1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_list */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that queueing the frame and the flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct bpf_cpu_map_entry; 42 struct bpf_cpu_map; 43 44 struct xdp_bulk_queue { 45 void *q[CPU_MAP_BULK_SIZE]; 46 struct list_head flush_node; 47 struct bpf_cpu_map_entry *obj; 48 unsigned int count; 49 }; 50 51 /* Struct for every remote "destination" CPU in map */ 52 struct bpf_cpu_map_entry { 53 u32 cpu; /* kthread CPU and map index */ 54 int map_id; /* Back reference to map */ 55 56 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 57 struct xdp_bulk_queue __percpu *bulkq; 58 59 struct bpf_cpu_map *cmap; 60 61 /* Queue with potential multi-producers, and single-consumer kthread */ 62 struct ptr_ring *queue; 63 struct task_struct *kthread; 64 65 struct bpf_cpumap_val value; 66 struct bpf_prog *prog; 67 68 atomic_t refcnt; /* Control when this struct can be free'ed */ 69 struct rcu_head rcu; 70 71 struct work_struct kthread_stop_wq; 72 }; 73 74 struct bpf_cpu_map { 75 struct bpf_map map; 76 /* Below members specific for map type */ 77 struct bpf_cpu_map_entry __rcu **cpu_map; 78 }; 79 80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 81 82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 83 { 84 u32 value_size = attr->value_size; 85 struct bpf_cpu_map *cmap; 86 int err = -ENOMEM; 87 88 if (!bpf_capable()) 89 return ERR_PTR(-EPERM); 90 91 /* check sanity of attributes */ 92 if (attr->max_entries == 0 || attr->key_size != 4 || 93 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 94 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 95 attr->map_flags & ~BPF_F_NUMA_NODE) 96 return ERR_PTR(-EINVAL); 97 98 cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT); 99 if (!cmap) 100 return ERR_PTR(-ENOMEM); 101 102 bpf_map_init_from_attr(&cmap->map, attr); 103 104 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 105 if (cmap->map.max_entries > NR_CPUS) { 106 err = -E2BIG; 107 goto free_cmap; 108 } 109 110 /* Alloc array for possible remote "destination" CPUs */ 111 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 112 sizeof(struct bpf_cpu_map_entry *), 113 cmap->map.numa_node); 114 if (!cmap->cpu_map) 115 goto free_cmap; 116 117 return &cmap->map; 118 free_cmap: 119 kfree(cmap); 120 return ERR_PTR(err); 121 } 122 123 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 124 { 125 atomic_inc(&rcpu->refcnt); 126 } 127 128 /* called from workqueue, to workaround syscall using preempt_disable */ 129 static void cpu_map_kthread_stop(struct work_struct *work) 130 { 131 struct bpf_cpu_map_entry *rcpu; 132 133 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 134 135 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 136 * as it waits until all in-flight call_rcu() callbacks complete. 137 */ 138 rcu_barrier(); 139 140 /* kthread_stop will wake_up_process and wait for it to complete */ 141 kthread_stop(rcpu->kthread); 142 } 143 144 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 145 { 146 /* The tear-down procedure should have made sure that queue is 147 * empty. See __cpu_map_entry_replace() and work-queue 148 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 149 * gracefully and warn once. 150 */ 151 struct xdp_frame *xdpf; 152 153 while ((xdpf = ptr_ring_consume(ring))) 154 if (WARN_ON_ONCE(xdpf)) 155 xdp_return_frame(xdpf); 156 } 157 158 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 159 { 160 if (atomic_dec_and_test(&rcpu->refcnt)) { 161 if (rcpu->prog) 162 bpf_prog_put(rcpu->prog); 163 /* The queue should be empty at this point */ 164 __cpu_map_ring_cleanup(rcpu->queue); 165 ptr_ring_cleanup(rcpu->queue, NULL); 166 kfree(rcpu->queue); 167 kfree(rcpu); 168 } 169 } 170 171 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 172 void **frames, int n, 173 