1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /** 8 * DOC: cpu map 9 * The 'cpumap' is primarily used as a backend map for XDP BPF helper 10 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 11 * 12 * Unlike devmap which redirects XDP frames out to another NIC device, 13 * this map type redirects raw XDP frames to another CPU. The remote 14 * CPU will do SKB-allocation and call the normal network stack. 15 */ 16 /* 17 * This is a scalability and isolation mechanism, that allow 18 * separating the early driver network XDP layer, from the rest of the 19 * netstack, and assigning dedicated CPUs for this stage. This 20 * basically allows for 10G wirespeed pre-filtering via bpf. 21 */ 22 #include <linux/bitops.h> 23 #include <linux/bpf.h> 24 #include <linux/filter.h> 25 #include <linux/ptr_ring.h> 26 #include <net/xdp.h> 27 28 #include <linux/sched.h> 29 #include <linux/workqueue.h> 30 #include <linux/kthread.h> 31 #include <linux/capability.h> 32 #include <trace/events/xdp.h> 33 #include <linux/btf_ids.h> 34 35 #include <linux/netdevice.h> /* netif_receive_skb_list */ 36 #include <linux/etherdevice.h> /* eth_type_trans */ 37 38 /* General idea: XDP packets getting XDP redirected to another CPU, 39 * will maximum be stored/queued for one driver ->poll() call. It is 40 * guaranteed that queueing the frame and the flush operation happen on 41 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 42 * which queue in bpf_cpu_map_entry contains packets. 43 */ 44 45 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 46 struct bpf_cpu_map_entry; 47 struct bpf_cpu_map; 48 49 struct xdp_bulk_queue { 50 void *q[CPU_MAP_BULK_SIZE]; 51 struct list_head flush_node; 52 struct bpf_cpu_map_entry *obj; 53 unsigned int count; 54 }; 55 56 /* Struct for every remote "destination" CPU in map */ 57 struct bpf_cpu_map_entry { 58 u32 cpu; /* kthread CPU and map index */ 59 int map_id; /* Back reference to map */ 60 61 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 62 struct xdp_bulk_queue __percpu *bulkq; 63 64 struct bpf_cpu_map *cmap; 65 66 /* Queue with potential multi-producers, and single-consumer kthread */ 67 struct ptr_ring *queue; 68 struct task_struct *kthread; 69 70 struct bpf_cpumap_val value; 71 struct bpf_prog *prog; 72 73 atomic_t refcnt; /* Control when this struct can be free'ed */ 74 struct rcu_head rcu; 75 76 struct work_struct kthread_stop_wq; 77 }; 78 79 struct bpf_cpu_map { 80 struct bpf_map map; 81 /* Below members specific for map type */ 82 struct bpf_cpu_map_entry __rcu **cpu_map; 83 }; 84 85 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 86 87 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 88 { 89 u32 value_size = attr->value_size; 90 struct bpf_cpu_map *cmap; 91 92 if (!bpf_capable()) 93 return ERR_PTR(-EPERM); 94 95 /* check sanity of attributes */ 96 if (attr->max_entries == 0 || attr->key_size != 4 || 97 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 98 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 99 attr->map_flags & ~BPF_F_NUMA_NODE) 100 return ERR_PTR(-EINVAL); 101 102 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 103 if (attr->max_entries > NR_CPUS) 104 return ERR_PTR(-E2BIG); 105 106 cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE); 107 if (!cmap) 108 return ERR_PTR(-ENOMEM); 109 110 bpf_map_init_from_attr(&cmap->map, attr); 111 112 /* Alloc array for possible remote "destination" CPUs */ 113 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 114 sizeof(struct bpf_cpu_map_entry *), 115 cmap->map.numa_node); 116 if (!cmap->cpu_map) { 117 bpf_map_area_free(cmap); 118 return ERR_PTR(-ENOMEM); 119 } 120 121 return &cmap->map; 122 } 123 124 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 125 { 126 atomic_inc(&rcpu->refcnt); 127 } 128 129 /* called from workqueue, to workaround syscall using preempt_disable */ 130 static void cpu_map_kthread_stop(struct work_struct *work) 131 { 132 struct bpf_cpu_map_entry *rcpu; 133 134 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 135 136 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 137 * as it waits until all in-flight call_rcu() callbacks complete. 