1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that queueing the frame and the flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct bpf_cpu_map_entry; 42 struct bpf_cpu_map; 43 44 struct xdp_bulk_queue { 45 void *q[CPU_MAP_BULK_SIZE]; 46 struct list_head flush_node; 47 struct bpf_cpu_map_entry *obj; 48 unsigned int count; 49 }; 50 51 /* Struct for every remote "destination" CPU in map */ 52 struct bpf_cpu_map_entry { 53 u32 cpu; /* kthread CPU and map index */ 54 int map_id; /* Back reference to map */ 55 u32 qsize; /* Queue size placeholder for map lookup */ 56 57 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 58 struct xdp_bulk_queue __percpu *bulkq; 59 60 struct bpf_cpu_map *cmap; 61 62 /* Queue with potential multi-producers, and single-consumer kthread */ 63 struct ptr_ring *queue; 64 struct task_struct *kthread; 65 struct work_struct kthread_stop_wq; 66 67 atomic_t refcnt; /* Control when this struct can be free'ed */ 68 struct rcu_head rcu; 69 }; 70 71 struct bpf_cpu_map { 72 struct bpf_map map; 73 /* Below members specific for map type */ 74 struct bpf_cpu_map_entry **cpu_map; 75 }; 76 77 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 78 79 static int bq_flush_to_queue(struct xdp_bulk_queue *bq); 80 81 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 82 { 83 struct bpf_cpu_map *cmap; 84 int err = -ENOMEM; 85 u64 cost; 86 int ret; 87 88 if (!capable(CAP_SYS_ADMIN)) 89 return ERR_PTR(-EPERM); 90 91 /* check sanity of attributes */ 92 if (attr->max_entries == 0 || attr->key_size != 4 || 93 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 94 return ERR_PTR(-EINVAL); 95 96 cmap = kzalloc(sizeof(*cmap), GFP_USER); 97 if (!cmap) 98 return ERR_PTR(-ENOMEM); 99 100 bpf_map_init_from_attr(&cmap->map, attr); 101 102 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 103 if (cmap->map.max_entries > NR_CPUS) { 104 err = -E2BIG; 105 goto free_cmap; 106 } 107 108 /* make sure page count doesn't overflow */ 109 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 110 111 /* Notice returns -EPERM on if map size is larger than memlock limit */ 112 ret = bpf_map_charge_init(&cmap->map.memory, cost); 113 if (ret) { 114 err = ret; 115 goto free_cmap; 116 } 117 118 /* Alloc array for possible remote "destination" CPUs */ 119 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 120 sizeof(struct bpf_cpu_map_entry *), 121 cmap->map.numa_node); 122 if (!cmap->cpu_map) 123 goto free_charge; 124 125 return &cmap->map; 126 free_charge: 127 bpf_map_charge_finish(&cmap->map.memory); 128 free_cmap: 129 kfree(cmap); 130 return ERR_PTR(err); 131 } 132 133 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 134 { 135 atomic_inc(&rcpu->refcnt); 136 } 137 138 /* called from workqueue, to workaround syscall using preempt_disable */ 139 static void cpu_map_kthread_stop(struct work_struct *work) 140 { 141 struct bpf_cpu_map_entry *rcpu; 142 143 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 144 145 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 146 * as it waits until all in-flight call_rcu() callbacks complete. 147 */ 148 rcu_barrier(); 149 150 /* kthread_stop will wake_up_process and wait for it to complete */ 151 kthread_stop(rcpu->kthread); 152 } 153 154 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 155 struct xdp_frame *xdpf, 156 struct sk_buff *skb) 157 { 158 unsigned int hard_start_headroom; 159 unsigned int frame_size; 160 void *pkt_data_start; 161 162 /* Part of headroom was reserved to xdpf */ 163 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 164 165 /* build_skb need to place skb_shared_info after SKB end, and 166 * also want to know the memory "truesize". Thus, need to 167 * know the memory frame size backing xdp_buff. 168 * 169 * XDP was designed to have PAGE_SIZE frames, but this 170 * assumption is not longer true with ixgbe and i40e. It 171 * would be preferred to set frame_size to 2048 or 4096 172 * depending on the driver. 