xref: /openbmc/linux/kernel/bpf/cpumap.c (revision f5fb5ac7cee29cea9156e734fd652a66417d32fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /**
8  * DOC: cpu map
9  * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11  *
12  * Unlike devmap which redirects XDP frames out to another NIC device,
13  * this map type redirects raw XDP frames to another CPU.  The remote
14  * CPU will do SKB-allocation and call the normal network stack.
15  */
16 /*
17  * This is a scalability and isolation mechanism, that allow
18  * separating the early driver network XDP layer, from the rest of the
19  * netstack, and assigning dedicated CPUs for this stage.  This
20  * basically allows for 10G wirespeed pre-filtering via bpf.
21  */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27 
28 #include <linux/sched.h>
29 #include <linux/workqueue.h>
30 #include <linux/kthread.h>
31 #include <linux/completion.h>
32 #include <trace/events/xdp.h>
33 #include <linux/btf_ids.h>
34 
35 #include <linux/netdevice.h>   /* netif_receive_skb_list */
36 #include <linux/etherdevice.h> /* eth_type_trans */
37 
38 /* General idea: XDP packets getting XDP redirected to another CPU,
39  * will maximum be stored/queued for one driver ->poll() call.  It is
40  * guaranteed that queueing the frame and the flush operation happen on
41  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
42  * which queue in bpf_cpu_map_entry contains packets.
43  */
44 
45 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
46 struct bpf_cpu_map_entry;
47 struct bpf_cpu_map;
48 
49 struct xdp_bulk_queue {
50 	void *q[CPU_MAP_BULK_SIZE];
51 	struct list_head flush_node;
52 	struct bpf_cpu_map_entry *obj;
53 	unsigned int count;
54 };
55 
56 /* Struct for every remote "destination" CPU in map */
57 struct bpf_cpu_map_entry {
58 	u32 cpu;    /* kthread CPU and map index */
59 	int map_id; /* Back reference to map */
60 
61 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
62 	struct xdp_bulk_queue __percpu *bulkq;
63 
64 	/* Queue with potential multi-producers, and single-consumer kthread */
65 	struct ptr_ring *queue;
66 	struct task_struct *kthread;
67 
68 	struct bpf_cpumap_val value;
69 	struct bpf_prog *prog;
70 
71 	struct completion kthread_running;
72 	struct rcu_work free_work;
73 };
74 
75 struct bpf_cpu_map {
76 	struct bpf_map map;
77 	/* Below members specific for map type */
78 	struct bpf_cpu_map_entry __rcu **cpu_map;
79 };
80 
81 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
82 
83 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
84 {
85 	u32 value_size = attr->value_size;
86 	struct bpf_cpu_map *cmap;
87 
88 	/* check sanity of attributes */
89 	if (attr->max_entries == 0 || attr->key_size != 4 ||
90 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
91 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
92 	    attr->map_flags & ~BPF_F_NUMA_NODE)
93 		return ERR_PTR(-EINVAL);
94 
95 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
96 	if (attr->max_entries > NR_CPUS)
97 		return ERR_PTR(-E2BIG);
98 
99 	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
100 	if (!cmap)
101 		return ERR_PTR(-ENOMEM);
102 
103 	bpf_map_init_from_attr(&cmap->map, attr);
104 
105 	/* Alloc array for possible remote "destination" CPUs */
106 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
107 					   sizeof(struct bpf_cpu_map_entry *),
108 					   cmap->map.numa_node);
109 	if (!cmap->cpu_map) {
110 		bpf_map_area_free(cmap);
111 		return ERR_PTR(-ENOMEM);
112 	}
113 
114 	return &cmap->map;
115 }
116 
117 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
118 {
119 	/* The tear-down procedure should have made sure that queue is
120 	 * empty.  See __cpu_map_entry_replace() and work-queue
121 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
122 	 * gracefully and warn once.
