xref: /openbmc/linux/kernel/bpf/devmap.c (revision 06b6f1c6)
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15  * spent some effort to ensure the datapath with redirect maps does not use
16  * any locking. This is a quick note on the details.
17  *
18  * We have three possible paths to get into the devmap control plane bpf
19  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20  * will invoke an update, delete, or lookup operation. To ensure updates and
21  * deletes appear atomic from the datapath side xchg() is used to modify the
22  * netdev_map array. Then because the datapath does a lookup into the netdev_map
23  * array (read-only) from an RCU critical section we use call_rcu() to wait for
24  * an rcu grace period before free'ing the old data structures. This ensures the
25  * datapath always has a valid copy. However, the datapath does a "flush"
26  * operation that pushes any pending packets in the driver outside the RCU
27  * critical section. Each bpf_dtab_netdev tracks these pending operations using
28  * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29  * until all bits are cleared indicating outstanding flush operations have
30  * completed.
31  *
32  * BPF syscalls may race with BPF program calls on any of the update, delete
33  * or lookup operations. As noted above the xchg() operation also keep the
34  * netdev_map consistent in this case. From the devmap side BPF programs
35  * calling into these operations are the same as multiple user space threads
36  * making system calls.
37  *
38  * Finally, any of the above may race with a netdev_unregister notifier. The
39  * unregister notifier must search for net devices in the map structure that
40  * contain a reference to the net device and remove them. This is a two step
41  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42  * check to see if the ifindex is the same as the net_device being removed.
43  * When removing the dev a cmpxchg() is used to ensure the correct dev is
44  * removed, in the case of a concurrent update or delete operation it is
45  * possible that the initially referenced dev is no longer in the map. As the
46  * notifier hook walks the map we know that new dev references can not be
47  * added by the user because core infrastructure ensures dev_get_by_index()
48  * calls will fail at this point.
49  */
50 #include <linux/bpf.h>
51 #include <linux/filter.h>
52 
53 struct bpf_dtab_netdev {
54 	struct net_device *dev;
55 	struct bpf_dtab *dtab;
56 	unsigned int bit;
57 	struct rcu_head rcu;
58 };
59 
60 struct bpf_dtab {
61 	struct bpf_map map;
62 	struct bpf_dtab_netdev **netdev_map;
63 	unsigned long __percpu *flush_needed;
64 	struct list_head list;
65 };
66 
67 static DEFINE_SPINLOCK(dev_map_lock);
68 static LIST_HEAD(dev_map_list);
69 
70 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
71 {
72 	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
73 }
74 
75 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
76 {
77 	struct bpf_dtab *dtab;
78 	u64 cost;
79 	int err;
80 
81 	/* check sanity of attributes */
82 	if (attr->max_entries == 0 || attr->key_size != 4 ||
83 	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
84 		return ERR_PTR(-EINVAL);
85 
86 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
87 	if (!dtab)
88 		return ERR_PTR(-ENOMEM);
89 
90 	/* mandatory map attributes */
91 	dtab->map.map_type = attr->map_type;
92 	dtab->map.key_size = attr->key_size;
93 	dtab->map.value_size = attr->value_size;
94 	dtab->map.max_entries = attr->max_entries;
95 	dtab->map.map_flags = attr->map_flags;
96 	dtab->map.numa_node = bpf_map_attr_numa_node(attr);
97 
98 	/* make sure page count doesn't overflow */
99 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
100 	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
101 	if (cost >= U32_MAX - PAGE_SIZE)
102 		goto free_dtab;
103 
104 	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
105 
106 	/* if map size is larger than memlock limit, reject it early */
107 	err = bpf_map_precharge_memlock(dtab->map.pages);
108 	if (err)
109 		goto free_dtab;
110 
111 	/* A per cpu bitfield with a bit per possible net device */
112 	dtab->flush_needed = __alloc_percpu(dev_map_bitmap_size(attr),
113 					    __alignof__(unsigned long));
114 	if (!dtab->flush_needed)
115 		goto free_dtab;
116 
117 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
118 					      sizeof(struct bpf_dtab_netdev *),
119 					      dtab->map.numa_node);
120 	if (!dtab->netdev_map)
121 		goto free_dtab;
122 
123 	spin_lock(&dev_map_lock);
124 	list_add_tail_rcu(&dtab->list, &dev_map_list);
125 	spin_unlock(&dev_map_lock);
126 
127 	return &dtab->map;
128 free_dtab:
129 	free_percpu(dtab->flush_needed);
130 	kfree(dtab);
131 	return ERR_PTR(-ENOMEM);
132 }
133 
134 static void dev_map_free(struct bpf_map *map)
135 {
136 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
137 	int i, cpu;
138 
139 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
140 	 * so the programs (can be more than one that used this map) were
141 	 * disconnected from events. Wait for outstanding critical sections in
142 	 * these programs to complete. The rcu critical section only guarantees
143 	 * no further reads against netdev_map. It does __not__ ensure pending
144 	 * flush operations (if any) are complete.