138 */ 139 rcu_barrier(); 140 141 /* kthread_stop will wake_up_process and wait for it to complete */ 142 kthread_stop(rcpu->kthread); 143 } 144 145 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 146 { 147 /* The tear-down procedure should have made sure that queue is 148 * empty. See __cpu_map_entry_replace() and work-queue 149 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 150 * gracefully and warn once. 151 */ 152 struct xdp_frame *xdpf; 153 154 while ((xdpf = ptr_ring_consume(ring))) 155 if (WARN_ON_ONCE(xdpf)) 156 xdp_return_frame(xdpf); 157 } 158 159 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 160 { 161 if (atomic_dec_and_test(&rcpu->refcnt)) { 162 if (rcpu->prog) 163 bpf_prog_put(rcpu->prog); 164 /* The queue should be empty at this point */ 165 __cpu_map_ring_cleanup(rcpu->queue); 166 ptr_ring_cleanup(rcpu->queue, NULL); 167 kfree(rcpu->queue); 168 kfree(rcpu); 169 } 170 } 171 172 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, 173 struct list_head *listp, 174 struct xdp_cpumap_stats *stats) 175 { 176 struct sk_buff *skb, *tmp; 177 struct xdp_buff xdp; 178 u32 act; 179 int err; 180 181 list_for_each_entry_safe(skb, tmp, listp, list) { 182 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); 183 switch (act) { 184 case XDP_PASS: 185 break; 186 case XDP_REDIRECT: 187 skb_list_del_init(skb); 188 err = xdp_do_generic_redirect(skb->dev, skb, &xdp, 189 rcpu->prog); 190 if (unlikely(err)) { 191 kfree_skb(skb); 192 stats->drop++; 193 } else { 194 stats->redirect++; 195 } 196 return; 197 default: 198 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 199 fallthrough; 200 case XDP_ABORTED: 201 trace_xdp_exception(skb->dev, rcpu->prog, act); 202 fallthrough; 203 case XDP_DROP: 204 skb_list_del_init(skb); 205 kfree_skb(skb); 206 stats->drop++; 207 return; 208 } 209 } 210 } 211 212 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 213 void **frames, int n, 214 struct xdp_cpumap_stats *stats) 215 { 216 struct xdp_rxq_info rxq; 217 struct xdp_buff xdp; 218 int i, nframes = 0; 219 220 xdp_set_return_frame_no_direct(); 221 xdp.rxq = &rxq; 222 223 for (i = 0; i < n; i++) { 224 struct xdp_frame *xdpf = frames[i]; 225 u32 act; 226 int err; 227 228 rxq.dev = xdpf->dev_rx; 229 rxq.mem = xdpf->mem; 230 /* TODO: report queue_index to xdp_rxq_info */ 231 232 xdp_convert_frame_to_buff(xdpf, &xdp); 233 234 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 235 switch (act) { 236 case XDP_PASS: 237 err = xdp_update_frame_from_buff(&xdp, xdpf); 238 if (err < 0) { 239 xdp_return_frame(xdpf); 240 stats->drop++; 241 } else { 242 frames[nframes++] = xdpf; 243 stats->pass++; 244 } 245 break; 246 case XDP_REDIRECT: 247 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 248 rcpu->prog); 249 if (unlikely(err)) { 250 xdp_return_frame(xdpf); 251 stats->drop++; 252 } else { 253 stats->redirect++; 254 } 255 break; 256 default: 257 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 258 fallthrough; 259 case XDP_DROP: 260 xdp_return_frame(xdpf); 261 stats->drop++; 262 break; 263 } 264 } 265 266 xdp_clear_return_frame_no_direct(); 267 268 return nframes; 269 } 270 271 #define CPUMAP_BATCH 8 272 273 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, 274 int xdp_n, struct xdp_cpumap_stats *stats, 275 struct list_head *list) 