xref: /openbmc/linux/kernel/bpf/cpumap.c (revision dd5b2498)
1 /* bpf/cpumap.c
2  *
3  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
4  * Released under terms in GPL version 2.  See COPYING.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that setting flush bit and flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct xdp_bulk_queue {
42 	void *q[CPU_MAP_BULK_SIZE];
43 	unsigned int count;
44 };
45 
46 /* Struct for every remote "destination" CPU in map */
47 struct bpf_cpu_map_entry {
48 	u32 cpu;    /* kthread CPU and map index */
49 	int map_id; /* Back reference to map */
50 	u32 qsize;  /* Queue size placeholder for map lookup */
51 
52 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
53 	struct xdp_bulk_queue __percpu *bulkq;
54 
55 	/* Queue with potential multi-producers, and single-consumer kthread */
56 	struct ptr_ring *queue;
57 	struct task_struct *kthread;
58 	struct work_struct kthread_stop_wq;
59 
60 	atomic_t refcnt; /* Control when this struct can be free'ed */
61 	struct rcu_head rcu;
62 };
63 
64 struct bpf_cpu_map {
65 	struct bpf_map map;
66 	/* Below members specific for map type */
67 	struct bpf_cpu_map_entry **cpu_map;
68 	unsigned long __percpu *flush_needed;
69 };
70 
71 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
72 			     struct xdp_bulk_queue *bq, bool in_napi_ctx);
73 
74 static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
75 {
76 	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
77 }
78 
79 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
80 {
81 	struct bpf_cpu_map *cmap;
82 	int err = -ENOMEM;
83 	u64 cost;
84 	int ret;
85 
86 	if (!capable(CAP_SYS_ADMIN))
87 		return ERR_PTR(-EPERM);
88 
89 	/* check sanity of attributes */
90 	if (attr->max_entries == 0 || attr->key_size != 4 ||
91 	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
92 		return ERR_PTR(-EINVAL);
93 
94 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
95 	if (!cmap)
96 		return ERR_PTR(-ENOMEM);
97 
98 	bpf_map_init_from_attr(&cmap->map, attr);
99 
100 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
101 	if (cmap->map.max_entries > NR_CPUS) {
102 		err = -E2BIG;
103 		goto free_cmap;
104 	}
105 
106 	/* make sure page count doesn't overflow */
107 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
108 	cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
109 	if (cost >= U32_MAX - PAGE_SIZE)
110 		goto free_cmap;
111 	cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
112 
113 	/* Notice returns -EPERM on if map size is larger than memlock limit */
114 	ret = bpf_map_precharge_memlock(cmap->map.pages);
115 	if (ret) {
116 		err = ret;
117 		goto free_cmap;
118 	}
119 
120 	/* A per cpu bitfield with a bit per possible CPU in map  */
121 	cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
122 					    __alignof__(unsigned long));
123 	if (!cmap->flush_needed)
124 		goto free_cmap;
125 
126 	/* Alloc array for possible remote "destination" CPUs */
127 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
128 					   sizeof(struct bpf_cpu_map_entry *),
129 					   cmap->map.numa_node);
130 	if (!cmap->cpu_map)
131 		goto free_percpu;
132 
133 	return &cmap->map;
134 free_percpu:
135 	free_percpu(cmap->flush_needed);
136 free_cmap:
137 	kfree(cmap);
138 	return ERR_PTR(err);
139 }
140 
141 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
142 {
143 	atomic_inc(&rcpu->refcnt);
144 }
145 
146 /* called from workqueue, to workaround syscall using preempt_disable */
147 static void cpu_map_kthread_stop(struct work_struct *work)
148 {
149 	struct bpf_cpu_map_entry *rcpu;
150 
151 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
152 
153 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
154 	 * as it waits until all in-flight call_rcu() callbacks complete.
155 	 */
156 	rcu_barrier();
157 
158 	/* kthread_stop will wake_up_process and wait for it to complete */
159 	kthread_stop(rcpu->kthread);
160 }
161 
162 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
163 					 struct xdp_frame *xdpf)
164 {
165 	unsigned int hard_start_headroom;
166 	unsigned int frame_size;
167 	void *pkt_data_start;
168 	struct sk_buff *skb;
169 
170 	/* Part of headroom was reserved to xdpf */
171 	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
172 
173 	/* build_skb need to place skb_shared_info after SKB end, and
174 	 * also want to know the memory "truesize".  Thus, need to
175 	 * know the memory frame size backing xdp_buff.
