xref: /openbmc/linux/kernel/bpf/cpumap.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bitops.h>
20 #include <linux/bpf.h>
21 #include <linux/filter.h>
22 #include <linux/ptr_ring.h>
23 #include <net/xdp.h>
24 
25 #include <linux/sched.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/capability.h>
29 #include <trace/events/xdp.h>
30 #include <linux/btf_ids.h>
31 
32 #include <linux/netdevice.h>   /* netif_receive_skb_list */
33 #include <linux/etherdevice.h> /* eth_type_trans */
34 
35 /* General idea: XDP packets getting XDP redirected to another CPU,
36  * will maximum be stored/queued for one driver ->poll() call.  It is
37  * guaranteed that queueing the frame and the flush operation happen on
38  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
39  * which queue in bpf_cpu_map_entry contains packets.
40  */
41 
42 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
43 struct bpf_cpu_map_entry;
44 struct bpf_cpu_map;
45 
46 struct xdp_bulk_queue {
47 	void *q[CPU_MAP_BULK_SIZE];
48 	struct list_head flush_node;
49 	struct bpf_cpu_map_entry *obj;
50 	unsigned int count;
51 };
52 
53 /* Struct for every remote "destination" CPU in map */
54 struct bpf_cpu_map_entry {
55 	u32 cpu;    /* kthread CPU and map index */
56 	int map_id; /* Back reference to map */
57 
58 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
59 	struct xdp_bulk_queue __percpu *bulkq;
60 
61 	struct bpf_cpu_map *cmap;
62 
63 	/* Queue with potential multi-producers, and single-consumer kthread */
64 	struct ptr_ring *queue;
65 	struct task_struct *kthread;
66 
67 	struct bpf_cpumap_val value;
68 	struct bpf_prog *prog;
69 
70 	atomic_t refcnt; /* Control when this struct can be free'ed */
71 	struct rcu_head rcu;
72 
73 	struct work_struct kthread_stop_wq;
74 };
75 
76 struct bpf_cpu_map {
77 	struct bpf_map map;
78 	/* Below members specific for map type */
79 	struct bpf_cpu_map_entry __rcu **cpu_map;
80 };
81 
82 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
83 
84 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
85 {
86 	u32 value_size = attr->value_size;
87 	struct bpf_cpu_map *cmap;
88 	int err = -ENOMEM;
89 
90 	if (!bpf_capable())
91 		return ERR_PTR(-EPERM);
92 
93 	/* check sanity of attributes */
94 	if (attr->max_entries == 0 || attr->key_size != 4 ||
95 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
96 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
97 	    attr->map_flags & ~BPF_F_NUMA_NODE)
98 		return ERR_PTR(-EINVAL);
99 
100 	cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
101 	if (!cmap)
102 		return ERR_PTR(-ENOMEM);
103 
104 	bpf_map_init_from_attr(&cmap->map, attr);
105 
106 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
107 	if (cmap->map.max_entries > NR_CPUS) {
108 		err = -E2BIG;
109 		goto free_cmap;
110 	}
111 
112 	/* Alloc array for possible remote "destination" CPUs */
113 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
114 					   sizeof(struct bpf_cpu_map_entry *),
115 					   cmap->map.numa_node);
116 	if (!cmap->cpu_map)
117 		goto free_cmap;
118 
119 	return &cmap->map;
120 free_cmap:
121 	kfree(cmap);
122 	return ERR_PTR(err);
123 }
124 
125 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
126 {
127 	atomic_inc(&rcpu->refcnt);
128 }
129 
130 /* called from workqueue, to workaround syscall using preempt_disable */
131 static void cpu_map_kthread_stop(struct work_struct *work)
132 {
133 	struct bpf_cpu_map_entry *rcpu;
134 
135 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
136 
137 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
138 	 * as it waits until all in-flight call_rcu() callbacks complete.
