1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bitops.h> 20 #include <linux/bpf.h> 21 #include <linux/filter.h> 22 #include <linux/ptr_ring.h> 23 #include <net/xdp.h> 24 25 #include <linux/sched.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/capability.h> 29 #include <trace/events/xdp.h> 30 #include <linux/btf_ids.h> 31 32 #include <linux/netdevice.h> /* netif_receive_skb_list */ 33 #include <linux/etherdevice.h> /* eth_type_trans */ 34 35 /* General idea: XDP packets getting XDP redirected to another CPU, 36 * will maximum be stored/queued for one driver ->poll() call. It is 37 * guaranteed that queueing the frame and the flush operation happen on 38 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 39 * which queue in bpf_cpu_map_entry contains packets. 40 */ 41 42 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 43 struct bpf_cpu_map_entry; 44 struct bpf_cpu_map; 45 46 struct xdp_bulk_queue { 47 void *q[CPU_MAP_BULK_SIZE]; 48 struct list_head flush_node; 49 struct bpf_cpu_map_entry *obj; 50 unsigned int count; 51 }; 52 53 /* Struct for every remote "destination" CPU in map */ 54 struct bpf_cpu_map_entry { 55 u32 cpu; /* kthread CPU and map index */ 56 int map_id; /* Back reference to map */ 57 58 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 59 struct xdp_bulk_queue __percpu *bulkq; 60 61 struct bpf_cpu_map *cmap; 62 63 /* Queue with potential multi-producers, and single-consumer kthread */ 64 struct ptr_ring *queue; 65 struct task_struct *kthread; 66 67 struct bpf_cpumap_val value; 68 struct bpf_prog *prog; 69 70 atomic_t refcnt; /* Control when this struct can be free'ed */ 71 struct rcu_head rcu; 72 73 struct work_struct kthread_stop_wq; 74 }; 75 76 struct bpf_cpu_map { 77 struct bpf_map map; 78 /* Below members specific for map type */ 79 struct bpf_cpu_map_entry __rcu **cpu_map; 80 }; 81 82 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 83 84 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 85 { 86 u32 value_size = attr->value_size; 87 struct bpf_cpu_map *cmap; 88 int err = -ENOMEM; 89 90 if (!bpf_capable()) 91 return ERR_PTR(-EPERM); 92 93 /* check sanity of attributes */ 94 if (attr->max_entries == 0 || attr->key_size != 4 || 95 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 96 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 97 attr->map_flags & ~BPF_F_NUMA_NODE) 98 return ERR_PTR(-EINVAL); 99 100 cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT); 101 if (!cmap) 102 return ERR_PTR(-ENOMEM); 103 104 bpf_map_init_from_attr(&cmap->map, attr); 105 106 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 107 if (cmap->map.max_entries > NR_CPUS) { 108 err = -E2BIG; 109 goto free_cmap; 110 } 111 112 /* Alloc array for possible remote "destination" CPUs */ 113 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 114 sizeof(struct bpf_cpu_map_entry *), 115 cmap->map.numa_node); 116 if (!cmap->cpu_map) 117 goto free_cmap; 118 119 return &cmap->map; 120 free_cmap: 121 kfree(cmap); 122 return ERR_PTR(err); 123 } 124 125 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 126 { 127 atomic_inc(&rcpu->refcnt); 128 } 129 130 /* called from workqueue, to workaround syscall using preempt_disable */ 131 static void cpu_map_kthread_stop(struct work_struct *work) 132 { 133 struct bpf_cpu_map_entry *rcpu; 134 135 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 136 137 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 138 * as it waits until all in-flight call_rcu() callbacks complete. 139 */ 140 rcu_barrier(); 141 142 /* kthread_stop will wake_up_process and wait for it to complete */ 143 kthread_stop(rcpu->kthread); 144 } 145 146 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 147 { 148 /* The tear-down procedure should have made sure that queue is 149 * empty. See __cpu_map_entry_replace() and work-queue 150 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 151 * gracefully and warn once. 152 */ 153 struct xdp_frame *xdpf; 154 155 while ((xdpf = ptr_ring_consume(ring))) 156 if (WARN_ON_ONCE(xdpf)) 157 xdp_return_frame(xdpf); 158 } 159 160 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 161 { 162 if (atomic_dec_and_test(&rcpu->refcnt)) { 163 if (rcpu->prog) 164 bpf_prog_put(rcpu->prog); 165 /* The queue should be empty at this point */ 166 __cpu_map_ring_cleanup(rcpu->queue); 167 