176 	 *
177 	 * XDP was designed to have PAGE_SIZE frames, but this
178 	 * assumption is not longer true with ixgbe and i40e.  It
179 	 * would be preferred to set frame_size to 2048 or 4096
180 	 * depending on the driver.
181 	 *   frame_size = 2048;
182 	 *   frame_len  = frame_size - sizeof(*xdp_frame);
183 	 *
184 	 * Instead, with info avail, skb_shared_info in placed after
185 	 * packet len.  This, unfortunately fakes the truesize.
186 	 * Another disadvantage of this approach, the skb_shared_info
187 	 * is not at a fixed memory location, with mixed length
188 	 * packets, which is bad for cache-line hotness.
189 	 */
190 	frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
191 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
192 
193 	pkt_data_start = xdpf->data - hard_start_headroom;
194 	skb = build_skb(pkt_data_start, frame_size);
195 	if (!skb)
196 		return NULL;
197 
198 	skb_reserve(skb, hard_start_headroom);
199 	__skb_put(skb, xdpf->len);
200 	if (xdpf->metasize)
201 		skb_metadata_set(skb, xdpf->metasize);
202 
203 	/* Essential SKB info: protocol and skb->dev */
204 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
205 
206 	/* Optional SKB info, currently missing:
207 	 * - HW checksum info		(skb->ip_summed)
208 	 * - HW RX hash			(skb_set_hash)
209 	 * - RX ring dev queue index	(skb_record_rx_queue)
210 	 */
211 
212 	/* Allow SKB to reuse area used by xdp_frame */
213 	xdp_scrub_frame(xdpf);
214 
215 	return skb;
216 }
217 
218 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
219 {
220 	/* The tear-down procedure should have made sure that queue is
221 	 * empty.  See __cpu_map_entry_replace() and work-queue
222 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
223 	 * gracefully and warn once.
224 	 */
225 	struct xdp_frame *xdpf;
226 
227 	while ((xdpf = ptr_ring_consume(ring)))
228 		if (WARN_ON_ONCE(xdpf))
229 			xdp_return_frame(xdpf);
230 }
231 
232 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
233 {
234 	if (atomic_dec_and_test(&rcpu->refcnt)) {
235 		/* The queue should be empty at this point */
236 		__cpu_map_ring_cleanup(rcpu->queue);
237 		ptr_ring_cleanup(rcpu->queue, NULL);
238 		kfree(rcpu->queue);
239 		kfree(rcpu);
240 	}
241 }
242 
243 static int cpu_map_kthread_run(void *data)
244 {
245 	struct bpf_cpu_map_entry *rcpu = data;
246 
247 	set_current_state(TASK_INTERRUPTIBLE);
248 
249 	/* When kthread gives stop order, then rcpu have been disconnected
250 	 * from map, thus no new packets can enter. Remaining in-flight
251 	 * per CPU stored packets are flushed to this queue.  Wait honoring
252 	 * kthread_stop signal until queue is empty.
253 	 */
254 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
255 		unsigned int processed = 0, drops = 0, sched = 0;
256 		struct xdp_frame *xdpf;
257 
258 		/* Release CPU reschedule checks */
259 		if (__ptr_ring_empty(rcpu->queue)) {
260 			set_current_state(TASK_INTERRUPTIBLE);
261 			/* Recheck to avoid lost wake-up */
262 			if (__ptr_ring_empty(rcpu->queue)) {
263 				schedule();
264 				sched = 1;
265 			} else {
266 				__set_current_state(TASK_RUNNING);
267 			}
268 		} else {
269 			sched = cond_resched();
270 		}
271 
272 		/* Process packets in rcpu->queue */
273 		local_bh_disable();
274 		/*
275 		 * The bpf_cpu_map_entry is single consumer, with this
276 		 * kthread CPU pinned. Lockless access to ptr_ring
277 		 * consume side valid as no-resize allowed of queue.