139 	 */
140 	rcu_barrier();
141 
142 	/* kthread_stop will wake_up_process and wait for it to complete */
143 	kthread_stop(rcpu->kthread);
144 }
145 
146 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
147 {
148 	/* The tear-down procedure should have made sure that queue is
149 	 * empty.  See __cpu_map_entry_replace() and work-queue
150 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
151 	 * gracefully and warn once.
152 	 */
153 	struct xdp_frame *xdpf;
154 
155 	while ((xdpf = ptr_ring_consume(ring)))
156 		if (WARN_ON_ONCE(xdpf))
157 			xdp_return_frame(xdpf);
158 }
159 
160 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
161 {
162 	if (atomic_dec_and_test(&rcpu->refcnt)) {
163 		if (rcpu->prog)
164 			bpf_prog_put(rcpu->prog);
165 		/* The queue should be empty at this point */
166 		__cpu_map_ring_cleanup(rcpu->queue);
167 		ptr_ring_cleanup(rcpu->queue, NULL);
168 		kfree(rcpu->queue);
169 		kfree(rcpu);
170 	}
171 }
172 
173 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
174 				     struct list_head *listp,
175 				     struct xdp_cpumap_stats *stats)
176 {
177 	struct sk_buff *skb, *tmp;
178 	struct xdp_buff xdp;
179 	u32 act;
180 	int err;
181 
182 	list_for_each_entry_safe(skb, tmp, listp, list) {
183 		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
184 		switch (act) {
185 		case XDP_PASS:
186 			break;
187 		case XDP_REDIRECT:
188 			skb_list_del_init(skb);
189 			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
190 						      rcpu->prog);
191 			if (unlikely(err)) {
192 				kfree_skb(skb);
193 				stats->drop++;
194 			} else {
195 				stats->redirect++;
196 			}
197 			return;
198 		default:
199 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
200 			fallthrough;
201 		case XDP_ABORTED:
202 			trace_xdp_exception(skb->dev, rcpu->prog, act);
203 			fallthrough;
204 		case XDP_DROP:
205 			skb_list_del_init(skb);
206 			kfree_skb(skb);
207 			stats->drop++;
208 			return;
209 		}
210 	}
211 }
212 
213 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
214 				    void **frames, int n,
215 				    struct xdp_cpumap_stats *stats)
216 {
217 	struct xdp_rxq_info rxq;
218 	struct xdp_buff xdp;
219 	int i, nframes = 0;
220 
221 	xdp_set_return_frame_no_direct();
222 	xdp.rxq = &rxq;
223 
224 	for (i = 0; i < n; i++) {
225 		struct xdp_frame *xdpf = frames[i];
226 		u32 act;
227 		int err;
228 
229 		rxq.dev = xdpf->dev_rx;
230 		rxq.mem = xdpf->mem;
231 		/* TODO: report queue_index to xdp_rxq_info */
232 
233 		xdp_convert_frame_to_buff(xdpf, &xdp);
234 
235 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
236 		switch (act) {
237 		case XDP_PASS:
238 			err = xdp_update_frame_from_buff(&xdp, xdpf);
239 			if (err < 0) {
240 				xdp_return_frame(xdpf);
241 				stats->drop++;
242 			} else {
243 				frames[nframes++] = xdpf;
244 				stats->pass++;
245 			}
246 			break;
247 		case XDP_REDIRECT:
248 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
249 					      rcpu->prog);
250 			if (unlikely(err)) {
251 				xdp_return_frame(xdpf);
252 				stats->drop++;
253 			} else {
254 				stats->redirect++;
255 			}
256 			break;
257 		default:
258 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
259 			fallthrough;
260 		case XDP_DROP:
261 			xdp_return_frame(xdpf);
262 			stats->drop++;
263 			break;
264 		}
265 	}
266 
267 	xdp_clear_return_frame_no_direct();
268 
269 	return nframes;
270 }
271 
272 #define CPUMAP_BATCH 8
273 
274 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
275 				int xdp_n, struct xdp_cpumap_stats *stats,
276 				struct list_head *list)
277 {
278 	int nframes;
279 
280 	if (!rcpu->prog)
281 		return xdp_n;
282 
283 	rcu_read_lock_bh();
284 
285 	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
286 
287 	if (stats->redirect)
288 		xdp_do_flush();
289 
290 	if (unlikely(!list_empty(list)))
291 		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
292 
293 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
294 
295 	return nframes;
296 }
297 
298 
299 static int cpu_map_kthread_run(void *data)
300 {
301 	struct bpf_cpu_map_entry *rcpu = data;
302 
303 	set_current_state(TASK_INTERRUPTIBLE);
304 
305 	/* When kthread gives stop order, then rcpu have been disconnected
306 	 * from map, thus no new packets can enter. Remaining in-flight
307 	 * per CPU stored packets are flushed to this queue.  Wait honoring
308 	 * kthread_stop signal until queue is empty.