123 	 */
124 	void *ptr;
125 
126 	while ((ptr = ptr_ring_consume(ring))) {
127 		WARN_ON_ONCE(1);
128 		if (unlikely(__ptr_test_bit(0, &ptr))) {
129 			__ptr_clear_bit(0, &ptr);
130 			kfree_skb(ptr);
131 			continue;
132 		}
133 		xdp_return_frame(ptr);
134 	}
135 }
136 
137 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
138 				     struct list_head *listp,
139 				     struct xdp_cpumap_stats *stats)
140 {
141 	struct sk_buff *skb, *tmp;
142 	struct xdp_buff xdp;
143 	u32 act;
144 	int err;
145 
146 	list_for_each_entry_safe(skb, tmp, listp, list) {
147 		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
148 		switch (act) {
149 		case XDP_PASS:
150 			break;
151 		case XDP_REDIRECT:
152 			skb_list_del_init(skb);
153 			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
154 						      rcpu->prog);
155 			if (unlikely(err)) {
156 				kfree_skb(skb);
157 				stats->drop++;
158 			} else {
159 				stats->redirect++;
160 			}
161 			return;
162 		default:
163 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
164 			fallthrough;
165 		case XDP_ABORTED:
166 			trace_xdp_exception(skb->dev, rcpu->prog, act);
167 			fallthrough;
168 		case XDP_DROP:
169 			skb_list_del_init(skb);
170 			kfree_skb(skb);
171 			stats->drop++;
172 			return;
173 		}
174 	}
175 }
176 
177 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
178 				    void **frames, int n,
179 				    struct xdp_cpumap_stats *stats)
180 {
181 	struct xdp_rxq_info rxq;
182 	struct xdp_buff xdp;
183 	int i, nframes = 0;
184 
185 	xdp_set_return_frame_no_direct();
186 	xdp.rxq = &rxq;
187 
188 	for (i = 0; i < n; i++) {
189 		struct xdp_frame *xdpf = frames[i];
190 		u32 act;
191 		int err;
192 
193 		rxq.dev = xdpf->dev_rx;
194 		rxq.mem = xdpf->mem;
195 		/* TODO: report queue_index to xdp_rxq_info */
196 
197 		xdp_convert_frame_to_buff(xdpf, &xdp);
198 
199 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
200 		switch (act) {
201 		case XDP_PASS:
202 			err = xdp_update_frame_from_buff(&xdp, xdpf);
203 			if (err < 0) {
204 				xdp_return_frame(xdpf);
205 				stats->drop++;
206 			} else {
207 				frames[nframes++] = xdpf;
208 				stats->pass++;
209 			}
210 			break;
211 		case XDP_REDIRECT:
212 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
213 					      rcpu->prog);
214 			if (unlikely(err)) {
215 				xdp_return_frame(xdpf);
216 				stats->drop++;
217 			} else {
218 				stats->redirect++;
219 			}
220 			break;
221 		default:
222 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
223 			fallthrough;
224 		case XDP_DROP:
225 			xdp_return_frame(xdpf);
226 			stats->drop++;
227 			break;
228 		}
229 	}
230 
231 	xdp_clear_return_frame_no_direct();
232 
233 	return nframes;
234 }
235 
236 #define CPUMAP_BATCH 8
237 
238 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
239 				int xdp_n, struct xdp_cpumap_stats *stats,
240 				struct list_head *list)
241 {
242 	int nframes;
243 
244 	if (!rcpu->prog)
245 		return xdp_n;
246 
247 	rcu_read_lock_bh();
248 
249 	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
250 
251 	if (stats->redirect)
252 		xdp_do_flush();
253 
254 	if (unlikely(!list_empty(list)))
255 		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
256 
257 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
258 
259 	return nframes;
260 }
261 
262 static int cpu_map_kthread_run(void *data)
263 {
264 	struct bpf_cpu_map_entry *rcpu = data;
265 
266 	complete(&rcpu->kthread_running);
267 	set_current_state(TASK_INTERRUPTIBLE);
268 
269 	/* When kthread gives stop order, then rcpu have been disconnected
270 	 * from map, thus no new packets can enter. Remaining in-flight
271 	 * per CPU stored packets are flushed to this queue.  Wait honoring
272 	 * kthread_stop signal until queue is empty.
