1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /** 8 * DOC: cpu map 9 * The 'cpumap' is primarily used as a backend map for XDP BPF helper 10 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 11 * 12 * Unlike devmap which redirects XDP frames out to another NIC device, 13 * this map type redirects raw XDP frames to another CPU. The remote 14 * CPU will do SKB-allocation and call the normal network stack. 15 */ 16 /* 17 * This is a scalability and isolation mechanism, that allow 18 * separating the early driver network XDP layer, from the rest of the 19 * netstack, and assigning dedicated CPUs for this stage. This 20 * basically allows for 10G wirespeed pre-filtering via bpf. 21 */ 22 #include <linux/bitops.h> 23 #include <linux/bpf.h> 24 #include <linux/filter.h> 25 #include <linux/ptr_ring.h> 26 #include <net/xdp.h> 27 28 #include <linux/sched.h> 29 #include <linux/workqueue.h> 30 #include <linux/kthread.h> 31 #include <linux/completion.h> 32 #include <trace/events/xdp.h> 33 #include <linux/btf_ids.h> 34 35 #include <linux/netdevice.h> /* netif_receive_skb_list */ 36 #include <linux/etherdevice.h> /* eth_type_trans */ 37 38 /* General idea: XDP packets getting XDP redirected to another CPU, 39 * will maximum be stored/queued for one driver ->poll() call. It is 40 * guaranteed that queueing the frame and the flush operation happen on 41 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 42 * which queue in bpf_cpu_map_entry contains packets. 43 */ 44 45 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 46 struct bpf_cpu_map_entry; 47 struct bpf_cpu_map; 48 49 struct xdp_bulk_queue { 50 void *q[CPU_MAP_BULK_SIZE]; 51 struct list_head flush_node; 52 struct bpf_cpu_map_entry *obj; 53 unsigned int count; 54 }; 55 56 /* Struct for every remote "destination" CPU in map */ 57 struct bpf_cpu_map_entry { 58 u32 cpu; /* kthread CPU and map index */ 59 int map_id; /* Back reference to map */ 60 61 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 62 struct xdp_bulk_queue __percpu *bulkq; 63 64 struct bpf_cpu_map *cmap; 65 66 /* Queue with potential multi-producers, and single-consumer kthread */ 67 struct ptr_ring *queue; 68 struct task_struct *kthread; 69 70 struct bpf_cpumap_val value; 71 struct bpf_prog *prog; 72 73 atomic_t refcnt; /* Control when this struct can be free'ed */ 74 struct rcu_head rcu; 75 76 struct work_struct kthread_stop_wq; 77 struct completion kthread_running; 78 }; 79 80 struct bpf_cpu_map { 81 struct bpf_map map; 82 /* Below members specific for map type */ 83 struct bpf_cpu_map_entry __rcu **cpu_map; 84 }; 85 86 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 87 88 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 89 { 90 u32 value_size = attr->value_size; 91 struct bpf_cpu_map *cmap; 92 93 /* check sanity of attributes */ 94 if (attr->max_entries == 0 || attr->key_size != 4 || 95 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 96 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 97 attr->map_flags & ~BPF_F_NUMA_NODE) 98 return ERR_PTR(-EINVAL); 99 100 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 101 if (attr->max_entries > NR_CPUS) 102 return ERR_PTR(-E2BIG); 103 104 cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE); 105 if (!cmap) 106 return ERR_PTR(-ENOMEM); 107 108 bpf_map_init_from_attr(&cmap->map, attr); 109 110 /* Alloc array for possible remote "destination" CPUs */ 111 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 112 sizeof(struct bpf_cpu_map_entry *), 113 cmap->map.numa_node); 114 if (!cmap->cpu_map) { 115 bpf_map_area_free(cmap); 116 return ERR_PTR(-ENOMEM); 117 } 118 119 return &cmap->map; 120 } 121 122 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 123 { 124 atomic_inc(&rcpu->refcnt); 125 } 126 127 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 128 { 129 /* The tear-down