309 	 */
310 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
311 		struct xdp_cpumap_stats stats = {}; /* zero stats */
312 		unsigned int kmem_alloc_drops = 0, sched = 0;
313 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
314 		int i, n, m, nframes, xdp_n;
315 		void *frames[CPUMAP_BATCH];
316 		void *skbs[CPUMAP_BATCH];
317 		LIST_HEAD(list);
318 
319 		/* Release CPU reschedule checks */
320 		if (__ptr_ring_empty(rcpu->queue)) {
321 			set_current_state(TASK_INTERRUPTIBLE);
322 			/* Recheck to avoid lost wake-up */
323 			if (__ptr_ring_empty(rcpu->queue)) {
324 				schedule();
325 				sched = 1;
326 			} else {
327 				__set_current_state(TASK_RUNNING);
328 			}
329 		} else {
330 			sched = cond_resched();
331 		}
332 
333 		/*
334 		 * The bpf_cpu_map_entry is single consumer, with this
335 		 * kthread CPU pinned. Lockless access to ptr_ring
336 		 * consume side valid as no-resize allowed of queue.
337 		 */
338 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
339 					       CPUMAP_BATCH);
340 		for (i = 0, xdp_n = 0; i < n; i++) {
341 			void *f = frames[i];
342 			struct page *page;
343 
344 			if (unlikely(__ptr_test_bit(0, &f))) {
345 				struct sk_buff *skb = f;
346 
347 				__ptr_clear_bit(0, &skb);
348 				list_add_tail(&skb->list, &list);
349 				continue;
350 			}
351 
352 			frames[xdp_n++] = f;
353 			page = virt_to_page(f);
354 
355 			/* Bring struct page memory area to curr CPU. Read by
356 			 * build_skb_around via page_is_pfmemalloc(), and when
357 			 * freed written by page_frag_free call.
358 			 */
359 			prefetchw(page);
360 		}
361 
362 		/* Support running another XDP prog on this CPU */
363 		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
364 		if (nframes) {
365 			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
366 			if (unlikely(m == 0)) {
367 				for (i = 0; i < nframes; i++)
368 					skbs[i] = NULL; /* effect: xdp_return_frame */
369 				kmem_alloc_drops += nframes;
370 			}
371 		}
372 
373 		local_bh_disable();
374 		for (i = 0; i < nframes; i++) {
375 			struct xdp_frame *xdpf = frames[i];
376 			struct sk_buff *skb = skbs[i];
377 
378 			skb = __xdp_build_skb_from_frame(xdpf, skb,
379 							 xdpf->dev_rx);
380 			if (!skb) {
381 				xdp_return_frame(xdpf);
382 				continue;
383 			}
384 
385 			list_add_tail(&skb->list, &list);
386 		}
387 		netif_receive_skb_list(&list);
388 
389 		/* Feedback loop via tracepoint */
390 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
391 					 sched, &stats);
392 
393 		local_bh_enable(); /* resched point, may call do_softirq() */
394 	}
395 	__set_current_state(TASK_RUNNING);
396 
397 	put_cpu_map_entry(rcpu);
398 	return 0;
399 }
400 
401 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
402 				      struct bpf_map *map, int fd)
403 {
404 	struct bpf_prog *prog;
405 
406 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
407 	if (IS_ERR(prog))
408 		return PTR_ERR(prog);
409 
410 	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
411 	    !bpf_prog_map_compatible(map, prog)) {
412 		bpf_prog_put(prog);
413 		return -EINVAL;
414 	}
415 
416 	rcpu->value.bpf_prog.id = prog->aux->id;
417 	rcpu->prog = prog;
418 
419 	return 0;
420 }
421 
422 static struct bpf_cpu_map_entry *
423 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
424 		      u32 cpu)
425 {
426 	int numa, err, i, fd = value->bpf_prog.fd;