173 * frame_size = 2048; 174 * frame_len = frame_size - sizeof(*xdp_frame); 175 * 176 * Instead, with info avail, skb_shared_info in placed after 177 * packet len. This, unfortunately fakes the truesize. 178 * Another disadvantage of this approach, the skb_shared_info 179 * is not at a fixed memory location, with mixed length 180 * packets, which is bad for cache-line hotness. 181 */ 182 frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) + 183 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 184 185 pkt_data_start = xdpf->data - hard_start_headroom; 186 skb = build_skb_around(skb, pkt_data_start, frame_size); 187 if (unlikely(!skb)) 188 return NULL; 189 190 skb_reserve(skb, hard_start_headroom); 191 __skb_put(skb, xdpf->len); 192 if (xdpf->metasize) 193 skb_metadata_set(skb, xdpf->metasize); 194 195 /* Essential SKB info: protocol and skb->dev */ 196 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 197 198 /* Optional SKB info, currently missing: 199 * - HW checksum info (skb->ip_summed) 200 * - HW RX hash (skb_set_hash) 201 * - RX ring dev queue index (skb_record_rx_queue) 202 */ 203 204 /* Until page_pool get SKB return path, release DMA here */ 205 xdp_release_frame(xdpf); 206 207 /* Allow SKB to reuse area used by xdp_frame */ 208 xdp_scrub_frame(xdpf); 209 210 return skb; 211 } 212 213 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 214 { 215 /* The tear-down procedure should have made sure that queue is 216 * empty. See __cpu_map_entry_replace() and work-queue 217 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 218 * gracefully and warn once. 219 */ 220 struct xdp_frame *xdpf; 221 222 while ((xdpf = ptr_ring_consume(ring))) 223 if (WARN_ON_ONCE(xdpf)) 224 xdp_return_frame(xdpf); 225 } 226 227 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 228 { 229 if (atomic_dec_and_test(&rcpu->refcnt)) { 230 /* The queue should be empty at this point */ 231 __cpu_map_ring_cleanup(rcpu->queue); 232 ptr_ring_cleanup(rcpu->queue, NULL); 233 kfree(rcpu->queue); 234 kfree(rcpu); 235 } 236 } 237 238 #define CPUMAP_BATCH 8 239 240 static int cpu_map_kthread_run(void *data) 241 { 242 struct bpf_cpu_map_entry *rcpu = data; 243 244 set_current_state(TASK_INTERRUPTIBLE); 245 246 /* When kthread gives stop order, then rcpu have been disconnected 247 * from map, thus no new packets can enter. Remaining in-flight 248 * per CPU stored packets are flushed to this queue. Wait honoring 249 * kthread_stop signal until queue is empty. 250 */ 251 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 252 unsigned int drops = 0, sched = 0; 253 void *frames[CPUMAP_BATCH]; 254 void *skbs[CPUMAP_BATCH]; 255 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 256 int i, n, m; 257 258 /* Release CPU reschedule checks */ 259 if (__ptr_ring_empty(rcpu->queue)) { 260 set_current_state(TASK_INTERRUPTIBLE); 261 /* Recheck to avoid lost wake-up */ 262 if (__ptr_ring_empty(rcpu->queue)) { 263 schedule(); 264 sched = 1; 265 } else { 266 __set_current_state(TASK_RUNNING); 267 } 268 } else { 269 sched = cond_resched(); 270 } 271 272 /* 273 * The bpf_cpu_map_entry is single consumer, with this 274 * kthread CPU pinned. Lockless access to ptr_ring 275 * consume side valid as no-resize allowed of queue. 