struct xdp_cpumap_stats *stats) 174 { 175 struct xdp_rxq_info rxq; 176 struct xdp_buff xdp; 177 int i, nframes = 0; 178 179 if (!rcpu->prog) 180 return n; 181 182 rcu_read_lock_bh(); 183 184 xdp_set_return_frame_no_direct(); 185 xdp.rxq = &rxq; 186 187 for (i = 0; i < n; i++) { 188 struct xdp_frame *xdpf = frames[i]; 189 u32 act; 190 int err; 191 192 rxq.dev = xdpf->dev_rx; 193 rxq.mem = xdpf->mem; 194 /* TODO: report queue_index to xdp_rxq_info */ 195 196 xdp_convert_frame_to_buff(xdpf, &xdp); 197 198 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 199 switch (act) { 200 case XDP_PASS: 201 err = xdp_update_frame_from_buff(&xdp, xdpf); 202 if (err < 0) { 203 xdp_return_frame(xdpf); 204 stats->drop++; 205 } else { 206 frames[nframes++] = xdpf; 207 stats->pass++; 208 } 209 break; 210 case XDP_REDIRECT: 211 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 212 rcpu->prog); 213 if (unlikely(err)) { 214 xdp_return_frame(xdpf); 215 stats->drop++; 216 } else { 217 stats->redirect++; 218 } 219 break; 220 default: 221 bpf_warn_invalid_xdp_action(act); 222 fallthrough; 223 case XDP_DROP: 224 xdp_return_frame(xdpf); 225 stats->drop++; 226 break; 227 } 228 } 229 230 if (stats->redirect) 231 xdp_do_flush_map(); 232 233 xdp_clear_return_frame_no_direct(); 234 235 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 236 237 return nframes; 238 } 239 240 #define CPUMAP_BATCH 8 241 242 static int cpu_map_kthread_run(void *data) 243 { 244 struct bpf_cpu_map_entry *rcpu = data; 245 246 set_current_state(TASK_INTERRUPTIBLE); 247 248 /* When kthread gives stop order, then rcpu have been disconnected 249 * from map, thus no new packets can enter. Remaining in-flight 250 * per CPU stored packets are flushed to this queue. Wait honoring 251 * kthread_stop signal until queue is empty. 252 */ 253 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 254 struct xdp_cpumap_stats stats = {}; /* zero stats */ 255 unsigned int kmem_alloc_drops = 0, sched = 0; 256 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 257 void *frames[CPUMAP_BATCH]; 258 void *skbs[CPUMAP_BATCH]; 259 int i, n, m, nframes; 260 LIST_HEAD(list); 261 262 /* Release CPU reschedule checks */ 263 if (__ptr_ring_empty(rcpu->queue)) { 264 set_current_state(TASK_INTERRUPTIBLE); 265 /* Recheck to avoid lost wake-up */ 266 if (__ptr_ring_empty(rcpu->queue)) { 267 schedule(); 268 sched = 1; 269 } else { 270 __set_current_state(TASK_RUNNING); 271 } 272 } else { 273 sched = cond_resched(); 274 } 275 276 /* 277 * The bpf_cpu_map_entry is single consumer, with this 278 * kthread CPU pinned. Lockless access to ptr_ring 279 * consume side valid as no-resize allowed of queue. 280 */ 281 n = __ptr_ring_consume_batched(rcpu->queue, frames, 282 CPUMAP_BATCH); 283 for (i = 0; i < n; i++) { 284 void *f = frames[i]; 285 struct page *page = virt_to_page(f); 286 287 /* Bring struct page memory area to curr CPU. Read by 288 * build_skb_around via page_is_pfmemalloc(), and when 289 * freed written by page_frag_free call. 290 */ 291 prefetchw(page); 292 } 293 294 /* Support running another XDP prog on this CPU */ 295 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats); 296 if (nframes) { 297 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 298 if (unlikely(m == 0)) { 299 for (i = 0; i < nframes; i++) 300 skbs[i] = NULL; /* effect: xdp_return_frame */ 301 kmem_alloc_drops += nframes; 302 } 303 } 304 305 local_bh_disable(); 306 for (i = 0; i < nframes; i++) { 307 struct xdp_frame *xdpf = frames[i]; 308 struct sk_buff *skb = skbs[i]; 309 310 skb = __xdp_build_skb_from_frame(xdpf, skb, 311 xdpf->dev_rx); 312 if (!skb) { 313 xdp_return_frame(xdpf); 314 continue; 315 } 316 317 list_add_tail(&skb->list, &list); 318 } 319 netif_receive_skb_list(&list); 320 321 /* Feedback loop via tracepoint */ 322 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 323 sched, &stats); 