273 	 */
274 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
275 		struct xdp_cpumap_stats stats = {}; /* zero stats */
276 		unsigned int kmem_alloc_drops = 0, sched = 0;
277 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
278 		int i, n, m, nframes, xdp_n;
279 		void *frames[CPUMAP_BATCH];
280 		void *skbs[CPUMAP_BATCH];
281 		LIST_HEAD(list);
282 
283 		/* Release CPU reschedule checks */
284 		if (__ptr_ring_empty(rcpu->queue)) {
285 			set_current_state(TASK_INTERRUPTIBLE);
286 			/* Recheck to avoid lost wake-up */
287 			if (__ptr_ring_empty(rcpu->queue)) {
288 				schedule();
289 				sched = 1;
290 			} else {
291 				__set_current_state(TASK_RUNNING);
292 			}
293 		} else {
294 			sched = cond_resched();
295 		}
296 
297 		/*
298 		 * The bpf_cpu_map_entry is single consumer, with this
299 		 * kthread CPU pinned. Lockless access to ptr_ring
300 		 * consume side valid as no-resize allowed of queue.
301 		 */
302 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
303 					       CPUMAP_BATCH);
304 		for (i = 0, xdp_n = 0; i < n; i++) {
305 			void *f = frames[i];
306 			struct page *page;
307 
308 			if (unlikely(__ptr_test_bit(0, &f))) {
309 				struct sk_buff *skb = f;
310 
311 				__ptr_clear_bit(0, &skb);
312 				list_add_tail(&skb->list, &list);
313 				continue;
314 			}
315 
316 			frames[xdp_n++] = f;
317 			page = virt_to_page(f);
318 
319 			/* Bring struct page memory area to curr CPU. Read by
320 			 * build_skb_around via page_is_pfmemalloc(), and when
321 			 * freed written by page_frag_free call.
322 			 */
323 			prefetchw(page);
324 		}
325 
326 		/* Support running another XDP prog on this CPU */
327 		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
328 		if (nframes) {
329 			m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs);
330 			if (unlikely(m == 0)) {
331 				for (i = 0; i < nframes; i++)
332 					skbs[i] = NULL; /* effect: xdp_return_frame */
333 				kmem_alloc_drops += nframes;
334 			}
335 		}
336 
337 		local_bh_disable();
338 		for (i = 0; i < nframes; i++) {
339 			struct xdp_frame *xdpf = frames[i];
340 			struct sk_buff *skb = skbs[i];
341 
342 			skb = __xdp_build_skb_from_frame(xdpf, skb,
343 							 xdpf->dev_rx);
344 			if (!skb) {
345 				xdp_return_frame(xdpf);
346 				continue;
347 			}
348 
349 			list_add_tail(&skb->list, &list);
350 		}
351 		netif_receive_skb_list(&list);
352 
353 		/* Feedback loop via tracepoint */
354 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
355 					 sched, &stats);
356 
357 		local_bh_enable(); /* resched point, may call do_softirq() */
358 	}
359 	__set_current_state(TASK_RUNNING);
360 
361 	return 0;
362 }
363 
364 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
365 				      struct bpf_map *map, int fd)
366 {
367 	struct bpf_prog *prog;
368 
369 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
370 	if (IS_ERR(prog))
371 		return PTR_ERR(prog);
372 
373 	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
374 	    !bpf_prog_map_compatible(map, prog)) {
375 		bpf_prog_put(prog);
376 		return -EINVAL;
377 	}
378 
379 	rcpu->value.bpf_prog.id = prog->aux->id;
380 	rcpu->prog = prog;
381 
382 	return 0;
383 }
384 
385 static struct bpf_cpu_map_entry *
386 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
387 		      u32 cpu)
388 {
389 	int numa, err, i, fd = value->bpf_prog.fd;