427 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
428 	struct bpf_cpu_map_entry *rcpu;
429 	struct xdp_bulk_queue *bq;
430 
431 	/* Have map->numa_node, but choose node of redirect target CPU */
432 	numa = cpu_to_node(cpu);
433 
434 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
435 	if (!rcpu)
436 		return NULL;
437 
438 	/* Alloc percpu bulkq */
439 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
440 					   sizeof(void *), gfp);
441 	if (!rcpu->bulkq)
442 		goto free_rcu;
443 
444 	for_each_possible_cpu(i) {
445 		bq = per_cpu_ptr(rcpu->bulkq, i);
446 		bq->obj = rcpu;
447 	}
448 
449 	/* Alloc queue */
450 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
451 					   numa);
452 	if (!rcpu->queue)
453 		goto free_bulkq;
454 
455 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
456 	if (err)
457 		goto free_queue;
458 
459 	rcpu->cpu    = cpu;
460 	rcpu->map_id = map->id;
461 	rcpu->value.qsize  = value->qsize;
462 
463 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
464 		goto free_ptr_ring;
465 
466 	/* Setup kthread */
467 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
468 					       "cpumap/%d/map:%d", cpu,
469 					       map->id);
470 	if (IS_ERR(rcpu->kthread))
471 		goto free_prog;
472 
473 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
474 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
475 
476 	/* Make sure kthread runs on a single CPU */
477 	kthread_bind(rcpu->kthread, cpu);
478 	wake_up_process(rcpu->kthread);
479 
480 	return rcpu;
481 
482 free_prog:
483 	if (rcpu->prog)
484 		bpf_prog_put(rcpu->prog);
485 free_ptr_ring:
486 	ptr_ring_cleanup(rcpu->queue, NULL);
487 free_queue:
488 	kfree(rcpu->queue);
489 free_bulkq:
490 	free_percpu(rcpu->bulkq);
491 free_rcu:
492 	kfree(rcpu);
493 	return NULL;
494 }
495 
496 static void __cpu_map_entry_free(struct rcu_head *rcu)
497 {
498 	struct bpf_cpu_map_entry *rcpu;
499 
500 	/* This cpu_map_entry have been disconnected from map and one
501 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
502 	 * new packets and cannot change/set flush_needed that can
503 	 * find this entry.
504 	 */
505 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
506 
507 	free_percpu(rcpu->bulkq);
508 	/* Cannot kthread_stop() here, last put free rcpu resources */
509 	put_cpu_map_entry(rcpu);
510 }
511 
512 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
513  * ensure any driver rcu critical sections have completed, but this
514  * does not guarantee a flush has happened yet. Because driver side
515  * rcu_read_lock/unlock only protects the running XDP program.  The
516  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
517  * pending flush op doesn't fail.
518  *
519  * The bpf_cpu_map_entry is still used by the kthread, and there can
520  * still be pending packets (in queue and percpu bulkq).  A refcnt
521  * makes sure to last user (kthread_stop vs. call_rcu) free memory
522  * resources.
523  *
524  * The rcu callback __cpu_map_entry_free flush remaining packets in
525  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
526  * preemption, cannot call kthread_stop() to make sure queue is empty.
527  * Instead a work_queue is started for stopping kthread,
528  * cpu_map_kthread_stop, which waits for an RCU grace period before
529  * stopping kthread, emptying the queue.