145 	 */
146 
147 	spin_lock(&dev_map_lock);
148 	list_del_rcu(&dtab->list);
149 	spin_unlock(&dev_map_lock);
150 
151 	synchronize_rcu();
152 
153 	/* To ensure all pending flush operations have completed wait for flush
154 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
155 	 * Because the above synchronize_rcu() ensures the map is disconnected
156 	 * from the program we can assume no new bits will be set.
157 	 */
158 	for_each_online_cpu(cpu) {
159 		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
160 
161 		while (!bitmap_empty(bitmap, dtab->map.max_entries))
162 			cond_resched();
163 	}
164 
165 	for (i = 0; i < dtab->map.max_entries; i++) {
166 		struct bpf_dtab_netdev *dev;
167 
168 		dev = dtab->netdev_map[i];
169 		if (!dev)
170 			continue;
171 
172 		dev_put(dev->dev);
173 		kfree(dev);
174 	}
175 
176 	free_percpu(dtab->flush_needed);
177 	bpf_map_area_free(dtab->netdev_map);
178 	kfree(dtab);
179 }
180 
181 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
182 {
183 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
184 	u32 index = key ? *(u32 *)key : U32_MAX;
185 	u32 *next = next_key;
186 
187 	if (index >= dtab->map.max_entries) {
188 		*next = 0;
189 		return 0;
190 	}
191 
192 	if (index == dtab->map.max_entries - 1)
193 		return -ENOENT;
194 	*next = index + 1;
195 	return 0;
196 }
197 
198 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
199 {
200 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
201 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
202 
203 	__set_bit(bit, bitmap);
204 }
205 
206 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
207  * from the driver before returning from its napi->poll() routine. The poll()
208  * routine is called either from busy_poll context or net_rx_action signaled
209  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
210  * net device can be torn down. On devmap tear down we ensure the ctx bitmap
211  * is zeroed before completing to ensure all flush operations have completed.
212  */
213 void __dev_map_flush(struct bpf_map *map)
214 {
215 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
216 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
217 	u32 bit;
218 
219 	for_each_set_bit(bit, bitmap, map->max_entries) {
220 		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
221 		struct net_device *netdev;
222 
223 		/* This is possible if the dev entry is removed by user space
224 		 * between xdp redirect and flush op.
225 		 */
226 		if (unlikely(!dev))
227 			continue;
228 
229 		__clear_bit(bit, bitmap);
230 		netdev = dev->dev;
231 		if (likely(netdev->netdev_ops->ndo_xdp_flush))
232 			netdev->netdev_ops->ndo_xdp_flush(netdev);
233 	}
234 }
235 
236 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
237  * update happens in parallel here a dev_put wont happen until after reading the
238  * ifindex.
239  */
240 struct net_device  *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
241 {
242 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
243 	struct bpf_dtab_netdev *dev;
244 
245 	if (key >= map->max_entries)
246 		return NULL;
247 
248 	dev = READ_ONCE(dtab->netdev_map[key]);
249 	return dev ? dev->dev : NULL;
250 }
251 
252 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
253 {
254 	struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key);
255 
256 	return dev ? &dev->ifindex : NULL;
257 }
258 
259 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
260 {
261 	if (dev->dev->netdev_ops->ndo_xdp_flush) {
262 		struct net_device *fl = dev->dev;
263 		unsigned long *bitmap;
264 		int cpu;
265 
266 		for_each_online_cpu(cpu) {
267 			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
268 			__clear_bit(dev->bit, bitmap);
269 
270 			fl->netdev_ops->ndo_xdp_flush(dev->dev);
271 		}
272 	}
273 }
274 
275 static void __dev_map_entry_free(struct rcu_head *rcu)
276 {
277 	struct bpf_dtab_netdev *dev;
278 
279 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
280 	dev_map_flush_old(dev);
281 	dev_put(dev->dev);
282 	kfree(dev);
283 }
284 
285 static int dev_map_delete_elem(struct bpf_map *map, void *key)
286 {
287 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
288 	struct bpf_dtab_netdev *old_dev;
289 	int k = *(u32 *)key;
290 
291 	if (k >= map->max_entries)
292 		return -EINVAL;
293 
294 	/* Use call_rcu() here to ensure any rcu critical sections have
295 	 * completed, but this does not guarantee a flush has happened
296 	 * yet. Because driver side rcu_read_lock/unlock only protects the
297 	 * running XDP program. However, for pending flush operations the
298 	 * dev and ctx are stored in another per cpu map. And additionally,
299 	 * the driver tear down ensures all soft irqs are complete before
300 	 * removing the net device in the case of dev_put equals zero.