procedure should have made sure that queue is 130 * empty. See __cpu_map_entry_replace() and work-queue 131 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 132 * gracefully and warn once. 133 */ 134 void *ptr; 135 136 while ((ptr = ptr_ring_consume(ring))) { 137 WARN_ON_ONCE(1); 138 if (unlikely(__ptr_test_bit(0, &ptr))) { 139 __ptr_clear_bit(0, &ptr); 140 kfree_skb(ptr); 141 continue; 142 } 143 xdp_return_frame(ptr); 144 } 145 } 146 147 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 148 { 149 if (atomic_dec_and_test(&rcpu->refcnt)) { 150 if (rcpu->prog) 151 bpf_prog_put(rcpu->prog); 152 /* The queue should be empty at this point */ 153 __cpu_map_ring_cleanup(rcpu->queue); 154 ptr_ring_cleanup(rcpu->queue, NULL); 155 kfree(rcpu->queue); 156 kfree(rcpu); 157 } 158 } 159 160 /* called from workqueue, to workaround syscall using preempt_disable */ 161 static void cpu_map_kthread_stop(struct work_struct *work) 162 { 163 struct bpf_cpu_map_entry *rcpu; 164 165 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 166 167 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 168 * as it waits until all in-flight call_rcu() callbacks complete. 169 */ 170 rcu_barrier(); 171 172 /* kthread_stop will wake_up_process and wait for it to complete */ 173 kthread_stop(rcpu->kthread); 174 } 175 176 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, 177 struct list_head *listp, 178 struct xdp_cpumap_stats *stats) 179 { 180 struct sk_buff *skb, *tmp; 181 struct xdp_buff xdp; 182 u32 act; 183 int err; 184 185 list_for_each_entry_safe(skb, tmp, listp, list) { 186 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); 187 switch (act) { 188 case XDP_PASS: 189 break; 190 case XDP_REDIRECT: 191 skb_list_del_init(skb); 192 err = xdp_do_generic_redirect(skb->dev, skb, &xdp, 193 rcpu->prog); 194 if (unlikely(err)) { 195 kfree_skb(skb); 196 stats->drop++; 197 } else { 198 stats->redirect++; 199 } 200 return; 201 default: 202 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 203 fallthrough; 204 case XDP_ABORTED: 205 trace_xdp_exception(skb->dev, rcpu->prog, act); 206 fallthrough; 207 case XDP_DROP: 208 skb_list_del_init(skb); 209 kfree_skb(skb); 210 stats->drop++; 211 return; 212 } 213 } 214 } 215 216 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 217 void **frames, int n, 218 struct xdp_cpumap_stats *stats) 219 { 220 struct xdp_rxq_info rxq; 221 struct xdp_buff xdp; 222 int i, nframes = 0; 223 224 xdp_set_return_frame_no_direct(); 225 xdp.rxq = &rxq; 226 227 for (i = 0; i < n; i++) { 228 struct xdp_frame *xdpf = frames[i]; 229 u32 act; 230 int err; 231 232 rxq.dev = xdpf->dev_rx; 233 rxq.mem = xdpf->mem; 234 /* TODO: report queue_index to xdp_rxq_info */ 235 236 xdp_convert_frame_to_buff(xdpf, &xdp); 237 238 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 239 switch (act) { 240 case XDP_PASS: 241 err = xdp_update_frame_from_buff(&xdp, xdpf); 242 if (err < 0) { 243 xdp_return_frame(xdpf); 244 stats->drop++; 245 } else { 246 frames[nframes++] = xdpf; 247 stats->pass++; 248 } 249 break; 250 case XDP_REDIRECT: 251 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 252 rcpu->prog); 253 if (unlikely(err)) { 254 xdp_return_frame(xdpf); 255 stats->drop++; 256 } else { 257 stats->redirect++; 258 } 259 break; 260 default: 261 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 262 fallthrough; 263 case XDP_DROP: 264 xdp_return_frame(xdpf); 265 stats->drop++; 266 break; 267 } 268 } 269 270 xdp_clear_return_frame_no_direct(); 271 272 return nframes; 273 } 274 275 #define CPUMAP_BATCH 8 276 277 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, 278 int xdp_n, struct xdp_cpumap_stats *stats, 279 struct list_head *list) 280 { 281 int nframes; 282 283 if (!rcpu->prog) 284 return xdp_n; 285 286 rcu_read_lock_bh(); 287 288 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats); 