ptr_ring_cleanup(rcpu->queue, NULL); 168 kfree(rcpu->queue); 169 kfree(rcpu); 170 } 171 } 172 173 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, 174 struct list_head *listp, 175 struct xdp_cpumap_stats *stats) 176 { 177 struct sk_buff *skb, *tmp; 178 struct xdp_buff xdp; 179 u32 act; 180 int err; 181 182 list_for_each_entry_safe(skb, tmp, listp, list) { 183 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); 184 switch (act) { 185 case XDP_PASS: 186 break; 187 case XDP_REDIRECT: 188 skb_list_del_init(skb); 189 err = xdp_do_generic_redirect(skb->dev, skb, &xdp, 190 rcpu->prog); 191 if (unlikely(err)) { 192 kfree_skb(skb); 193 stats->drop++; 194 } else { 195 stats->redirect++; 196 } 197 return; 198 default: 199 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 200 fallthrough; 201 case XDP_ABORTED: 202 trace_xdp_exception(skb->dev, rcpu->prog, act); 203 fallthrough; 204 case XDP_DROP: 205 skb_list_del_init(skb); 206 kfree_skb(skb); 207 stats->drop++; 208 return; 209 } 210 } 211 } 212 213 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 214 void **frames, int n, 215 struct xdp_cpumap_stats *stats) 216 { 217 struct xdp_rxq_info rxq; 218 struct xdp_buff xdp; 219 int i, nframes = 0; 220 221 xdp_set_return_frame_no_direct(); 222 xdp.rxq = &rxq; 223 224 for (i = 0; i < n; i++) { 225 struct xdp_frame *xdpf = frames[i]; 226 u32 act; 227 int err; 228 229 rxq.dev = xdpf->dev_rx; 230 rxq.mem = xdpf->mem; 231 /* TODO: report queue_index to xdp_rxq_info */ 232 233 xdp_convert_frame_to_buff(xdpf, &xdp); 234 235 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 236 switch (act) { 237 case XDP_PASS: 238 err = xdp_update_frame_from_buff(&xdp, xdpf); 239 if (err < 0) { 240 xdp_return_frame(xdpf); 241 stats->drop++; 242 } else { 243 frames[nframes++] = xdpf; 244 stats->pass++; 245 } 246 break; 247 case XDP_REDIRECT: 248 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 249 rcpu->prog); 250 if (unlikely(err)) { 251 xdp_return_frame(xdpf); 252 stats->drop++; 253 } else { 254 stats->redirect++; 255 } 256 break; 257 default: 258 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 259 fallthrough; 260 case XDP_DROP: 261 xdp_return_frame(xdpf); 262 stats->drop++; 263 break; 264 } 265 } 266 267 xdp_clear_return_frame_no_direct(); 268 269 return nframes; 270 } 271 272 #define CPUMAP_BATCH 8 273 274 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, 275 int xdp_n, struct xdp_cpumap_stats *stats, 276 struct list_head *list) 277 { 278 int nframes; 279 280 if (!rcpu->prog) 281 return xdp_n; 282 283 rcu_read_lock_bh(); 284 285 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats); 286 287 if (stats->redirect) 288 xdp_do_flush(); 289 290 if (unlikely(!list_empty(list))) 291 cpu_map_bpf_prog_run_skb(rcpu, list, stats); 292 293 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 294 295 return nframes; 296 } 297 298 299 static int cpu_map_kthread_run(void *data) 300 { 301 struct bpf_cpu_map_entry *rcpu = data; 302 303 set_current_state(TASK_INTERRUPTIBLE); 304 305 /* When kthread gives stop order, then rcpu have been disconnected 306 * from map, thus no new packets can enter. Remaining in-flight 307 * per CPU stored packets are flushed to this queue. Wait honoring 308 * kthread_stop signal until queue is empty. 309 */ 310 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 311 struct xdp_cpumap_stats stats = {}; /* zero stats */ 312 unsigned int kmem_alloc_drops = 0, sched = 0; 313 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 314 int i, n, m, nframes, xdp_n; 315 void *frames[CPUMAP_BATCH]; 316 void *skbs[CPUMAP_BATCH]; 317 LIST_HEAD(list); 318 319 /* Release CPU reschedule checks */ 320 if (__ptr_ring_empty(rcpu->queue)) { 321 set_current_state(TASK_INTERRUPTIBLE); 322 /* Recheck to avoid lost wake-up */ 323 if (__ptr_ring_empty(rcpu->queue)) { 324 schedule(); 325 sched = 1; 326 } else { 327 __set_current_state(TASK_RUNNING); 328 } 329 } else { 330 sched = cond_resched(); 331 } 332 333 /* 334 * The bpf_cpu_map_entry is single consumer, with this 335 * kthread CPU pinned. Lockless access to ptr_ring 336 * consume side valid as no-resize allowed of queue. 