276 { 277 int nframes; 278 279 if (!rcpu->prog) 280 return xdp_n; 281 282 rcu_read_lock_bh(); 283 284 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats); 285 286 if (stats->redirect) 287 xdp_do_flush(); 288 289 if (unlikely(!list_empty(list))) 290 cpu_map_bpf_prog_run_skb(rcpu, list, stats); 291 292 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 293 294 return nframes; 295 } 296 297 298 static int cpu_map_kthread_run(void *data) 299 { 300 struct bpf_cpu_map_entry *rcpu = data; 301 302 set_current_state(TASK_INTERRUPTIBLE); 303 304 /* When kthread gives stop order, then rcpu have been disconnected 305 * from map, thus no new packets can enter. Remaining in-flight 306 * per CPU stored packets are flushed to this queue. Wait honoring 307 * kthread_stop signal until queue is empty. 308 */ 309 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 310 struct xdp_cpumap_stats stats = {}; /* zero stats */ 311 unsigned int kmem_alloc_drops = 0, sched = 0; 312 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 313 int i, n, m, nframes, xdp_n; 314 void *frames[CPUMAP_BATCH]; 315 void *skbs[CPUMAP_BATCH]; 316 LIST_HEAD(list); 317 318 /* Release CPU reschedule checks */ 319 if (__ptr_ring_empty(rcpu->queue)) { 320 set_current_state(TASK_INTERRUPTIBLE); 321 /* Recheck to avoid lost wake-up */ 322 if (__ptr_ring_empty(rcpu->queue)) { 323 schedule(); 324 sched = 1; 325 } else { 326 __set_current_state(TASK_RUNNING); 327 } 328 } else { 329 sched = cond_resched(); 330 } 331 332 /* 333 * The bpf_cpu_map_entry is single consumer, with this 334 * kthread CPU pinned. Lockless access to ptr_ring 335 * consume side valid as no-resize allowed of queue. 336 */ 337 n = __ptr_ring_consume_batched(rcpu->queue, frames, 338 CPUMAP_BATCH); 339 for (i = 0, xdp_n = 0; i < n; i++) { 340 void *f = frames[i]; 341 struct page *page; 342 343 if (unlikely(__ptr_test_bit(0, &f))) { 344 struct sk_buff *skb = f; 345 346 __ptr_clear_bit(0, &skb); 347 list_add_tail(&skb->list, &list); 348 continue; 349 } 350 351 frames[xdp_n++] = f; 352 page = virt_to_page(f); 353 354 /* Bring struct page memory area to curr CPU. Read by 355 * build_skb_around via page_is_pfmemalloc(), and when 356 * freed written by page_frag_free call. 357 */ 358 prefetchw(page); 359 } 360 361 /* Support running another XDP prog on this CPU */ 362 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list); 363 if (nframes) { 364 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 365 if (unlikely(m == 0)) { 366 for (i = 0; i < nframes; i++) 367 skbs[i] = NULL; /* effect: xdp_return_frame */ 368 kmem_alloc_drops += nframes; 369 } 370 } 371 372 local_bh_disable(); 373 for (i = 0; i < nframes; i++) { 374 struct xdp_frame *xdpf = frames[i]; 375 struct sk_buff *skb = skbs[i]; 376 377 skb = __xdp_build_skb_from_frame(xdpf, skb, 378 xdpf->dev_rx); 379 if (!skb) { 380 xdp_return_frame(xdpf); 381 continue; 382 } 383 384 list_add_tail(&skb->list, &list); 385 } 386 netif_receive_skb_list(&list); 387 388 /* Feedback loop via tracepoint */ 389 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 390 sched, &stats); 391 392 local_bh_enable(); /* resched point, may call do_softirq() */ 393 } 394 __set_current_state(TASK_RUNNING); 395 396 put_cpu_map_entry(rcpu); 397 return 0; 398 } 399 400 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, 401 struct bpf_map *map, int fd) 402 { 403 struct bpf_prog *prog; 404 405 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 406 if (IS_ERR(prog)) 407 return PTR_ERR(prog); 408 409 if (prog->expected_attach_type != BPF_XDP_CPUMAP || 410 !bpf_prog_map_compatible(map, prog)) { 411 bpf_prog_put(prog); 412 return -EINVAL; 413 } 414 415 rcpu->value.bpf_prog.id = prog->aux->id; 416 rcpu->prog = prog; 417 418 return 0; 419 } 420 421 static struct bpf_cpu_map_entry * 422 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 423 u32 cpu) 424 { 425 int numa, err, i, fd = value->bpf_prog.fd; 426 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 427 struct bpf_cpu_map_entry *rcpu; 428 struct xdp_bulk_queue *bq; 429 430 /* Have map->numa_node, but choose node of redirect target CPU */ 431 numa = cpu_to_node(cpu); 432 433 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 434 if (!rcpu) 435 return NULL; 436 437 /* Alloc percpu bulkq */ 438 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 439 sizeof(void *), gfp); 440 if (!rcpu->bulkq) 441 goto free_rcu; 442 443 for_each_possible_cpu(i) { 444 bq = per_cpu_ptr(rcpu->bulkq, i); 445 bq->obj = rcpu; 446 } 447 448 /* Alloc queue */ 449 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 450 numa); 451 if (!rcpu->queue) 452 goto free_bulkq; 453 454 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 455 if (err) 456 goto free_queue; 457 458 rcpu->cpu = cpu; 459 rcpu->map_id = map->id; 460 rcpu->value.qsize = value->qsize; 461 462 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd)) 463 goto free_ptr_ring; 464 465 /* Setup kthread */ 466 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 467 "cpumap/%d/map:%d", cpu, 468 map->id); 469 if (IS_ERR(rcpu->kthread)) 470 goto free_prog; 471 472 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 473 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 474 475 /* Make sure kthread runs on a single CPU */ 476 kthread_bind(rcpu->kthread, cpu); 477 wake_up_process(rcpu->kthread); 478 479 return rcpu; 480 481 free_prog: 482 if (rcpu->prog) 483 bpf_prog_put(rcpu->prog); 484 free_ptr_ring: 485 ptr_ring_cleanup(rcpu->queue, NULL); 486 free_queue: 487 kfree(rcpu->queue); 488 free_bulkq: 489 free_percpu(rcpu->bulkq); 490 free_rcu: 491 kfree(rcpu); 492 return NULL; 493 } 494 495 static void __cpu_map_entry_free(struct rcu_head *rcu) 496 { 497 struct bpf_cpu_map_entry *rcpu; 498 499 /* This cpu_map_entry have been disconnected from map and one 500 * RCU grace-period have elapsed. Thus, XDP cannot queue any 501 * new packets and cannot change/set flush_needed that can 502 * find this entry. 503 */ 504 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 505 506 free_percpu(rcpu->bulkq); 507 /* Cannot kthread_stop() here, last put free rcpu resources */ 508 put_cpu_map_entry(rcpu); 509 } 510 511 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 512 * ensure any driver rcu critical sections have completed, but this 513 * does not guarantee a flush has happened yet. Because driver side 514 * rcu_read_lock/unlock only protects the running XDP program. The 515 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 516 * pending flush op doesn't fail. 517 * 518 * The bpf_cpu_map_entry is still used by the kthread, and there can 519 * still be pending packets (in queue and percpu bulkq). A refcnt 520 * makes sure to last user (kthread_stop vs. call_rcu) free memory 521 * resources. 522 * 523 * The rcu callback __cpu_map_entry_free flush remaining packets in 524 * percpu bulkq to queue. Due to caller map_delete_elem() disable 525 * preemption, cannot call kthread_stop() to make sure queue is empty. 526 * Instead a work_queue is started for stopping kthread, 527 * cpu_map_kthread_stop, which waits for an RCU grace period before 528 * stopping kthread, emptying the queue. 