324 325 local_bh_enable(); /* resched point, may call do_softirq() */ 326 } 327 __set_current_state(TASK_RUNNING); 328 329 put_cpu_map_entry(rcpu); 330 return 0; 331 } 332 333 bool cpu_map_prog_allowed(struct bpf_map *map) 334 { 335 return map->map_type == BPF_MAP_TYPE_CPUMAP && 336 map->value_size != offsetofend(struct bpf_cpumap_val, qsize); 337 } 338 339 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd) 340 { 341 struct bpf_prog *prog; 342 343 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 344 if (IS_ERR(prog)) 345 return PTR_ERR(prog); 346 347 if (prog->expected_attach_type != BPF_XDP_CPUMAP) { 348 bpf_prog_put(prog); 349 return -EINVAL; 350 } 351 352 rcpu->value.bpf_prog.id = prog->aux->id; 353 rcpu->prog = prog; 354 355 return 0; 356 } 357 358 static struct bpf_cpu_map_entry * 359 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 360 u32 cpu) 361 { 362 int numa, err, i, fd = value->bpf_prog.fd; 363 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 364 struct bpf_cpu_map_entry *rcpu; 365 struct xdp_bulk_queue *bq; 366 367 /* Have map->numa_node, but choose node of redirect target CPU */ 368 numa = cpu_to_node(cpu); 369 370 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 371 if (!rcpu) 372 return NULL; 373 374 /* Alloc percpu bulkq */ 375 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 376 sizeof(void *), gfp); 377 if (!rcpu->bulkq) 378 goto free_rcu; 379 380 for_each_possible_cpu(i) { 381 bq = per_cpu_ptr(rcpu->bulkq, i); 382 bq->obj = rcpu; 383 } 384 385 /* Alloc queue */ 386 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 387 numa); 388 if (!rcpu->queue) 389 goto free_bulkq; 390 391 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 392 if (err) 393 goto free_queue; 394 395 rcpu->cpu = cpu; 396 rcpu->map_id = map->id; 397 rcpu->value.qsize = value->qsize; 398 399 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd)) 400 goto free_ptr_ring; 401 402 /* Setup kthread */ 403 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 404 "cpumap/%d/map:%d", cpu, 405 map->id); 406 if (IS_ERR(rcpu->kthread)) 407 goto free_prog; 408 409 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 410 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 411 412 /* Make sure kthread runs on a single CPU */ 413 kthread_bind(rcpu->kthread, cpu); 414 wake_up_process(rcpu->kthread); 415 416 return rcpu; 417 418 free_prog: 419 if (rcpu->prog) 420 bpf_prog_put(rcpu->prog); 421 free_ptr_ring: 422 ptr_ring_cleanup(rcpu->queue, NULL); 423 free_queue: 424 kfree(rcpu->queue); 425 free_bulkq: 426 free_percpu(rcpu->bulkq); 427 free_rcu: 428 kfree(rcpu); 429 return NULL; 430 } 431 432 static void __cpu_map_entry_free(struct rcu_head *rcu) 433 { 434 struct bpf_cpu_map_entry *rcpu; 435 436 /* This cpu_map_entry have been disconnected from map and one 437 * RCU grace-period have elapsed. Thus, XDP cannot queue any 438 * new packets and cannot change/set flush_needed that can 439 * find this entry. 440 */ 441 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 442 443 free_percpu(rcpu->bulkq); 444 /* Cannot kthread_stop() here, last put free rcpu resources */ 445 put_cpu_map_entry(rcpu); 446 } 447 448 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 449 * ensure any driver rcu critical sections have completed, but this 450 * does not guarantee a flush has happened yet. Because driver side 451 * rcu_read_lock/unlock only protects the running XDP program. The 452 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 453 * pending flush op doesn't fail. 454 * 455 * The bpf_cpu_map_entry is still used by the kthread, and there can 456 * still be pending packets (in queue and percpu bulkq). A refcnt 457 * makes sure to last user (kthread_stop vs. call_rcu) free memory 458 * resources. 