390 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
391 	struct bpf_cpu_map_entry *rcpu;
392 	struct xdp_bulk_queue *bq;
393 
394 	/* Have map->numa_node, but choose node of redirect target CPU */
395 	numa = cpu_to_node(cpu);
396 
397 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
398 	if (!rcpu)
399 		return NULL;
400 
401 	/* Alloc percpu bulkq */
402 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
403 					   sizeof(void *), gfp);
404 	if (!rcpu->bulkq)
405 		goto free_rcu;
406 
407 	for_each_possible_cpu(i) {
408 		bq = per_cpu_ptr(rcpu->bulkq, i);
409 		bq->obj = rcpu;
410 	}
411 
412 	/* Alloc queue */
413 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
414 					   numa);
415 	if (!rcpu->queue)
416 		goto free_bulkq;
417 
418 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
419 	if (err)
420 		goto free_queue;
421 
422 	rcpu->cpu    = cpu;
423 	rcpu->map_id = map->id;
424 	rcpu->value.qsize  = value->qsize;
425 
426 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
427 		goto free_ptr_ring;
428 
429 	/* Setup kthread */
430 	init_completion(&rcpu->kthread_running);
431 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
432 					       "cpumap/%d/map:%d", cpu,
433 					       map->id);
434 	if (IS_ERR(rcpu->kthread))
435 		goto free_prog;
436 
437 	/* Make sure kthread runs on a single CPU */
438 	kthread_bind(rcpu->kthread, cpu);
439 	wake_up_process(rcpu->kthread);
440 
441 	/* Make sure kthread has been running, so kthread_stop() will not
442 	 * stop the kthread prematurely and all pending frames or skbs
443 	 * will be handled by the kthread before kthread_stop() returns.
444 	 */
445 	wait_for_completion(&rcpu->kthread_running);
446 
447 	return rcpu;
448 
449 free_prog:
450 	if (rcpu->prog)
451 		bpf_prog_put(rcpu->prog);
452 free_ptr_ring:
453 	ptr_ring_cleanup(rcpu->queue, NULL);
454 free_queue:
455 	kfree(rcpu->queue);
456 free_bulkq:
457 	free_percpu(rcpu->bulkq);
458 free_rcu:
459 	kfree(rcpu);
460 	return NULL;
461 }
462 
463 static void __cpu_map_entry_free(struct work_struct *work)
464 {
465 	struct bpf_cpu_map_entry *rcpu;
466 
467 	/* This cpu_map_entry have been disconnected from map and one
468 	 * RCU grace-period have elapsed. Thus, XDP cannot queue any
469 	 * new packets and cannot change/set flush_needed that can
470 	 * find this entry.
471 	 */
472 	rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
473 
474 	/* kthread_stop will wake_up_process and wait for it to complete.
475 	 * cpu_map_kthread_run() makes sure the pointer ring is empty
476 	 * before exiting.
477 	 */
478 	kthread_stop(rcpu->kthread);
479 
480 	if (rcpu->prog)
481 		bpf_prog_put(rcpu->prog);
482 	/* The queue should be empty at this point */
483 	__cpu_map_ring_cleanup(rcpu->queue);
484 	ptr_ring_cleanup(rcpu->queue, NULL);
485 	kfree(rcpu->queue);
486 	free_percpu(rcpu->bulkq);
487 	kfree(rcpu);
488 }
489 
490 /* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
491  * entry is no longer in use before freeing. We use queue_rcu_work() to call
492  * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
493  * period. This means that (a) all pending enqueue and flush operations have
494  * completed (because of the RCU callback), and (b) we are in a workqueue
495  * context where we can stop the kthread and wait for it to exit before freeing
496  * everything.