529 */ 530 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 531 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 532 { 533 struct bpf_cpu_map_entry *old_rcpu; 534 535 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 536 if (old_rcpu) { 537 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 538 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 539 schedule_work(&old_rcpu->kthread_stop_wq); 540 } 541 } 542 543 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 544 { 545 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 546 u32 key_cpu = *(u32 *)key; 547 548 if (key_cpu >= map->max_entries) 549 return -EINVAL; 550 551 /* notice caller map_delete_elem() use preempt_disable() */ 552 __cpu_map_entry_replace(cmap, key_cpu, NULL); 553 return 0; 554 } 555 556 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 557 u64 map_flags) 558 { 559 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 560 struct bpf_cpumap_val cpumap_value = {}; 561 struct bpf_cpu_map_entry *rcpu; 562 /* Array index key correspond to CPU number */ 563 u32 key_cpu = *(u32 *)key; 564 565 memcpy(&cpumap_value, value, map->value_size); 566 567 if (unlikely(map_flags > BPF_EXIST)) 568 return -EINVAL; 569 if (unlikely(key_cpu >= cmap->map.max_entries)) 570 return -E2BIG; 571 if (unlikely(map_flags == BPF_NOEXIST)) 572 return -EEXIST; 573 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 574 return -EOVERFLOW; 575 576 /* Make sure CPU is a valid possible cpu */ 577 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 578 return -ENODEV; 579 580 if (cpumap_value.qsize == 0) { 581 rcpu = NULL; /* Same as deleting */ 582 } else { 583 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 584 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 585 if (!rcpu) 586 return -ENOMEM; 587 rcpu->cmap = cmap; 588 } 589 rcu_read_lock(); 590 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 591 rcu_read_unlock(); 592 return 0; 593 } 594 595 static void cpu_map_free(struct bpf_map *map) 596 { 597 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 598 u32 i; 599 600 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 601 * so the bpf programs (can be more than one that used this map) were 602 * disconnected from events. Wait for outstanding critical sections in 603 * these programs to complete. The rcu critical section only guarantees 604 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 605 * It does __not__ ensure pending flush operations (if any) are 606 * complete. 607 */ 608 609 synchronize_rcu(); 610 611 /* For cpu_map the remote CPUs can still be using the entries 612 * (struct bpf_cpu_map_entry). 613 */ 614 for (i = 0; i < cmap->map.max_entries; i++) { 615 struct bpf_cpu_map_entry *rcpu; 616 617 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 618 if (!rcpu) 619 continue; 620 621 /* bq flush and cleanup happens after RCU grace-period */ 622 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 623 } 624 bpf_map_area_free(cmap->cpu_map); 625 bpf_map_area_free(cmap); 626 } 627 628 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 629 * by local_bh_disable() (from XDP calls inside NAPI). The 630 * rcu_read_lock_bh_held() below makes lockdep accept both. 631 */ 632 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 633 { 634 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 635 struct bpf_cpu_map_entry *rcpu; 636 637 if (key >= map->max_entries) 638 return NULL; 639 640 rcpu = rcu_dereference_check(cmap->cpu_map[key], 641 rcu_read_lock_bh_held()); 642 return rcpu; 643 } 644 645 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 646 { 647 struct bpf_cpu_map_entry *rcpu = 648 __cpu_map_lookup_elem(map, *(u32 *)key); 649 650 return rcpu ? &rcpu->value : NULL; 651 } 652 653 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 654 { 655 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 656 u32 index = key ? *(u32 *)key : U32_MAX; 657 u32 *next = next_key; 658 659 if (index >= cmap->map.max_entries) { 660 *next = 0; 661 return 0; 662 } 