459 * 460 * The rcu callback __cpu_map_entry_free flush remaining packets in 461 * percpu bulkq to queue. Due to caller map_delete_elem() disable 462 * preemption, cannot call kthread_stop() to make sure queue is empty. 463 * Instead a work_queue is started for stopping kthread, 464 * cpu_map_kthread_stop, which waits for an RCU grace period before 465 * stopping kthread, emptying the queue. 466 */ 467 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 468 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 469 { 470 struct bpf_cpu_map_entry *old_rcpu; 471 472 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 473 if (old_rcpu) { 474 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 475 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 476 schedule_work(&old_rcpu->kthread_stop_wq); 477 } 478 } 479 480 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 481 { 482 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 483 u32 key_cpu = *(u32 *)key; 484 485 if (key_cpu >= map->max_entries) 486 return -EINVAL; 487 488 /* notice caller map_delete_elem() use preempt_disable() */ 489 __cpu_map_entry_replace(cmap, key_cpu, NULL); 490 return 0; 491 } 492 493 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 494 u64 map_flags) 495 { 496 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 497 struct bpf_cpumap_val cpumap_value = {}; 498 struct bpf_cpu_map_entry *rcpu; 499 /* Array index key correspond to CPU number */ 500 u32 key_cpu = *(u32 *)key; 501 502 memcpy(&cpumap_value, value, map->value_size); 503 504 if (unlikely(map_flags > BPF_EXIST)) 505 return -EINVAL; 506 if (unlikely(key_cpu >= cmap->map.max_entries)) 507 return -E2BIG; 508 if (unlikely(map_flags == BPF_NOEXIST)) 509 return -EEXIST; 510 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 511 return -EOVERFLOW; 512 513 /* Make sure CPU is a valid possible cpu */ 514 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 515 return -ENODEV; 516 517 if (cpumap_value.qsize == 0) { 518 rcpu = NULL; /* Same as deleting */ 519 } else { 520 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 521 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 522 if (!rcpu) 523 return -ENOMEM; 524 rcpu->cmap = cmap; 525 } 526 rcu_read_lock(); 527 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 528 rcu_read_unlock(); 529 return 0; 530 } 531 532 static void cpu_map_free(struct bpf_map *map) 533 { 534 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 535 u32 i; 536 537 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 538 * so the bpf programs (can be more than one that used this map) were 539 * disconnected from events. Wait for outstanding critical sections in 540 * these programs to complete. The rcu critical section only guarantees 541 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 542 * It does __not__ ensure pending flush operations (if any) are 543 * complete. 544 */ 545 546 synchronize_rcu(); 547 548 /* For cpu_map the remote CPUs can still be using the entries 549 * (struct bpf_cpu_map_entry). 550 */ 551 for (i = 0; i < cmap->map.max_entries; i++) { 552 struct bpf_cpu_map_entry *rcpu; 553 554 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 555 if (!rcpu) 556 continue; 557 558 /* bq flush and cleanup happens after RCU grace-period */ 559 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 560 } 561 bpf_map_area_free(cmap->cpu_map); 562 kfree(cmap); 563 } 564 565 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 566 * by local_bh_disable() (from XDP calls inside NAPI). The 567 * rcu_read_lock_bh_held() below makes lockdep accept both. 568 */ 569 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 570 { 571 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 572 struct bpf_cpu_map_entry *rcpu; 573 574 if (key >= map->max_entries) 575 return NULL; 576 577 rcpu = rcu_dereference_check(cmap->cpu_map[key], 578 rcu_read_lock_bh_held()); 579 return rcpu; 580 } 581 582 