289 290 if (stats->redirect) 291 xdp_do_flush(); 292 293 if (unlikely(!list_empty(list))) 294 cpu_map_bpf_prog_run_skb(rcpu, list, stats); 295 296 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 297 298 return nframes; 299 } 300 301 static int cpu_map_kthread_run(void *data) 302 { 303 struct bpf_cpu_map_entry *rcpu = data; 304 305 complete(&rcpu->kthread_running); 306 set_current_state(TASK_INTERRUPTIBLE); 307 308 /* When kthread gives stop order, then rcpu have been disconnected 309 * from map, thus no new packets can enter. Remaining in-flight 310 * per CPU stored packets are flushed to this queue. Wait honoring 311 * kthread_stop signal until queue is empty. 312 */ 313 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 314 struct xdp_cpumap_stats stats = {}; /* zero stats */ 315 unsigned int kmem_alloc_drops = 0, sched = 0; 316 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 317 int i, n, m, nframes, xdp_n; 318 void *frames[CPUMAP_BATCH]; 319 void *skbs[CPUMAP_BATCH]; 320 LIST_HEAD(list); 321 322 /* Release CPU reschedule checks */ 323 if (__ptr_ring_empty(rcpu->queue)) { 324 set_current_state(TASK_INTERRUPTIBLE); 325 /* Recheck to avoid lost wake-up */ 326 if (__ptr_ring_empty(rcpu->queue)) { 327 schedule(); 328 sched = 1; 329 } else { 330 __set_current_state(TASK_RUNNING); 331 } 332 } else { 333 sched = cond_resched(); 334 } 335 336 /* 337 * The bpf_cpu_map_entry is single consumer, with this 338 * kthread CPU pinned. Lockless access to ptr_ring 339 * consume side valid as no-resize allowed of queue. 340 */ 341 n = __ptr_ring_consume_batched(rcpu->queue, frames, 342 CPUMAP_BATCH); 343 for (i = 0, xdp_n = 0; i < n; i++) { 344 void *f = frames[i]; 345 struct page *page; 346 347 if (unlikely(__ptr_test_bit(0, &f))) { 348 struct sk_buff *skb = f; 349 350 __ptr_clear_bit(0, &skb); 351 list_add_tail(&skb->list, &list); 352 continue; 353 } 354 355 frames[xdp_n++] = f; 356 page = virt_to_page(f); 357 358 /* Bring struct page memory area to curr CPU. Read by 359 * build_skb_around via page_is_pfmemalloc(), and when 360 * freed written by page_frag_free call. 361 */ 362 prefetchw(page); 363 } 364 365 /* Support running another XDP prog on this CPU */ 366 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list); 367 if (nframes) { 368 m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs); 369 if (unlikely(m == 0)) { 370 for (i = 0; i < nframes; i++) 371 skbs[i] = NULL; /* effect: xdp_return_frame */ 372 kmem_alloc_drops += nframes; 373 } 374 } 375 376 local_bh_disable(); 377 for (i = 0; i < nframes; i++) { 378 struct xdp_frame *xdpf = frames[i]; 379 struct sk_buff *skb = skbs[i]; 380 381 skb = __xdp_build_skb_from_frame(xdpf, skb, 382 xdpf->dev_rx); 383 if (!skb) { 384 xdp_return_frame(xdpf); 385 continue; 386 } 387 388 list_add_tail(&skb->list, &list); 389 } 390 netif_receive_skb_list(&list); 391 392 /* Feedback loop via tracepoint */ 393 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 394 sched, &stats); 395 396 local_bh_enable(); /* resched point, may call do_softirq() */ 397 } 398 __set_current_state(TASK_RUNNING); 399 400 put_cpu_map_entry(rcpu); 401 return 0; 402 } 403 404 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, 405 struct bpf_map *map, int fd) 406 { 407 struct bpf_prog *prog; 408 409 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 410 if (IS_ERR(prog)) 411 return PTR_ERR(prog); 412 413 if (prog->expected_attach_type != BPF_XDP_CPUMAP || 414 !bpf_prog_map_compatible(map, prog)) { 415 bpf_prog_put(prog); 416 return -EINVAL; 417 } 418 419 rcpu->value.bpf_prog.id = prog->aux->id; 420 rcpu->prog = prog; 421 422 return 0; 423 } 424 425 static struct bpf_cpu_map_entry * 426 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 427 u32 cpu) 428 { 429 int numa, err, i, fd = value->bpf_prog.fd; 430 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 