663 664 if (index == cmap->map.max_entries - 1) 665 return -ENOENT; 666 *next = index + 1; 667 return 0; 668 } 669 670 static int cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags) 671 { 672 return __bpf_xdp_redirect_map(map, index, flags, 0, 673 __cpu_map_lookup_elem); 674 } 675 676 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) 677 const struct bpf_map_ops cpu_map_ops = { 678 .map_meta_equal = bpf_map_meta_equal, 679 .map_alloc = cpu_map_alloc, 680 .map_free = cpu_map_free, 681 .map_delete_elem = cpu_map_delete_elem, 682 .map_update_elem = cpu_map_update_elem, 683 .map_lookup_elem = cpu_map_lookup_elem, 684 .map_get_next_key = cpu_map_get_next_key, 685 .map_check_btf = map_check_no_btf, 686 .map_btf_id = &cpu_map_btf_ids[0], 687 .map_redirect = cpu_map_redirect, 688 }; 689 690 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 691 { 692 struct bpf_cpu_map_entry *rcpu = bq->obj; 693 unsigned int processed = 0, drops = 0; 694 const int to_cpu = rcpu->cpu; 695 struct ptr_ring *q; 696 int i; 697 698 if (unlikely(!bq->count)) 699 return; 700 701 q = rcpu->queue; 702 spin_lock(&q->producer_lock); 703 704 for (i = 0; i < bq->count; i++) { 705 struct xdp_frame *xdpf = bq->q[i]; 706 int err; 707 708 err = __ptr_ring_produce(q, xdpf); 709 if (err) { 710 drops++; 711 xdp_return_frame_rx_napi(xdpf); 712 } 713 processed++; 714 } 715 bq->count = 0; 716 spin_unlock(&q->producer_lock); 717 718 __list_del_clearprev(&bq->flush_node); 719 720 /* Feedback loop via tracepoints */ 721 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 722 } 723 724 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 725 * Thus, safe percpu variable access. 726 */ 727 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 728 { 729 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 730 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 731 732 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 733 bq_flush_to_queue(bq); 734 735 /* Notice, xdp_buff/page MUST be queued here, long enough for 736 * driver to code invoking us to finished, due to driver 737 * (e.g. ixgbe) recycle tricks based on page-refcnt. 738 * 739 * Thus, incoming xdp_frame is always queued here (else we race 740 * with another CPU on page-refcnt and remaining driver code). 741 * Queue time is very short, as driver will invoke flush 742 * operation, when completing napi->poll call. 743 */ 744 bq->q[bq->count++] = xdpf; 745 746 if (!bq->flush_node.prev) 747 list_add(&bq->flush_node, flush_list); 748 } 749 750 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 751 struct net_device *dev_rx) 752 { 753 /* Info needed when constructing SKB on remote CPU */ 754 xdpf->dev_rx = dev_rx; 755 756 bq_enqueue(rcpu, xdpf); 757 return 0; 758 } 759 760 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 761 struct sk_buff *skb) 762 { 763 int ret; 764 765 __skb_pull(skb, skb->mac_len); 766 skb_set_redirected(skb, false); 767 __ptr_set_bit(0, &skb); 768 769 ret = ptr_ring_produce(rcpu->queue, skb); 770 if (ret < 0) 771 goto trace; 772 773 wake_up_process(rcpu->kthread); 774 trace: 775 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); 776 return ret; 777 } 778 779 void __cpu_map_flush(void) 780 { 781 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 782 struct xdp_bulk_queue *bq, *tmp; 783 784 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 785 bq_flush_to_queue(bq); 786 787 /* If already running, costs spin_lock_irqsave + smb_mb */ 788 wake_up_process(bq->obj->kthread); 789 } 790 } 791 792 static int __init cpu_map_init(void) 793 { 794 int cpu; 795 796 for_each_possible_cpu(cpu) 797 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 798 return 0; 799 } 800 801 subsys_initcall(cpu_map_init); 802