276 */ 277 n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH); 278 279 for (i = 0; i < n; i++) { 280 void *f = frames[i]; 281 struct page *page = virt_to_page(f); 282 283 /* Bring struct page memory area to curr CPU. Read by 284 * build_skb_around via page_is_pfmemalloc(), and when 285 * freed written by page_frag_free call. 286 */ 287 prefetchw(page); 288 } 289 290 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs); 291 if (unlikely(m == 0)) { 292 for (i = 0; i < n; i++) 293 skbs[i] = NULL; /* effect: xdp_return_frame */ 294 drops = n; 295 } 296 297 local_bh_disable(); 298 for (i = 0; i < n; i++) { 299 struct xdp_frame *xdpf = frames[i]; 300 struct sk_buff *skb = skbs[i]; 301 int ret; 302 303 skb = cpu_map_build_skb(rcpu, xdpf, skb); 304 if (!skb) { 305 xdp_return_frame(xdpf); 306 continue; 307 } 308 309 /* Inject into network stack */ 310 ret = netif_receive_skb_core(skb); 311 if (ret == NET_RX_DROP) 312 drops++; 313 } 314 /* Feedback loop via tracepoint */ 315 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched); 316 317 local_bh_enable(); /* resched point, may call do_softirq() */ 318 } 319 __set_current_state(TASK_RUNNING); 320 321 put_cpu_map_entry(rcpu); 322 return 0; 323 } 324 325 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, 326 int map_id) 327 { 328 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 329 struct bpf_cpu_map_entry *rcpu; 330 struct xdp_bulk_queue *bq; 331 int numa, err, i; 332 333 /* Have map->numa_node, but choose node of redirect target CPU */ 334 numa = cpu_to_node(cpu); 335 336 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 337 if (!rcpu) 338 return NULL; 339 340 /* Alloc percpu bulkq */ 341 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 342 sizeof(void *), gfp); 343 if (!rcpu->bulkq) 344 goto free_rcu; 345 346 for_each_possible_cpu(i) { 347 bq = per_cpu_ptr(rcpu->bulkq, i); 348 bq->obj = rcpu; 349 } 350 351 /* Alloc queue */ 352 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 353 if (!rcpu->queue) 354 goto free_bulkq; 355 356 err = ptr_ring_init(rcpu->queue, qsize, gfp); 357 if (err) 358 goto free_queue; 359 360 rcpu->cpu = cpu; 361 rcpu->map_id = map_id; 362 rcpu->qsize = qsize; 363 364 /* Setup kthread */ 365 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 366 "cpumap/%d/map:%d", cpu, map_id); 367 if (IS_ERR(rcpu->kthread)) 368 goto free_ptr_ring; 369 370 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 371 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 372 373 /* Make sure kthread runs on a single CPU */ 374 kthread_bind(rcpu->kthread, cpu); 375 wake_up_process(rcpu->kthread); 376 377 return rcpu; 378 379 free_ptr_ring: 380 ptr_ring_cleanup(rcpu->queue, NULL); 381 free_queue: 382 kfree(rcpu->queue); 383 free_bulkq: 384 free_percpu(rcpu->bulkq); 385 free_rcu: 386 kfree(rcpu); 387 return NULL; 388 } 389 390 static void __cpu_map_entry_free(struct rcu_head *rcu) 391 { 392 struct bpf_cpu_map_entry *rcpu; 393 394 /* This cpu_map_entry have been disconnected from map and one 395 * RCU grace-period have elapsed. Thus, XDP cannot queue any 396 * new packets and cannot change/set flush_needed that can 397 * find this entry. 398 */ 399 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 400 401 free_percpu(rcpu->bulkq); 402 /* Cannot kthread_stop() here, last put free rcpu resources */ 403 put_cpu_map_entry(rcpu); 404 } 405 406 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 407 * ensure any driver rcu critical sections have completed, but this 408 * does not guarantee a flush has happened yet. Because driver side 409 * rcu_read_lock/unlock only protects the running XDP program. The 410 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 411 * pending flush op doesn't fail. 412 * 413 * The bpf_cpu_map_entry is still used by the kthread, and there can 414 * still be pending packets (in queue and percpu bulkq). A refcnt 415 * makes sure to last user (kthread_stop vs. call_rcu) free memory 416 * resources. 