278 		 */
279 		while ((xdpf = __ptr_ring_consume(rcpu->queue))) {
280 			struct sk_buff *skb;
281 			int ret;
282 
283 			skb = cpu_map_build_skb(rcpu, xdpf);
284 			if (!skb) {
285 				xdp_return_frame(xdpf);
286 				continue;
287 			}
288 
289 			/* Inject into network stack */
290 			ret = netif_receive_skb_core(skb);
291 			if (ret == NET_RX_DROP)
292 				drops++;
293 
294 			/* Limit BH-disable period */
295 			if (++processed == 8)
296 				break;
297 		}
298 		/* Feedback loop via tracepoint */
299 		trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
300 
301 		local_bh_enable(); /* resched point, may call do_softirq() */
302 	}
303 	__set_current_state(TASK_RUNNING);
304 
305 	put_cpu_map_entry(rcpu);
306 	return 0;
307 }
308 
309 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
310 						       int map_id)
311 {
312 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
313 	struct bpf_cpu_map_entry *rcpu;
314 	int numa, err;
315 
316 	/* Have map->numa_node, but choose node of redirect target CPU */
317 	numa = cpu_to_node(cpu);
318 
319 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
320 	if (!rcpu)
321 		return NULL;
322 
323 	/* Alloc percpu bulkq */
324 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
325 					 sizeof(void *), gfp);
326 	if (!rcpu->bulkq)
327 		goto free_rcu;
328 
329 	/* Alloc queue */
330 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
331 	if (!rcpu->queue)
332 		goto free_bulkq;
333 
334 	err = ptr_ring_init(rcpu->queue, qsize, gfp);
335 	if (err)
336 		goto free_queue;
337 
338 	rcpu->cpu    = cpu;
339 	rcpu->map_id = map_id;
340 	rcpu->qsize  = qsize;
341 
342 	/* Setup kthread */
343 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
344 					       "cpumap/%d/map:%d", cpu, map_id);
345 	if (IS_ERR(rcpu->kthread))
346 		goto free_ptr_ring;
347 
348 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
349 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
350 
351 	/* Make sure kthread runs on a single CPU */
352 	kthread_bind(rcpu->kthread, cpu);
353 	wake_up_process(rcpu->kthread);
354 
355 	return rcpu;
356 
357 free_ptr_ring:
358 	ptr_ring_cleanup(rcpu->queue, NULL);
359 free_queue:
360 	kfree(rcpu->queue);
361 free_bulkq:
362 	free_percpu(rcpu->bulkq);
363 free_rcu:
364 	kfree(rcpu);
365 	return NULL;
366 }
367 
368 static void __cpu_map_entry_free(struct rcu_head *rcu)
369 {
370 	struct bpf_cpu_map_entry *rcpu;
371 	int cpu;
372 
373 	/* This cpu_map_entry have been disconnected from map and one
374 	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
375 	 * new packets and cannot change/set flush_needed that can
376 	 * find this entry.
377 	 */
378 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
379 
380 	/* Flush remaining packets in percpu bulkq */
381 	for_each_online_cpu(cpu) {
382 		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
383 
384 		/* No concurrent bq_enqueue can run at this point */
385 		bq_flush_to_queue(rcpu, bq, false);
386 	}
387 	free_percpu(rcpu->bulkq);
388 	/* Cannot kthread_stop() here, last put free rcpu resources */
389 	put_cpu_map_entry(rcpu);
390 }
391 
392 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
393  * ensure any driver rcu critical sections have completed, but this
394  * does not guarantee a flush has happened yet. Because driver side
395  * rcu_read_lock/unlock only protects the running XDP program.  The
396  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
397  * pending flush op doesn't fail.
398  *
399  * The bpf_cpu_map_entry is still used by the kthread, and there can
400  * still be pending packets (in queue and percpu bulkq).  A refcnt
401  * makes sure to last user (kthread_stop vs. call_rcu) free memory
402  * resources.
403  *
404  * The rcu callback __cpu_map_entry_free flush remaining packets in
405  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
406  * preemption, cannot call kthread_stop() to make sure queue is empty.