301 	 */
302 	old_dev = xchg(&dtab->netdev_map[k], NULL);
303 	if (old_dev)
304 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
305 	return 0;
306 }
307 
308 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
309 				u64 map_flags)
310 {
311 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
312 	struct net *net = current->nsproxy->net_ns;
313 	struct bpf_dtab_netdev *dev, *old_dev;
314 	u32 i = *(u32 *)key;
315 	u32 ifindex = *(u32 *)value;
316 
317 	if (unlikely(map_flags > BPF_EXIST))
318 		return -EINVAL;
319 	if (unlikely(i >= dtab->map.max_entries))
320 		return -E2BIG;
321 	if (unlikely(map_flags == BPF_NOEXIST))
322 		return -EEXIST;
323 
324 	if (!ifindex) {
325 		dev = NULL;
326 	} else {
327 		dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
328 				   map->numa_node);
329 		if (!dev)
330 			return -ENOMEM;
331 
332 		dev->dev = dev_get_by_index(net, ifindex);
333 		if (!dev->dev) {
334 			kfree(dev);
335 			return -EINVAL;
336 		}
337 
338 		dev->bit = i;
339 		dev->dtab = dtab;
340 	}
341 
342 	/* Use call_rcu() here to ensure rcu critical sections have completed
343 	 * Remembering the driver side flush operation will happen before the
344 	 * net device is removed.
345 	 */
346 	old_dev = xchg(&dtab->netdev_map[i], dev);
347 	if (old_dev)
348 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
349 
350 	return 0;
351 }
352 
353 const struct bpf_map_ops dev_map_ops = {
354 	.map_alloc = dev_map_alloc,
355 	.map_free = dev_map_free,
356 	.map_get_next_key = dev_map_get_next_key,
357 	.map_lookup_elem = dev_map_lookup_elem,
358 	.map_update_elem = dev_map_update_elem,
359 	.map_delete_elem = dev_map_delete_elem,
360 };
361 
362 static int dev_map_notification(struct notifier_block *notifier,
363 				ulong event, void *ptr)
364 {
365 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
366 	struct bpf_dtab *dtab;
367 	int i;
368 
369 	switch (event) {
370 	case NETDEV_UNREGISTER:
371 		/* This rcu_read_lock/unlock pair is needed because
372 		 * dev_map_list is an RCU list AND to ensure a delete
373 		 * operation does not free a netdev_map entry while we
374 		 * are comparing it against the netdev being unregistered.
375 		 */
376 		rcu_read_lock();
377 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
378 			for (i = 0; i < dtab->map.max_entries; i++) {
379 				struct bpf_dtab_netdev *dev, *odev;
380 
381 				dev = READ_ONCE(dtab->netdev_map[i]);
382 				if (!dev ||
383 				    dev->dev->ifindex != netdev->ifindex)
384 					continue;
385 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
386 				if (dev == odev)
387 					call_rcu(&dev->rcu,
388 						 __dev_map_entry_free);
389 			}
390 		}
391 		rcu_read_unlock();
392 		break;
393 	default:
394 		break;
395 	}
396 	return NOTIFY_OK;
397 }
398 
399 static struct notifier_block dev_map_notifier = {
400 	.notifier_call = dev_map_notification,
401 };
402 
403 static int __init dev_map_init(void)
404 {
405 	register_netdevice_notifier(&dev_map_notifier);
406 	return 0;
407 }
408 
409 subsys_initcall(dev_map_init);
410