1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bitops.h> 20 #include <linux/bpf.h> 21 #include <linux/filter.h> 22 #include <linux/ptr_ring.h> 23 #include <net/xdp.h> 24 25 #include <linux/sched.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/capability.h> 29 #include <trace/events/xdp.h> 30 #include <linux/btf_ids.h> 31 32 #include <linux/netdevice.h> /* netif_receive_skb_list */ 33 #include <linux/etherdevice.h> /* eth_type_trans */ 34 35 /* General idea: XDP packets getting XDP redirected to another CPU, 36 * will maximum be stored/queued for one driver ->poll() call. It is 37 * guaranteed that queueing the frame and the flush operation happen on 38 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 39 * which queue in bpf_cpu_map_entry contains packets. 40 */ 41 42 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 43 struct bpf_cpu_map_entry; 44 struct bpf_cpu_map; 45 46 struct xdp_bulk_queue { 47 void *q[CPU_MAP_BULK_SIZE]; 48 struct list_head flush_node; 49 struct bpf_cpu_map_entry *obj; 50 unsigned int count; 51 }; 52 53 /* Struct for every remote "destination" CPU in map */ 54 struct bpf_cpu_map_entry { 55 u32 cpu; /* kthread CPU and map index */ 56 int map_id; /* Back reference to map */ 57 58 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 59 struct xdp_bulk_queue __percpu *bulkq; 60 61 struct bpf_cpu_map *cmap; 62 63 /* Queue with potential multi-producers, and single-consumer kthread */ 64 struct ptr_ring *queue; 65 struct task_struct *kthread; 66 67 struct bpf_cpumap_val value; 68 struct bpf_prog *prog; 69 70 atomic_t refcnt; /* Control when this struct can be free'ed */ 71 struct rcu_head rcu; 72 73 struct work_struct kthread_stop_wq; 74 }; 75 76 struct bpf_cpu_map { 77 struct bpf_map map; 78 /* Below members specific for map type */ 79 struct bpf_cpu_map_entry __rcu **cpu_map; 80 }; 81 82 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 83 84 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 85 { 86 u32 value_size = attr->value_size; 87 struct bpf_cpu_map *cmap; 88 89 if (!bpf_capable()) 90 return ERR_PTR(-EPERM); 91 92 /* check sanity of attributes */ 93 if (attr->max_entries == 0 || attr->key_size != 4 || 94 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 95 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 96 attr->map_flags & ~BPF_F_NUMA_NODE) 97 return ERR_PTR(-EINVAL); 98 99 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 100 if (attr->max_entries > NR_CPUS) 101 return ERR_PTR(-E2BIG); 102 103 cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE); 104 if (!cmap) 105 return ERR_PTR(-ENOMEM); 106 107 bpf_map_init_from_attr(&cmap->map, attr); 108 109 /* Alloc array for possible remote "destination" CPUs */ 110 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 111 sizeof(struct bpf_cpu_map_entry *), 112 cmap->map.numa_node); 113 if (!cmap->cpu_map) { 114 bpf_map_area_free(cmap); 115 return ERR_PTR(-ENOMEM); 116 } 117 118 return &cmap->map; 119 } 120 121 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 122 { 123 atomic_inc(&rcpu->refcnt); 124 } 125 126 /* called from workqueue, to workaround syscall using preempt_disable */ 127 static void cpu_map_kthread_stop(struct work_struct *work) 128 { 129 struct bpf_cpu_map_entry *rcpu; 130 131 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 132 133 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 134 * as it waits until all in-flight call_rcu() callbacks complete. 