_get_by_index(net, ifindex); 333 if (!dev->dev) { 334 kfree(dev); 335 return -EINVAL; 336 } 337 338 dev->bit = i; 339 dev->dtab = dtab; 340 } 341 342 /* Use call_rcu() here to ensure rcu critical sections have completed 343 * Remembering the driver side flush operation will happen before the 344 * net device is removed. 345 */ 346 old_dev = xchg(&dtab->netdev_map[i], dev); 347 if (old_dev) 348 call_rcu(&old_dev->rcu, __dev_map_entry_free); 349 350 return 0; 351 } 352 353 const struct bpf_map_ops dev_map_ops = { 354 .map_alloc = dev_map_alloc, 355 .map_free = dev_map_free, 356 .map_get_next_key = dev_map_get_next_key, 357 .map_lookup_elem = dev_map_lookup_elem, 358 .map_update_elem = dev_map_update_elem, 359 .map_delete_elem = dev_map_delete_elem, 360 }; 361 362 static int dev_map_notification(struct notifier_block *notifier, 363 ulong event, void *ptr) 364 { 365 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 366 struct bpf_dtab *dtab; 367 int i; 368 369 switch (event) { 370 case NETDEV_UNREGISTER: 371 /* This rcu_read_lock/unlock pair is needed because 372 * dev_map_list is an RCU list AND to ensure a delete 373 * operation does not free a netdev_map entry while we 374 * are comparing it against the netdev being unregistered. 375 */ 376 rcu_read_lock(); 377 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 378 for (i = 0; i < dtab->map.max_entries; i++) { 379 struct bpf_dtab_netdev *dev, *odev; 380 381 dev = READ_ONCE(dtab->netdev_map[i]); 382 if (!dev || 383 dev->dev->ifindex != netdev->ifindex) 384 continue; 385 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 386 if (dev == odev) 387 call_rcu(&dev->rcu, 388 __dev_map_entry_free); 389 } 390 } 391 rcu_read_unlock(); 392 break; 393 default: 394 break; 395 } 396 return NOTIFY_OK; 397 } 398 399 static struct notifier_block dev_map_notifier = { 400 .notifier_call = dev_map_notification, 401 }; 402 403 static int __init dev_map_init(void) 404 { 405 register_netdevice_notifier(&dev_map_notifier); 406 return 0; 407 } 408 409 subsys_initcall(dev_map_init); 410