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 583 { 584 struct bpf_cpu_map_entry *rcpu = 585 __cpu_map_lookup_elem(map, *(u32 *)key); 586 587 return rcpu ? &rcpu->value : NULL; 588 } 589 590 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 591 { 592 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 593 u32 index = key ? *(u32 *)key : U32_MAX; 594 u32 *next = next_key; 595 596 if (index >= cmap->map.max_entries) { 597 *next = 0; 598 return 0; 599 } 600 601 if (index == cmap->map.max_entries - 1) 602 return -ENOENT; 603 *next = index + 1; 604 return 0; 605 } 606 607 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags) 608 { 609 return __bpf_xdp_redirect_map(map, ifindex, flags, 0, 610 __cpu_map_lookup_elem); 611 } 612 613 static int cpu_map_btf_id; 614 const struct bpf_map_ops cpu_map_ops = { 615 .map_meta_equal = bpf_map_meta_equal, 616 .map_alloc = cpu_map_alloc, 617 .map_free = cpu_map_free, 618 .map_delete_elem = cpu_map_delete_elem, 619 .map_update_elem = cpu_map_update_elem, 620 .map_lookup_elem = cpu_map_lookup_elem, 621 .map_get_next_key = cpu_map_get_next_key, 622 .map_check_btf = map_check_no_btf, 623 .map_btf_name = "bpf_cpu_map", 624 .map_btf_id = &cpu_map_btf_id, 625 .map_redirect = cpu_map_redirect, 626 }; 627 628 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 629 { 630 struct bpf_cpu_map_entry *rcpu = bq->obj; 631 unsigned int processed = 0, drops = 0; 632 const int to_cpu = rcpu->cpu; 633 struct ptr_ring *q; 634 int i; 635 636 if (unlikely(!bq->count)) 637 return; 638 639 q = rcpu->queue; 640 spin_lock(&q->producer_lock); 641 642 for (i = 0; i < bq->count; i++) { 643 struct xdp_frame *xdpf = bq->q[i]; 644 int err; 645 646 err = __ptr_ring_produce(q, xdpf); 647 if (err) { 648 drops++; 649 xdp_return_frame_rx_napi(xdpf); 650 } 651 processed++; 652 } 653 bq->count = 0; 654 spin_unlock(&q->producer_lock); 655 656 __list_del_clearprev(&bq->flush_node); 657 658 /* Feedback loop via tracepoints */ 659 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 660 } 661 662 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 663 * Thus, safe percpu variable access. 664 */ 665 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 666 { 667 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 668 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 669 670 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 671 bq_flush_to_queue(bq); 672 673 /* Notice, xdp_buff/page MUST be queued here, long enough for 674 * driver to code invoking us to finished, due to driver 675 * (e.g. ixgbe) recycle tricks based on page-refcnt. 676 * 677 * Thus, incoming xdp_frame is always queued here (else we race 678 * with another CPU on page-refcnt and remaining driver code). 679 * Queue time is very short, as driver will invoke flush 680 * operation, when completing napi->poll call. 681 */ 682 bq->q[bq->count++] = xdpf; 683 684 if (!bq->flush_node.prev) 685 list_add(&bq->flush_node, flush_list); 686 } 687 688 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 689 struct net_device *dev_rx) 690 { 691 struct xdp_frame *xdpf; 692 693 xdpf = xdp_convert_buff_to_frame(xdp); 694 if (unlikely(!xdpf)) 695 return -EOVERFLOW; 696 697 /* Info needed when constructing SKB on remote CPU */ 698 xdpf->dev_rx = dev_rx; 699 700 bq_enqueue(rcpu, xdpf); 701 return 0; 702 } 703 704 void __cpu_map_flush(void) 705 { 706 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 707 struct xdp_bulk_queue *bq, *tmp; 708 709 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 710 bq_flush_to_queue(bq); 711 712 /* If already running, costs spin_lock_irqsave + smb_mb */ 713 wake_up_process(bq->obj->kthread); 714 } 715 } 716 717 static int __init cpu_map_init(void) 718 { 719 int cpu; 720 721 for_each_possible_cpu(cpu) 722 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 723 return 0; 724 } 725 726 subsys_initcall(cpu_map_init); 727