497  */
498 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
499 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
500 {
501 	struct bpf_cpu_map_entry *old_rcpu;
502 
503 	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
504 	if (old_rcpu) {
505 		INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
506 		queue_rcu_work(system_wq, &old_rcpu->free_work);
507 	}
508 }
509 
510 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
511 {
512 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
513 	u32 key_cpu = *(u32 *)key;
514 
515 	if (key_cpu >= map->max_entries)
516 		return -EINVAL;
517 
518 	/* notice caller map_delete_elem() uses rcu_read_lock() */
519 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
520 	return 0;
521 }
522 
523 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
524 				u64 map_flags)
525 {
526 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
527 	struct bpf_cpumap_val cpumap_value = {};
528 	struct bpf_cpu_map_entry *rcpu;
529 	/* Array index key correspond to CPU number */
530 	u32 key_cpu = *(u32 *)key;
531 
532 	memcpy(&cpumap_value, value, map->value_size);
533 
534 	if (unlikely(map_flags > BPF_EXIST))
535 		return -EINVAL;
536 	if (unlikely(key_cpu >= cmap->map.max_entries))
537 		return -E2BIG;
538 	if (unlikely(map_flags == BPF_NOEXIST))
539 		return -EEXIST;
540 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
541 		return -EOVERFLOW;
542 
543 	/* Make sure CPU is a valid possible cpu */
544 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
545 		return -ENODEV;
546 
547 	if (cpumap_value.qsize == 0) {
548 		rcpu = NULL; /* Same as deleting */
549 	} else {
550 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
551 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
552 		if (!rcpu)
553 			return -ENOMEM;
554 	}
555 	rcu_read_lock();
556 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
557 	rcu_read_unlock();
558 	return 0;
559 }
560 
561 static void cpu_map_free(struct bpf_map *map)
562 {
563 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
564 	u32 i;
565 
566 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
567 	 * so the bpf programs (can be more than one that used this map) were
568 	 * disconnected from events. Wait for outstanding critical sections in
569 	 * these programs to complete. synchronize_rcu() below not only
570 	 * guarantees no further "XDP/bpf-side" reads against
571 	 * bpf_cpu_map->cpu_map, but also ensure pending flush operations
572 	 * (if any) are completed.
573 	 */
574 	synchronize_rcu();
575 
576 	/* The only possible user of bpf_cpu_map_entry is
577 	 * cpu_map_kthread_run().
578 	 */
579 	for (i = 0; i < cmap->map.max_entries; i++) {
580 		struct bpf_cpu_map_entry *rcpu;
581 
582 		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
583 		if (!rcpu)
584 			continue;
585 
586 		/* Stop kthread and cleanup entry directly */
587 		__cpu_map_entry_free(&rcpu->free_work.work);
588 	}
589 	bpf_map_area_free(cmap->cpu_map);
590 	bpf_map_area_free(cmap);
591 }
592 
593 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
594  * by local_bh_disable() (from XDP calls inside NAPI). The
595  * rcu_read_lock_bh_held() below makes lockdep accept both.
596  */
597 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
598 {
599 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
600 	struct bpf_cpu_map_entry *rcpu;
601 
602 	if (key >= map->max_entries)
603 		return NULL;
604 
605 	rcpu = rcu_dereference_check(cmap->cpu_map[key],
606 				     rcu_read_lock_bh_held());
607 	return rcpu;
608 }
609 
610 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
611 {
612 	struct bpf_cpu_map_entry *rcpu =
613 		__cpu_map_lookup_elem(map, *(u32 *)key);
614 
615 	return rcpu ? &rcpu->value : NULL;
616 }
617 
618 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
619 {
620 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
621 	u32 index = key ? *(u32 *)key : U32_MAX;
622 	u32 *next = next_key;
623 
624 	if (index >= cmap->map.max_entries) {
625 		*next = 0;
626 		return 0;
627 	}
628 
629 	if (index == cmap->map.max_entries - 1)
630 		return -ENOENT;