431 struct bpf_cpu_map_entry *rcpu; 432 struct xdp_bulk_queue *bq; 433 434 /* Have map->numa_node, but choose node of redirect target CPU */ 435 numa = cpu_to_node(cpu); 436 437 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 438 if (!rcpu) 439 return NULL; 440 441 /* Alloc percpu bulkq */ 442 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 443 sizeof(void *), gfp); 444 if (!rcpu->bulkq) 445 goto free_rcu; 446 447 for_each_possible_cpu(i) { 448 bq = per_cpu_ptr(rcpu->bulkq, i); 449 bq->obj = rcpu; 450 } 451 452 /* Alloc queue */ 453 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 454 numa); 455 if (!rcpu->queue) 456 goto free_bulkq; 457 458 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 459 if (err) 460 goto free_queue; 461 462 rcpu->cpu = cpu; 463 rcpu->map_id = map->id; 464 rcpu->value.qsize = value->qsize; 465 466 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd)) 467 goto free_ptr_ring; 468 469 /* Setup kthread */ 470 init_completion(&rcpu->kthread_running); 471 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 472 "cpumap/%d/map:%d", cpu, 473 map->id); 474 if (IS_ERR(rcpu->kthread)) 475 goto free_prog; 476 477 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 478 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 479 480 /* Make sure kthread runs on a single CPU */ 481 kthread_bind(rcpu->kthread, cpu); 482 wake_up_process(rcpu->kthread); 483 484 /* Make sure kthread has been running, so kthread_stop() will not 485 * stop the kthread prematurely and all pending frames or skbs 486 * will be handled by the kthread before kthread_stop() returns. 487 */ 488 wait_for_completion(&rcpu->kthread_running); 489 490 return rcpu; 491 492 free_prog: 493 if (rcpu->prog) 494 bpf_prog_put(rcpu->prog); 495 free_ptr_ring: 496 ptr_ring_cleanup(rcpu->queue, NULL); 497 free_queue: 498 kfree(rcpu->queue); 499 free_bulkq: 500 free_percpu(rcpu->bulkq); 501 free_rcu: 502 kfree(rcpu); 503 return NULL; 504 } 505 506 static void __cpu_map_entry_free(struct rcu_head *rcu) 507 { 508 struct bpf_cpu_map_entry *rcpu; 509 510 /* This cpu_map_entry have been disconnected from map and one 511 * RCU grace-period have elapsed. Thus, XDP cannot queue any 512 * new packets and cannot change/set flush_needed that can 513 * find this entry. 514 */ 515 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 516 517 free_percpu(rcpu->bulkq); 518 /* Cannot kthread_stop() here, last put free rcpu resources */ 519 put_cpu_map_entry(rcpu); 520 } 521 522 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 523 * ensure any driver rcu critical sections have completed, but this 524 * does not guarantee a flush has happened yet. Because driver side 525 * rcu_read_lock/unlock only protects the running XDP program. The 526 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 527 * pending flush op doesn't fail. 528 * 529 * The bpf_cpu_map_entry is still used by the kthread, and there can 530 * still be pending packets (in queue and percpu bulkq). A refcnt 531 * makes sure to last user (kthread_stop vs. call_rcu) free memory 532 * resources. 533 * 534 * The rcu callback __cpu_map_entry_free flush remaining packets in 535 * percpu bulkq to queue. Due to caller map_delete_elem() disable 536 * preemption, cannot call kthread_stop() to make sure queue is empty. 537 * Instead a work_queue is started for stopping kthread, 538 * cpu_map_kthread_stop, which waits for an RCU grace period before 539 * stopping kthread, emptying the queue. 