407  * Instead a work_queue is started for stopping kthread,
408  * cpu_map_kthread_stop, which waits for an RCU graze period before
409  * stopping kthread, emptying the queue.
410  */
411 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
412 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
413 {
414 	struct bpf_cpu_map_entry *old_rcpu;
415 
416 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
417 	if (old_rcpu) {
418 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
419 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
420 		schedule_work(&old_rcpu->kthread_stop_wq);
421 	}
422 }
423 
424 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
425 {
426 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
427 	u32 key_cpu = *(u32 *)key;
428 
429 	if (key_cpu >= map->max_entries)
430 		return -EINVAL;
431 
432 	/* notice caller map_delete_elem() use preempt_disable() */
433 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
434 	return 0;
435 }
436 
437 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
438 			       u64 map_flags)
439 {
440 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
441 	struct bpf_cpu_map_entry *rcpu;
442 
443 	/* Array index key correspond to CPU number */
444 	u32 key_cpu = *(u32 *)key;
445 	/* Value is the queue size */
446 	u32 qsize = *(u32 *)value;
447 
448 	if (unlikely(map_flags > BPF_EXIST))
449 		return -EINVAL;
450 	if (unlikely(key_cpu >= cmap->map.max_entries))
451 		return -E2BIG;
452 	if (unlikely(map_flags == BPF_NOEXIST))
453 		return -EEXIST;
454 	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
455 		return -EOVERFLOW;
456 
457 	/* Make sure CPU is a valid possible cpu */
458 	if (!cpu_possible(key_cpu))
459 		return -ENODEV;
460 
461 	if (qsize == 0) {
462 		rcpu = NULL; /* Same as deleting */
463 	} else {
464 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
465 		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
466 		if (!rcpu)
467 			return -ENOMEM;
468 	}
469 	rcu_read_lock();
470 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
471 	rcu_read_unlock();
472 	return 0;
473 }
474 
475 static void cpu_map_free(struct bpf_map *map)
476 {
477 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
478 	int cpu;
479 	u32 i;
480 
481 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
482 	 * so the bpf programs (can be more than one that used this map) were
483 	 * disconnected from events. Wait for outstanding critical sections in
484 	 * these programs to complete. The rcu critical section only guarantees
485 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
486 	 * It does __not__ ensure pending flush operations (if any) are
487 	 * complete.
488 	 */
489 
490 	bpf_clear_redirect_map(map);
491 	synchronize_rcu();
492 
493 	/* To ensure all pending flush operations have completed wait for flush
494 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
495 	 * Because the above synchronize_rcu() ensures the map is disconnected
496 	 * from the program we can assume no new bits will be set.
497 	 */
498 	for_each_online_cpu(cpu) {
499 		unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
500 
501 		while (!bitmap_empty(bitmap, cmap->map.max_entries))
502 			cond_resched();
503 	}
504 
505 	/* For cpu_map the remote CPUs can still be using the entries
506 	 * (struct bpf_cpu_map_entry).