631 	*next = index + 1;
632 	return 0;
633 }
634 
635 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
636 {
637 	return __bpf_xdp_redirect_map(map, index, flags, 0,
638 				      __cpu_map_lookup_elem);
639 }
640 
641 static u64 cpu_map_mem_usage(const struct bpf_map *map)
642 {
643 	u64 usage = sizeof(struct bpf_cpu_map);
644 
645 	/* Currently the dynamically allocated elements are not counted */
646 	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
647 	return usage;
648 }
649 
650 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
651 const struct bpf_map_ops cpu_map_ops = {
652 	.map_meta_equal		= bpf_map_meta_equal,
653 	.map_alloc		= cpu_map_alloc,
654 	.map_free		= cpu_map_free,
655 	.map_delete_elem	= cpu_map_delete_elem,
656 	.map_update_elem	= cpu_map_update_elem,
657 	.map_lookup_elem	= cpu_map_lookup_elem,
658 	.map_get_next_key	= cpu_map_get_next_key,
659 	.map_check_btf		= map_check_no_btf,
660 	.map_mem_usage		= cpu_map_mem_usage,
661 	.map_btf_id		= &cpu_map_btf_ids[0],
662 	.map_redirect		= cpu_map_redirect,
663 };
664 
665 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
666 {
667 	struct bpf_cpu_map_entry *rcpu = bq->obj;
668 	unsigned int processed = 0, drops = 0;
669 	const int to_cpu = rcpu->cpu;
670 	struct ptr_ring *q;
671 	int i;
672 
673 	if (unlikely(!bq->count))
674 		return;
675 
676 	q = rcpu->queue;
677 	spin_lock(&q->producer_lock);
678 
679 	for (i = 0; i < bq->count; i++) {
680 		struct xdp_frame *xdpf = bq->q[i];
681 		int err;
682 
683 		err = __ptr_ring_produce(q, xdpf);
684 		if (err) {
685 			drops++;
686 			xdp_return_frame_rx_napi(xdpf);
687 		}
688 		processed++;
689 	}
690 	bq->count = 0;
691 	spin_unlock(&q->producer_lock);
692 
693 	__list_del_clearprev(&bq->flush_node);
694 
695 	/* Feedback loop via tracepoints */
696 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
697 }
698 
699 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
700  * Thus, safe percpu variable access.
701  */
702 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
703 {
704 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
705 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
706 
707 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
708 		bq_flush_to_queue(bq);
709 
710 	/* Notice, xdp_buff/page MUST be queued here, long enough for
711 	 * driver to code invoking us to finished, due to driver
712 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
713 	 *
714 	 * Thus, incoming xdp_frame is always queued here (else we race
715 	 * with another CPU on page-refcnt and remaining driver code).
716 	 * Queue time is very short, as driver will invoke flush
717 	 * operation, when completing napi->poll call.
718 	 */
719 	bq->q[bq->count++] = xdpf;
720 
721 	if (!bq->flush_node.prev)
722 		list_add(&bq->flush_node, flush_list);
723 }
724 
725 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
726 		    struct net_device *dev_rx)
727 {
728 	/* Info needed when constructing SKB on remote CPU */
729 	xdpf->dev_rx = dev_rx;
730 
731 	bq_enqueue(rcpu, xdpf);
732 	return 0;
733 }
734 
735 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
736 			     struct sk_buff *skb)
737 {
738 	int ret;
739 
740 	__skb_pull(skb, skb->mac_len);
741 	skb_set_redirected(skb, false);
742 	__ptr_set_bit(0, &skb);
743 
744 	ret = ptr_ring_produce(rcpu->queue, skb);
745 	if (ret < 0)
746 		goto trace;
747 
748 	wake_up_process(rcpu->kthread);
749 trace:
750 	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
751 	return ret;
752 }
753 
754 void __cpu_map_flush(void)
755 {
756 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
757 	struct xdp_bulk_queue *bq, *tmp;
758 
759 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
760 		bq_flush_to_queue(bq);
761 
762 		/* If already running, costs spin_lock_irqsave + smb_mb */
763 		wake_up_process(bq->obj->kthread);
764 	}
765 }
766 
767 static int __init cpu_map_init(void)
768 {
769 	int cpu;
770 
771 	for_each_possible_cpu(cpu)
772 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
773 	return 0;
774 }
775 
776 subsys_initcall(cpu_map_init);
777