417 * 418 * The rcu callback __cpu_map_entry_free flush remaining packets in 419 * percpu bulkq to queue. Due to caller map_delete_elem() disable 420 * preemption, cannot call kthread_stop() to make sure queue is empty. 421 * Instead a work_queue is started for stopping kthread, 422 * cpu_map_kthread_stop, which waits for an RCU grace period before 423 * stopping kthread, emptying the queue. 424 */ 425 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 426 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 427 { 428 struct bpf_cpu_map_entry *old_rcpu; 429 430 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 431 if (old_rcpu) { 432 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 433 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 434 schedule_work(&old_rcpu->kthread_stop_wq); 435 } 436 } 437 438 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 439 { 440 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 441 u32 key_cpu = *(u32 *)key; 442 443 if (key_cpu >= map->max_entries) 444 return -EINVAL; 445 446 /* notice caller map_delete_elem() use preempt_disable() */ 447 __cpu_map_entry_replace(cmap, key_cpu, NULL); 448 return 0; 449 } 450 451 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 452 u64 map_flags) 453 { 454 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 455 struct bpf_cpu_map_entry *rcpu; 456 457 /* Array index key correspond to CPU number */ 458 u32 key_cpu = *(u32 *)key; 459 /* Value is the queue size */ 460 u32 qsize = *(u32 *)value; 461 462 if (unlikely(map_flags > BPF_EXIST)) 463 return -EINVAL; 464 if (unlikely(key_cpu >= cmap->map.max_entries)) 465 return -E2BIG; 466 if (unlikely(map_flags == BPF_NOEXIST)) 467 return -EEXIST; 468 if (unlikely(qsize > 16384)) /* sanity limit on qsize */ 469 return -EOVERFLOW; 470 471 /* Make sure CPU is a valid possible cpu */ 472 if (!cpu_possible(key_cpu)) 473 return -ENODEV; 474 475 if (qsize == 0) { 476 rcpu = NULL; /* Same as deleting */ 477 } else { 478 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 479 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id); 480 if (!rcpu) 481 return -ENOMEM; 482 rcpu->cmap = cmap; 483 } 484 rcu_read_lock(); 485 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 486 rcu_read_unlock(); 487 return 0; 488 } 489 490 static void cpu_map_free(struct bpf_map *map) 491 { 492 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 493 u32 i; 494 495 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 496 * so the bpf programs (can be more than one that used this map) were 497 * disconnected from events. Wait for outstanding critical sections in 498 * these programs to complete. The rcu critical section only guarantees 499 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 500 * It does __not__ ensure pending flush operations (if any) are 501 * complete. 502 */ 503 504 bpf_clear_redirect_map(map); 505 synchronize_rcu(); 506 507 /* For cpu_map the remote CPUs can still be using the entries 508 * (struct bpf_cpu_map_entry). 