135 */ 136 rcu_barrier(); 137 138 /* kthread_stop will wake_up_process and wait for it to complete */ 139 kthread_stop(rcpu->kthread); 140 } 141 142 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 143 { 144 /* The tear-down procedure should have made sure that queue is 145 * empty. See __cpu_map_entry_replace() and work-queue 146 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 147 * gracefully and warn once. 148 */ 149 struct xdp_frame *xdpf; 150 151 while ((xdpf = ptr_ring_consume(ring))) 152 if (WARN_ON_ONCE(xdpf)) 153 xdp_return_frame(xdpf); 154 } 155 156 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 157 { 158 if (atomic_dec_and_test(&rcpu->refcnt)) { 159 if (rcpu->prog) 160 bpf_prog_put(rcpu->prog); 161 /* The queue should be empty at this point */ 162 __cpu_map_ring_cleanup(rcpu->queue); 163 ptr_ring_cleanup(rcpu->queue, NULL); 164 kfree(rcpu->queue); 165 kfree(rcpu); 166 } 167 } 168 169 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, 170 struct list_head *listp, 171 struct xdp_cpumap_stats *stats) 172 { 173 struct sk_buff *skb, *tmp; 174 struct xdp_buff xdp; 175 u32 act; 176 int err; 177 178 list_for_each_entry_safe(skb, tmp, listp, list) { 179 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); 180 switch (act) { 181 case XDP_PASS: 182 break; 183 case XDP_REDIRECT: 184 skb_list_del_init(skb); 185 err = xdp_do_generic_redirect(skb->dev, skb, &xdp, 186 rcpu->prog); 187 if (unlikely(err)) { 188 kfree_skb(skb); 189 stats->drop++; 190 } else { 191 stats->redirect++; 192 } 193 return; 194 default: 195 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 196 fallthrough; 197 case XDP_ABORTED: 198 trace_xdp_exception(skb->dev, rcpu->prog, act); 199 fallthrough; 200 case XDP_DROP: 201 skb_list_del_init(skb); 202 kfree_skb(skb); 203 stats->drop++; 204 return; 205 } 206 } 207 } 208 209 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 210 void **frames, int n, 211 struct xdp_cpumap_stats *stats) 212 { 213 struct xdp_rxq_info rxq; 214 struct xdp_buff xdp; 215 int i, nframes = 0; 216 217 xdp_set_return_frame_no_direct(); 218 xdp.rxq = &rxq; 219 220 for (i = 0; i < n; i++) { 221 struct xdp_frame *xdpf = frames[i]; 222 u32 act; 223 int err; 224 225 rxq.dev = xdpf->dev_rx; 226 rxq.mem = xdpf->mem; 227 /* TODO: report queue_index to xdp_rxq_info */ 228 229 xdp_convert_frame_to_buff(xdpf, &xdp); 230 231 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 232 switch (act) { 233 case XDP_PASS: 234 err = xdp_update_frame_from_buff(&xdp, xdpf); 235 if (err < 0) { 236 xdp_return_frame(xdpf); 237 stats->drop++; 238 } else { 239 frames[nframes++] = xdpf; 240 stats->pass++; 241 } 242 break; 243 case XDP_REDIRECT: 244 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 245 rcpu->prog); 246 if (unlikely(err)) { 247 xdp_return_frame(xdpf); 248 stats->drop++; 249 } else { 250 stats->redirect++; 251 } 252 break; 253 default: 254 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 255 fallthrough; 256 case XDP_DROP: 257 xdp_return_frame(xdpf); 258 stats->drop++; 259 break; 260 } 261 } 262 263 xdp_clear_return_frame_no_direct(); 264 265 return nframes; 266 } 267 268 #define CPUMAP_BATCH 8 269 270 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, 271 int xdp_n, struct xdp_cpumap_stats *stats, 272 struct list_head *list) 273 { 274 int nframes; 275 276 if (!rcpu->prog) 277 return xdp_n; 278 279 rcu_read_lock_bh(); 280 281 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats); 282 283 if (stats->redirect) 284 xdp_do_flush(); 285 286 if (unlikely(!list_empty(list))) 287 cpu_map_bpf_prog_run_skb(rcpu, list, stats); 288 289 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 290 291 return nframes; 292 } 293 294 295 static int cpu_map_kthread_run(void *data) 296 { 297 struct bpf_cpu_map_entry *rcpu = data; 298 299 set_current_state(TASK_INTERRUPTIBLE); 300 301 /* When kthread gives stop order, then rcpu have been disconnected 302 * from map, thus no new packets can enter. Remaining in-flight 303 * per CPU stored packets are flushed to this queue. Wait honoring 304 * kthread_stop signal until queue is empty. 