530  */
531 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
532 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
533 {
534 	struct bpf_cpu_map_entry *old_rcpu;
535 
536 	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
537 	if (old_rcpu) {
538 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
539 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
540 		schedule_work(&old_rcpu->kthread_stop_wq);
541 	}
542 }
543 
544 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
545 {
546 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
547 	u32 key_cpu = *(u32 *)key;
548 
549 	if (key_cpu >= map->max_entries)
550 		return -EINVAL;
551 
552 	/* notice caller map_delete_elem() use preempt_disable() */
553 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
554 	return 0;
555 }
556 
557 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
558 			       u64 map_flags)
559 {
560 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
561 	struct bpf_cpumap_val cpumap_value = {};
562 	struct bpf_cpu_map_entry *rcpu;
563 	/* Array index key correspond to CPU number */
564 	u32 key_cpu = *(u32 *)key;
565 
566 	memcpy(&cpumap_value, value, map->value_size);
567 
568 	if (unlikely(map_flags > BPF_EXIST))
569 		return -EINVAL;
570 	if (unlikely(key_cpu >= cmap->map.max_entries))
571 		return -E2BIG;
572 	if (unlikely(map_flags == BPF_NOEXIST))
573 		return -EEXIST;
574 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
575 		return -EOVERFLOW;
576 
577 	/* Make sure CPU is a valid possible cpu */
578 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
579 		return -ENODEV;
580 
581 	if (cpumap_value.qsize == 0) {
582 		rcpu = NULL; /* Same as deleting */
583 	} else {
584 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
585 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
586 		if (!rcpu)
587 			return -ENOMEM;
588 		rcpu->cmap = cmap;
589 	}
590 	rcu_read_lock();
591 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
592 	rcu_read_unlock();
593 	return 0;
594 }
595 
596 static void cpu_map_free(struct bpf_map *map)
597 {
598 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
599 	u32 i;
600 
601 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
602 	 * so the bpf programs (can be more than one that used this map) were
603 	 * disconnected from events. Wait for outstanding critical sections in
604 	 * these programs to complete. The rcu critical section only guarantees
605 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
606 	 * It does __not__ ensure pending flush operations (if any) are
607 	 * complete.
608 	 */
609 
610 	synchronize_rcu();
611 
612 	/* For cpu_map the remote CPUs can still be using the entries
613 	 * (struct bpf_cpu_map_entry).
614 	 */
615 	for (i = 0; i < cmap->map.max_entries; i++) {
616 		struct bpf_cpu_map_entry *rcpu;
617 
618 		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
619 		if (!rcpu)
620 			continue;
621 
622 		/* bq flush and cleanup happens after RCU grace-period */
623 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
624 	}
625 	bpf_map_area_free(cmap->cpu_map);
626 	kfree(cmap);
627 }
628 
629 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
630  * by local_bh_disable() (from XDP calls inside NAPI). The
631  * rcu_read_lock_bh_held() below makes lockdep accept both.