337 */ 338 n = __ptr_ring_consume_batched(rcpu->queue, frames, 339 CPUMAP_BATCH); 340 for (i = 0, xdp_n = 0; i < n; i++) { 341 void *f = frames[i]; 342 struct page *page; 343 344 if (unlikely(__ptr_test_bit(0, &f))) { 345 struct sk_buff *skb = f; 346 347 __ptr_clear_bit(0, &skb); 348 list_add_tail(&skb->list, &list); 349 continue; 350 } 351 352 frames[xdp_n++] = f; 353 page = virt_to_page(f); 354 355 /* Bring struct page memory area to curr CPU. Read by 356 * build_skb_around via page_is_pfmemalloc(), and when 357 * freed written by page_frag_free call. 358 */ 359 prefetchw(page); 360 } 361 362 /* Support running another XDP prog on this CPU */ 363 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list); 364 if (nframes) { 365 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 366 if (unlikely(m == 0)) { 367 for (i = 0; i < nframes; i++) 368 skbs[i] = NULL; /* effect: xdp_return_frame */ 369 kmem_alloc_drops += nframes; 370 } 371 } 372 373 local_bh_disable(); 374 for (i = 0; i < nframes; i++) { 375 struct xdp_frame *xdpf = frames[i]; 376 struct sk_buff *skb = skbs[i]; 377 378 skb = __xdp_build_skb_from_frame(xdpf, skb, 379 xdpf->dev_rx); 380 if (!skb) { 381 xdp_return_frame(xdpf); 382 continue; 383 } 384 385 list_add_tail(&skb->list, &list); 386 } 387 netif_receive_skb_list(&list); 388 389 /* Feedback loop via tracepoint */ 390 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 391 sched, &stats); 392 393 local_bh_enable(); /* resched point, may call do_softirq() */ 394 } 395 __set_current_state(TASK_RUNNING); 396 397 put_cpu_map_entry(rcpu); 398 return 0; 399 } 400 401 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, 402 struct bpf_map *map, int fd) 403 { 404 struct bpf_prog *prog; 405 406 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 407 if (IS_ERR(prog)) 408 return PTR_ERR(prog); 409 410 if (prog->expected_attach_type != BPF_XDP_CPUMAP || 411 !bpf_prog_map_compatible(map, prog)) { 412 bpf_prog_put(prog); 413 return -EINVAL; 414 } 415 416 rcpu->value.bpf_prog.id = prog->aux->id; 417 rcpu->prog = prog; 418 419 return 0; 420 } 421 422 static struct bpf_cpu_map_entry * 423 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 424 u32 cpu) 425 { 426 int numa, err, i, fd = value->bpf_prog.fd; 427 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 428 struct bpf_cpu_map_entry *rcpu; 429 struct xdp_bulk_queue *bq; 430 431 /* Have map->numa_node, but choose node of redirect target CPU */ 432 numa = cpu_to_node(cpu); 433 434 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 435 if (!rcpu) 436 return NULL; 437 438 /* Alloc percpu bulkq */ 439 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 440 sizeof(void *), gfp); 441 if (!rcpu->bulkq) 442 goto free_rcu; 443 444 for_each_possible_cpu(i) { 445 bq = per_cpu_ptr(rcpu->bulkq, i); 446 bq->obj = rcpu; 447 } 448 449 /* Alloc queue */ 450 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 451 numa); 452 if (!rcpu->queue) 453 goto free_bulkq; 454 455 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 456 if (err) 457 goto free_queue; 458 459 rcpu->cpu = cpu; 460 rcpu->map_id = map->id; 461 rcpu->value.qsize = value->qsize; 462 463 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd)) 464 goto free_ptr_ring; 465 466 /* Setup kthread */ 467 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 468 "cpumap/%d/map:%d", cpu, 469 map->id); 470 if (IS_ERR(rcpu->kthread)) 471 goto free_prog; 472 473 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 474 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 475 476 /* Make sure kthread runs on a single CPU */ 477 kthread_bind(rcpu->kthread, cpu); 478 wake_up_process(rcpu->kthread); 479 480 return rcpu; 481 482 free_prog: 483 if (rcpu->prog) 484 bpf_prog_put(rcpu->prog); 485 free_ptr_ring: 486 ptr_ring_cleanup(rcpu->queue, NULL); 487 free_queue: 488 kfree(rcpu->queue); 489 free_bulkq: 490 free_percpu(rcpu->bulkq); 491 free_rcu: 492 kfree(rcpu); 493 return NULL; 494 } 495 496 static void __cpu_map_entry_free(struct rcu_head *rcu) 497 { 498 struct bpf_cpu_map_entry *rcpu; 499 500 /* This cpu_map_entry have been disconnected from map and one 501 * RCU grace-period have elapsed. Thus, XDP cannot queue any 502 * new packets and cannot change/set flush_needed that can 503 * find this entry. 