507 	 */
508 	for (i = 0; i < cmap->map.max_entries; i++) {
509 		struct bpf_cpu_map_entry *rcpu;
510 
511 		rcpu = READ_ONCE(cmap->cpu_map[i]);
512 		if (!rcpu)
513 			continue;
514 
515 		/* bq flush and cleanup happens after RCU graze-period */
516 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
517 	}
518 	free_percpu(cmap->flush_needed);
519 	bpf_map_area_free(cmap->cpu_map);
520 	kfree(cmap);
521 }
522 
523 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
524 {
525 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
526 	struct bpf_cpu_map_entry *rcpu;
527 
528 	if (key >= map->max_entries)
529 		return NULL;
530 
531 	rcpu = READ_ONCE(cmap->cpu_map[key]);
532 	return rcpu;
533 }
534 
535 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
536 {
537 	struct bpf_cpu_map_entry *rcpu =
538 		__cpu_map_lookup_elem(map, *(u32 *)key);
539 
540 	return rcpu ? &rcpu->qsize : NULL;
541 }
542 
543 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
544 {
545 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
546 	u32 index = key ? *(u32 *)key : U32_MAX;
547 	u32 *next = next_key;
548 
549 	if (index >= cmap->map.max_entries) {
550 		*next = 0;
551 		return 0;
552 	}
553 
554 	if (index == cmap->map.max_entries - 1)
555 		return -ENOENT;
556 	*next = index + 1;
557 	return 0;
558 }
559 
560 const struct bpf_map_ops cpu_map_ops = {
561 	.map_alloc		= cpu_map_alloc,
562 	.map_free		= cpu_map_free,
563 	.map_delete_elem	= cpu_map_delete_elem,
564 	.map_update_elem	= cpu_map_update_elem,
565 	.map_lookup_elem	= cpu_map_lookup_elem,
566 	.map_get_next_key	= cpu_map_get_next_key,
567 	.map_check_btf		= map_check_no_btf,
568 };
569 
570 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
571 			     struct xdp_bulk_queue *bq, bool in_napi_ctx)
572 {
573 	unsigned int processed = 0, drops = 0;
574 	const int to_cpu = rcpu->cpu;
575 	struct ptr_ring *q;
576 	int i;
577 
578 	if (unlikely(!bq->count))
579 		return 0;
580 
581 	q = rcpu->queue;
582 	spin_lock(&q->producer_lock);
583 
584 	for (i = 0; i < bq->count; i++) {
585 		struct xdp_frame *xdpf = bq->q[i];
586 		int err;
587 
588 		err = __ptr_ring_produce(q, xdpf);
589 		if (err) {
590 			drops++;
591 			if (likely(in_napi_ctx))
592 				xdp_return_frame_rx_napi(xdpf);
593 			else
594 				xdp_return_frame(xdpf);
595 		}
596 		processed++;
597 	}
598 	bq->count = 0;
599 	spin_unlock(&q->producer_lock);
600 
601 	/* Feedback loop via tracepoints */
602 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
603 	return 0;
604 }
605 
606 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
607  * Thus, safe percpu variable access.
608  */
609 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
610 {
611 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
612 
613 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
614 		bq_flush_to_queue(rcpu, bq, true);
615 
616 	/* Notice, xdp_buff/page MUST be queued here, long enough for
617 	 * driver to code invoking us to finished, due to driver
618 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
619 	 *
620 	 * Thus, incoming xdp_frame is always queued here (else we race
621 	 * with another CPU on page-refcnt and remaining driver code).
622 	 * Queue time is very short, as driver will invoke flush
623 	 * operation, when completing napi->poll call.
624 	 */
625 	bq->q[bq->count++] = xdpf;
626 	return 0;
627 }
628 
629 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
630 		    struct net_device *dev_rx)
631 {
632 	struct xdp_frame *xdpf;
633 
634 	xdpf = convert_to_xdp_frame(xdp);
635 	if (unlikely(!xdpf))
636 		return -EOVERFLOW;
637 
638 	/* Info needed when constructing SKB on remote CPU */
639 	xdpf->dev_rx = dev_rx;
640 
641 	bq_enqueue(rcpu, xdpf);
642 	return 0;
643 }
644 
645 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
646 {
647 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
648 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
649 
650 	__set_bit(bit, bitmap);
651 }
652 
653 void __cpu_map_flush(struct bpf_map *map)
654 {
655 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
656 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
657 	u32 bit;
658 
659 	/* The napi->poll softirq makes sure __cpu_map_insert_ctx()
660 	 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
661 	 * bitmap indicate which percpu bulkq have packets.
662 	 */
663 	for_each_set_bit(bit, bitmap, map->max_entries) {
664 		struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
665 		struct xdp_bulk_queue *bq;
666 
667 		/* This is possible if entry is removed by user space
668 		 * between xdp redirect and flush op.
669 		 */
670 		if (unlikely(!rcpu))
671 			continue;
672 
673 		__clear_bit(bit, bitmap);
674 
675 		/* Flush all frames in bulkq to real queue */
676 		bq = this_cpu_ptr(rcpu->bulkq);
677 		bq_flush_to_queue(rcpu, bq, true);
678 
679 		/* If already running, costs spin_lock_irqsave + smb_mb */
680 		wake_up_process(rcpu->kthread);
681 	}
682 }
683