632  */
633 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
634 {
635 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
636 	struct bpf_cpu_map_entry *rcpu;
637 
638 	if (key >= map->max_entries)
639 		return NULL;
640 
641 	rcpu = rcu_dereference_check(cmap->cpu_map[key],
642 				     rcu_read_lock_bh_held());
643 	return rcpu;
644 }
645 
646 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
647 {
648 	struct bpf_cpu_map_entry *rcpu =
649 		__cpu_map_lookup_elem(map, *(u32 *)key);
650 
651 	return rcpu ? &rcpu->value : NULL;
652 }
653 
654 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
655 {
656 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
657 	u32 index = key ? *(u32 *)key : U32_MAX;
658 	u32 *next = next_key;
659 
660 	if (index >= cmap->map.max_entries) {
661 		*next = 0;
662 		return 0;
663 	}
664 
665 	if (index == cmap->map.max_entries - 1)
666 		return -ENOENT;
667 	*next = index + 1;
668 	return 0;
669 }
670 
671 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
672 {
673 	return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
674 				      __cpu_map_lookup_elem);
675 }
676 
677 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
678 const struct bpf_map_ops cpu_map_ops = {
679 	.map_meta_equal		= bpf_map_meta_equal,
680 	.map_alloc		= cpu_map_alloc,
681 	.map_free		= cpu_map_free,
682 	.map_delete_elem	= cpu_map_delete_elem,
683 	.map_update_elem	= cpu_map_update_elem,
684 	.map_lookup_elem	= cpu_map_lookup_elem,
685 	.map_get_next_key	= cpu_map_get_next_key,
686 	.map_check_btf		= map_check_no_btf,
687 	.map_btf_id		= &cpu_map_btf_ids[0],
688 	.map_redirect		= cpu_map_redirect,
689 };
690 
691 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
692 {
693 	struct bpf_cpu_map_entry *rcpu = bq->obj;
694 	unsigned int processed = 0, drops = 0;
695 	const int to_cpu = rcpu->cpu;
696 	struct ptr_ring *q;
697 	int i;
698 
699 	if (unlikely(!bq->count))
700 		return;
701 
702 	q = rcpu->queue;
703 	spin_lock(&q->producer_lock);
704 
705 	for (i = 0; i < bq->count; i++) {
706 		struct xdp_frame *xdpf = bq->q[i];
707 		int err;
708 
709 		err = __ptr_ring_produce(q, xdpf);
710 		if (err) {
711 			drops++;
712 			xdp_return_frame_rx_napi(xdpf);
713 		}
714 		processed++;
715 	}
716 	bq->count = 0;
717 	spin_unlock(&q->producer_lock);
718 
719 	__list_del_clearprev(&bq->flush_node);
720 
721 	/* Feedback loop via tracepoints */
722 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
723 }
724 
725 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
726  * Thus, safe percpu variable access.
727  */
728 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
729 {
730 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
731 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
732 
733 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
734 		bq_flush_to_queue(bq);
735 
736 	/* Notice, xdp_buff/page MUST be queued here, long enough for
737 	 * driver to code invoking us to finished, due to driver
738 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
739 	 *
740 	 * Thus, incoming xdp_frame is always queued here (else we race
741 	 * with another CPU on page-refcnt and remaining driver code).
742 	 * Queue time is very short, as driver will invoke flush
743 	 * operation, when completing napi->poll call.
744 	 */
745 	bq->q[bq->count++] = xdpf;
746 
747 	if (!bq->flush_node.prev)
748 		list_add(&bq->flush_node, flush_list);
749 }
750 
751 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
752 		    struct net_device *dev_rx)
753 {
754 	/* Info needed when constructing SKB on remote CPU */
755 	xdpf->dev_rx = dev_rx;
756 
757 	bq_enqueue(rcpu, xdpf);
758 	return 0;
759 }
760 
761 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
762 			     struct sk_buff *skb)
763 {
764 	int ret;
765 
766 	__skb_pull(skb, skb->mac_len);
767 	skb_set_redirected(skb, false);
768 	__ptr_set_bit(0, &skb);
769 
770 	ret = ptr_ring_produce(rcpu->queue, skb);
771 	if (ret < 0)
772 		goto trace;
773 
774 	wake_up_process(rcpu->kthread);
775 trace:
776 	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
777 	return ret;
778 }
779 
780 void __cpu_map_flush(void)
781 {
782 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
783 	struct xdp_bulk_queue *bq, *tmp;
784 
785 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
786 		bq_flush_to_queue(bq);
787 
788 		/* If already running, costs spin_lock_irqsave + smb_mb */
789 		wake_up_process(bq->obj->kthread);
790 	}
791 }
792 
793 static int __init cpu_map_init(void)
794 {
795 	int cpu;
796 
797 	for_each_possible_cpu(cpu)
798 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
799 	return 0;
800 }
801 
802 subsys_initcall(cpu_map_init);
803