509 */ 510 for (i = 0; i < cmap->map.max_entries; i++) { 511 struct bpf_cpu_map_entry *rcpu; 512 513 rcpu = READ_ONCE(cmap->cpu_map[i]); 514 if (!rcpu) 515 continue; 516 517 /* bq flush and cleanup happens after RCU grace-period */ 518 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 519 } 520 bpf_map_area_free(cmap->cpu_map); 521 kfree(cmap); 522 } 523 524 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 525 { 526 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 527 struct bpf_cpu_map_entry *rcpu; 528 529 if (key >= map->max_entries) 530 return NULL; 531 532 rcpu = READ_ONCE(cmap->cpu_map[key]); 533 return rcpu; 534 } 535 536 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 537 { 538 struct bpf_cpu_map_entry *rcpu = 539 __cpu_map_lookup_elem(map, *(u32 *)key); 540 541 return rcpu ? &rcpu->qsize : NULL; 542 } 543 544 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 545 { 546 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 547 u32 index = key ? *(u32 *)key : U32_MAX; 548 u32 *next = next_key; 549 550 if (index >= cmap->map.max_entries) { 551 *next = 0; 552 return 0; 553 } 554 555 if (index == cmap->map.max_entries - 1) 556 return -ENOENT; 557 *next = index + 1; 558 return 0; 559 } 560 561 const struct bpf_map_ops cpu_map_ops = { 562 .map_alloc = cpu_map_alloc, 563 .map_free = cpu_map_free, 564 .map_delete_elem = cpu_map_delete_elem, 565 .map_update_elem = cpu_map_update_elem, 566 .map_lookup_elem = cpu_map_lookup_elem, 567 .map_get_next_key = cpu_map_get_next_key, 568 .map_check_btf = map_check_no_btf, 569 }; 570 571 static int bq_flush_to_queue(struct xdp_bulk_queue *bq) 572 { 573 struct bpf_cpu_map_entry *rcpu = bq->obj; 574 unsigned int processed = 0, drops = 0; 575 const int to_cpu = rcpu->cpu; 576 struct ptr_ring *q; 577 int i; 578 579 if (unlikely(!bq->count)) 580 return 0; 581 582 q = rcpu->queue; 583 spin_lock(&q->producer_lock); 584 585 for (i = 0; i < bq->count; i++) { 586 struct xdp_frame *xdpf = bq->q[i]; 587 int err; 588 589 err = __ptr_ring_produce(q, xdpf); 590 if (err) { 591 drops++; 592 xdp_return_frame_rx_napi(xdpf); 593 } 594 processed++; 595 } 596 bq->count = 0; 597 spin_unlock(&q->producer_lock); 598 599 __list_del_clearprev(&bq->flush_node); 600 601 /* Feedback loop via tracepoints */ 602 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 603 return 0; 604 } 605 606 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 607 * Thus, safe percpu variable access. 608 */ 609 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 610 { 611 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 612 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 613 614 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 615 bq_flush_to_queue(bq); 616 617 /* Notice, xdp_buff/page MUST be queued here, long enough for 618 * driver to code invoking us to finished, due to driver 619 * (e.g. ixgbe) recycle tricks based on page-refcnt. 620 * 621 * Thus, incoming xdp_frame is always queued here (else we race 622 * with another CPU on page-refcnt and remaining driver code). 623 * Queue time is very short, as driver will invoke flush 624 * operation, when completing napi->poll call. 625 */ 626 bq->q[bq->count++] = xdpf; 627 628 if (!bq->flush_node.prev) 629 list_add(&bq->flush_node, flush_list); 630 631 return 0; 632 } 633 634 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 635 struct net_device *dev_rx) 636 { 637 struct xdp_frame *xdpf; 638 639 xdpf = convert_to_xdp_frame(xdp); 640 if (unlikely(!xdpf)) 641 return -EOVERFLOW; 642 643 /* Info needed when constructing SKB on remote CPU */ 644 xdpf->dev_rx = dev_rx; 645 646 bq_enqueue(rcpu, xdpf); 647 return 0; 648 } 649 650 void __cpu_map_flush(void) 651 { 652 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 653 struct xdp_bulk_queue *bq, *tmp; 654 655 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 656 bq_flush_to_queue(bq); 657 658 /* If already running, costs spin_lock_irqsave + smb_mb */ 659 wake_up_process(bq->obj->kthread); 660 } 661 } 662 663 static int __init cpu_map_init(void) 664 { 665 int cpu; 666 667 for_each_possible_cpu(cpu) 668 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 669 return 0; 670 } 671 672 subsys_initcall(cpu_map_init); 673