540 */ 541 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 542 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 543 { 544 struct bpf_cpu_map_entry *old_rcpu; 545 546 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 547 if (old_rcpu) { 548 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 549 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 550 schedule_work(&old_rcpu->kthread_stop_wq); 551 } 552 } 553 554 static long cpu_map_delete_elem(struct bpf_map *map, void *key) 555 { 556 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 557 u32 key_cpu = *(u32 *)key; 558 559 if (key_cpu >= map->max_entries) 560 return -EINVAL; 561 562 /* notice caller map_delete_elem() use preempt_disable() */ 563 __cpu_map_entry_replace(cmap, key_cpu, NULL); 564 return 0; 565 } 566 567 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 568 u64 map_flags) 569 { 570 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 571 struct bpf_cpumap_val cpumap_value = {}; 572 struct bpf_cpu_map_entry *rcpu; 573 /* Array index key correspond to CPU number */ 574 u32 key_cpu = *(u32 *)key; 575 576 memcpy(&cpumap_value, value, map->value_size); 577 578 if (unlikely(map_flags > BPF_EXIST)) 579 return -EINVAL; 580 if (unlikely(key_cpu >= cmap->map.max_entries)) 581 return -E2BIG; 582 if (unlikely(map_flags == BPF_NOEXIST)) 583 return -EEXIST; 584 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 585 return -EOVERFLOW; 586 587 /* Make sure CPU is a valid possible cpu */ 588 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 589 return -ENODEV; 590 591 if (cpumap_value.qsize == 0) { 592 rcpu = NULL; /* Same as deleting */ 593 } else { 594 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 595 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 596 if (!rcpu) 597 return -ENOMEM; 598 rcpu->cmap = cmap; 599 } 600 rcu_read_lock(); 601 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 602 rcu_read_unlock(); 603 return 0; 604 } 605 606 static void cpu_map_free(struct bpf_map *map) 607 { 608 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 609 u32 i; 610 611 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 612 * so the bpf programs (can be more than one that used this map) were 613 * disconnected from events. Wait for outstanding critical sections in 614 * these programs to complete. The rcu critical section only guarantees 615 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 616 * It does __not__ ensure pending flush operations (if any) are 617 * complete. 618 */ 619 620 synchronize_rcu(); 621 622 /* For cpu_map the remote CPUs can still be using the entries 623 * (struct bpf_cpu_map_entry). 624 */ 625 for (i = 0; i < cmap->map.max_entries; i++) { 626 struct bpf_cpu_map_entry *rcpu; 627 628 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 629 if (!rcpu) 630 continue; 631 632 /* bq flush and cleanup happens after RCU grace-period */ 633 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 634 } 635 bpf_map_area_free(cmap->cpu_map); 636 bpf_map_area_free(cmap); 637 } 638 639 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 640 * by local_bh_disable() (from XDP calls inside NAPI). The 641 * rcu_read_lock_bh_held() below makes lockdep accept both. 642 */ 643 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 644 { 645 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 646 struct bpf_cpu_map_entry *rcpu; 647 648 if (key >= map->max_entries) 649 return NULL; 650 651 rcpu = rcu_dereference_check(cmap->cpu_map[key], 652 rcu_read_lock_bh_held()); 653 return rcpu; 654 } 655 656 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 657 { 658 struct bpf_cpu_map_entry *rcpu = 659 __cpu_map_lookup_elem(map, *(u32 *)key); 660 661 return rcpu ? &rcpu->value : NULL; 662 } 663 664 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 665 { 666 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 667 u32 index = key ? *(u32 *)key : U32_MAX; 668 u32 *next = next_key; 669 670 if (index >= cmap->map.max_entries) { 671 *next = 0; 672 return 0; 673 } 674 675 if (index == cmap->map.max_entries - 1) 676 return -ENOENT; 677 *next = index + 1; 678 return 0; 679 } 680 681 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags) 682 { 683 return __bpf_xdp_redirect_map(map, index, flags, 0, 684 __cpu_map_lookup_elem); 685 } 686 687 static u64 cpu_map_mem_usage(const struct bpf_map *map) 688 { 689 u64 usage = sizeof(struct bpf_cpu_map); 690 691 /* Currently the dynamically allocated elements are not counted */ 692 usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *); 693 return usage; 694 } 695 696 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) 697 const struct bpf_map_ops cpu_map_ops = { 698 .map_meta_equal = bpf_map_meta_equal, 699 .map_alloc = cpu_map_alloc, 700 .map_free = cpu_map_free, 701 .map_delete_elem = cpu_map_delete_elem, 702 .map_update_elem = cpu_map_update_elem, 703 .map_lookup_elem = cpu_map_lookup_elem, 704 .map_get_next_key = cpu_map_get_next_key, 705 .map_check_btf = map_check_no_btf, 706 .map_mem_usage = cpu_map_mem_usage, 707 .map_btf_id = &cpu_map_btf_ids[0], 708 .map_redirect = cpu_map_redirect, 709 }; 710 711 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 712 { 713 struct bpf_cpu_map_entry *rcpu = bq->obj; 714 unsigned int processed = 0, drops = 0; 715 const int to_cpu = rcpu->cpu; 716 struct ptr_ring *q; 717 int i; 718 719 if (unlikely(!bq->count)) 720 return; 721 722 q = rcpu->queue; 723 spin_lock(&q->producer_lock); 724 725 for (i = 0; i < bq->count; i++) { 726 struct xdp_frame *xdpf = bq->q[i]; 727 int err; 728 729 err = __ptr_ring_produce(q, xdpf); 730 if (err) { 731 drops++; 732 xdp_return_frame_rx_napi(xdpf); 733 } 734 processed++; 735 } 736 bq->count = 0; 737 spin_unlock(&q->producer_lock); 738 739 __list_del_clearprev(&bq->flush_node); 740 741 /* Feedback loop via tracepoints */ 742 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 743 } 744 745 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 746 * Thus, safe percpu variable access. 747 */ 748 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 749 { 750 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 751 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 752 753 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 754 bq_flush_to_queue(bq); 755 756 /* Notice, xdp_buff/page MUST be queued here, long enough for 757 * driver to code invoking us to finished, due to driver 758 * (e.g. ixgbe) recycle tricks based on page-refcnt. 759 * 760 * Thus, incoming xdp_frame is always queued here (else we race 761 * with another CPU on page-refcnt and remaining driver code). 762 * Queue time is very short, as driver will invoke flush 763 * operation, when completing napi->poll call. 764 */ 765 bq->q[bq->count++] = xdpf; 766 767 if (!bq->flush_node.prev) 768 list_add(&bq->flush_node, flush_list); 769 } 770 771 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 772 struct net_device *dev_rx) 773 { 774 /* Info needed when constructing SKB on remote CPU */ 775 xdpf->dev_rx = dev_rx; 776 777 bq_enqueue(rcpu, xdpf); 778 return 0; 779 } 780 781 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 782 struct sk_buff *skb) 783 { 784 int ret; 785 786 __skb_pull(skb, skb->mac_len); 787 skb_set_redirected(skb, false); 788 __ptr_set_bit(0, &skb); 789 790 ret = ptr_ring_produce(rcpu->queue, skb); 791 if (ret < 0) 792 goto trace; 793 794 wake_up_process(rcpu->kthread); 795 trace: 796 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); 797 return ret; 798 } 799 800 void __cpu_map_flush(void) 801 { 802 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 803 struct xdp_bulk_queue *bq, *tmp; 804 805 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 806 bq_flush_to_queue(bq); 807 808 /* If already running, costs spin_lock_irqsave + smb_mb */ 809 wake_up_process(bq->obj->kthread); 810 } 811 } 812 813 static int __init cpu_map_init(void) 814 { 815 int cpu; 816 817 for_each_possible_cpu(cpu) 818 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 819 return 0; 820 } 821 822 subsys_initcall(cpu_map_init); 823