504 */ 505 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 506 507 free_percpu(rcpu->bulkq); 508 /* Cannot kthread_stop() here, last put free rcpu resources */ 509 put_cpu_map_entry(rcpu); 510 } 511 512 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 513 * ensure any driver rcu critical sections have completed, but this 514 * does not guarantee a flush has happened yet. Because driver side 515 * rcu_read_lock/unlock only protects the running XDP program. The 516 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 517 * pending flush op doesn't fail. 518 * 519 * The bpf_cpu_map_entry is still used by the kthread, and there can 520 * still be pending packets (in queue and percpu bulkq). A refcnt 521 * makes sure to last user (kthread_stop vs. call_rcu) free memory 522 * resources. 523 * 524 * The rcu callback __cpu_map_entry_free flush remaining packets in 525 * percpu bulkq to queue. Due to caller map_delete_elem() disable 526 * preemption, cannot call kthread_stop() to make sure queue is empty. 527 * Instead a work_queue is started for stopping kthread, 528 * cpu_map_kthread_stop, which waits for an RCU grace period before 529 * stopping kthread, emptying the queue. 530 */ 531 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 532 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 533 { 534 struct bpf_cpu_map_entry *old_rcpu; 535 536 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 537 if (old_rcpu) { 538 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 539 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 540 schedule_work(&old_rcpu->kthread_stop_wq); 541 } 542 } 543 544 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 545 { 546 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 547 u32 key_cpu = *(u32 *)key; 548 549 if (key_cpu >= map->max_entries) 550 return -EINVAL; 551 552 /* notice caller map_delete_elem() use preempt_disable() */ 553 __cpu_map_entry_replace(cmap, key_cpu, NULL); 554 return 0; 555 } 556 557 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 558 u64 map_flags) 559 { 560 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 561 struct bpf_cpumap_val cpumap_value = {}; 562 struct bpf_cpu_map_entry *rcpu; 563 /* Array index key correspond to CPU number */ 564 u32 key_cpu = *(u32 *)key; 565 566 memcpy(&cpumap_value, value, map->value_size); 567 568 if (unlikely(map_flags > BPF_EXIST)) 569 return -EINVAL; 570 if (unlikely(key_cpu >= cmap->map.max_entries)) 571 return -E2BIG; 572 if (unlikely(map_flags == BPF_NOEXIST)) 573 return -EEXIST; 574 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 575 return -EOVERFLOW; 576 577 /* Make sure CPU is a valid possible cpu */ 578 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 579 return -ENODEV; 580 581 if (cpumap_value.qsize == 0) { 582 rcpu = NULL; /* Same as deleting */ 583 } else { 584 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 585 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 586 if (!rcpu) 587 return -ENOMEM; 588 rcpu->cmap = cmap; 589 } 590 rcu_read_lock(); 591 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 592 rcu_read_unlock(); 593 return 0; 594 } 595 596 static void cpu_map_free(struct bpf_map *map) 597 { 598 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 599 u32 i; 600 601 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 602 * so the bpf programs (can be more than one that used this map) were 603 * disconnected from events. Wait for outstanding critical sections in 604 * these programs to complete. The rcu critical section only guarantees 605 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 606 * It does __not__ ensure pending flush operations (if any) are 607 * complete. 608 */ 609 610 synchronize_rcu(); 611 612 /* For cpu_map the remote CPUs can still be using the entries 613 * (struct bpf_cpu_map_entry). 614 */ 615 for (i = 0; i < cmap->map.max_entries; i++) { 616 struct bpf_cpu_map_entry *rcpu; 617 618 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 619 if (!rcpu) 620 continue; 621 622 /* bq flush and cleanup happens after RCU grace-period */ 623 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 624 } 625 bpf_map_area_free(cmap->cpu_map); 626 kfree(cmap); 627 } 628 629 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 630 * by local_bh_disable() (from XDP calls inside NAPI). The 631 * rcu_read_lock_bh_held() below makes lockdep accept both. 632 */ 633 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 634 { 635 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 636 struct bpf_cpu_map_entry *rcpu; 637 638 if (key >= map->max_entries) 639 return NULL; 640 641 rcpu = rcu_dereference_check(cmap->cpu_map[key], 642 rcu_read_lock_bh_held()); 643 return rcpu; 644 } 645 646 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 647 { 648 struct bpf_cpu_map_entry *rcpu = 649 __cpu_map_lookup_elem(map, *(u32 *)key); 650 651 return rcpu ? &rcpu->value : NULL; 652 } 653 654 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 655 { 656 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 657 u32 index = key ? *(u32 *)key : U32_MAX; 658 u32 *next = next_key; 659 660 if (index >= cmap->map.max_entries) { 661 *next = 0; 662 return 0; 663 } 664 665 if (index == cmap->map.max_entries - 1) 666 return -ENOENT; 667 *next = index + 1; 668 return 0; 669 } 670 671 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags) 672 { 673 return __bpf_xdp_redirect_map(map, ifindex, flags, 0, 674 __cpu_map_lookup_elem); 675 } 676 677 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) 678 const struct bpf_map_ops cpu_map_ops = { 679 .map_meta_equal = bpf_map_meta_equal, 680 .map_alloc = cpu_map_alloc, 681 .map_free = cpu_map_free, 682 .map_delete_elem = cpu_map_delete_elem, 683 .map_update_elem = cpu_map_update_elem, 684 .map_lookup_elem = cpu_map_lookup_elem, 685 .map_get_next_key = cpu_map_get_next_key, 686 .map_check_btf = map_check_no_btf, 687 .map_btf_id = &cpu_map_btf_ids[0], 688 .map_redirect = cpu_map_redirect, 689 }; 690 691 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 692 { 693 struct bpf_cpu_map_entry *rcpu = bq->obj; 694 unsigned int processed = 0, drops = 0; 695 const int to_cpu = rcpu->cpu; 696 struct ptr_ring *q; 697 int i; 698 699 if (unlikely(!bq->count)) 700 return; 701 702 q = rcpu->queue; 703 spin_lock(&q->producer_lock); 704 705 for (i = 0; i < bq->count; i++) { 706 struct xdp_frame *xdpf = bq->q[i]; 707 int err; 708 709 err = __ptr_ring_produce(q, xdpf); 710 if (err) { 711 drops++; 712 xdp_return_frame_rx_napi(xdpf); 713 } 714 processed++; 715 } 716 bq->count = 0; 717 spin_unlock(&q->producer_lock); 718 719 __list_del_clearprev(&bq->flush_node); 720 721 /* Feedback loop via tracepoints */ 722 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 723 } 724 725 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 726 * Thus, safe percpu variable access. 727 */ 728 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 729 { 730 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 731 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 732 733 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 734 bq_flush_to_queue(bq); 735 736 /* Notice, xdp_buff/page MUST be queued here, long enough for 737 * driver to code invoking us to finished, due to driver 738 * (e.g. ixgbe) recycle tricks based on page-refcnt. 739 * 740 * Thus, incoming xdp_frame is always queued here (else we race 741 * with another CPU on page-refcnt and remaining driver code). 742 * Queue time is very short, as driver will invoke flush 743 * operation, when completing napi->poll call. 744 */ 745 bq->q[bq->count++] = xdpf; 746 747 if (!bq->flush_node.prev) 748 list_add(&bq->flush_node, flush_list); 749 } 750 751 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 752 struct net_device *dev_rx) 753 { 754 /* Info needed when constructing SKB on remote CPU */ 755 xdpf->dev_rx = dev_rx; 756 757 bq_enqueue(rcpu, xdpf); 758 return 0; 759 } 760 761 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 762 struct sk_buff *skb) 763 { 764 int ret; 765 766 __skb_pull(skb, skb->mac_len); 767 skb_set_redirected(skb, false); 768 __ptr_set_bit(0, &skb); 769 770 ret = ptr_ring_produce(rcpu->queue, skb); 771 if (ret < 0) 772 goto trace; 773 774 wake_up_process(rcpu->kthread); 775 trace: 776 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); 777 return ret; 778 } 779 780 void __cpu_map_flush(void) 781 { 782 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 783 struct xdp_bulk_queue *bq, *tmp; 784 785 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 786 bq_flush_to_queue(bq); 787 788 /* If already running, costs spin_lock_irqsave + smb_mb */ 789 wake_up_process(bq->obj->kthread); 790 } 791 } 792 793 static int __init cpu_map_init(void) 794 { 795 int cpu; 796 797 for_each_possible_cpu(cpu) 798 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 799 return 0; 800 } 801 802 subsys_initcall(cpu_map_init); 803