305 */ 306 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 307 struct xdp_cpumap_stats stats = {}; /* zero stats */ 308 unsigned int kmem_alloc_drops = 0, sched = 0; 309 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 310 int i, n, m, nframes, xdp_n; 311 void *frames[CPUMAP_BATCH]; 312 void *skbs[CPUMAP_BATCH]; 313 LIST_HEAD(list); 314 315 /* Release CPU reschedule checks */ 316 if (__ptr_ring_empty(rcpu->queue)) { 317 set_current_state(TASK_INTERRUPTIBLE); 318 /* Recheck to avoid lost wake-up */ 319 if (__ptr_ring_empty(rcpu->queue)) { 320 schedule(); 321 sched = 1; 322 } else { 323 __set_current_state(TASK_RUNNING); 324 } 325 } else { 326 sched = cond_resched(); 327 } 328 329 /* 330 * The bpf_cpu_map_entry is single consumer, with this 331 * kthread CPU pinned. Lockless access to ptr_ring 332 * consume side valid as no-resize allowed of queue. 333 */ 334 n = __ptr_ring_consume_batched(rcpu->queue, frames, 335 CPUMAP_BATCH); 336 for (i = 0, xdp_n = 0; i < n; i++) { 337 void *f = frames[i]; 338 struct page *page; 339 340 if (unlikely(__ptr_test_bit(0, &f))) { 341 struct sk_buff *skb = f; 342 343 __ptr_clear_bit(0, &skb); 344 list_add_tail(&skb->list, &list); 345 continue; 346 } 347 348 frames[xdp_n++] = f; 349 page = virt_to_page(f); 350 351 /* Bring struct page memory area to curr CPU. Read by 352 * build_skb_around via page_is_pfmemalloc(), and when 353 * freed written by page_frag_free call. 354 */ 355 prefetchw(page); 356 } 357 358 /* Support running another XDP prog on this CPU */ 359 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list); 360 if (nframes) { 361 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 362 if (unlikely(m == 0)) { 363 for (i = 0; i < nframes; i++) 364 skbs[i] = NULL; /* effect: xdp_return_frame */ 365 kmem_alloc_drops += nframes; 366 } 367 } 368 369 local_bh_disable(); 370 for (i = 0; i < nframes; i++) { 371 struct xdp_frame *xdpf = frames[i]; 372 struct sk_buff *skb = skbs[i]; 373 374 skb = __xdp_build_skb_from_frame(xdpf, skb, 375 xdpf->dev_rx); 376 if (!skb) { 377 xdp_return_frame(xdpf); 378 continue; 379 } 380 381 list_add_tail(&skb->list, &list); 382 } 383 netif_receive_skb_list(&list); 384 385 /* Feedback loop via tracepoint */ 386 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 387 sched, &stats); 388 389 local_bh_enable(); /* resched point, may call do_softirq() */ 390 } 391 __set_current_state(TASK_RUNNING); 392 393 put_cpu_map_entry(rcpu); 394 return 0; 395 } 396 397 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, 398 struct bpf_map *map, int fd) 399 { 400 struct bpf_prog *prog; 401 402 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 403 if (IS_ERR(prog)) 404 return PTR_ERR(prog); 405 406 if (prog->expected_attach_type != BPF_XDP_CPUMAP || 407 !bpf_prog_map_compatible(map, prog)) { 408 bpf_prog_put(prog); 409 return -EINVAL; 410 } 411 412 rcpu->value.bpf_prog.id = prog->aux->id; 413 rcpu->prog = prog; 414 415 return 0; 416 } 417 418 static struct bpf_cpu_map_entry * 419 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 420 u32 cpu) 421 { 422 int numa, err, i, fd = value->bpf_prog.fd; 423 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 424 struct bpf_cpu_map_entry *rcpu; 425 struct xdp_bulk_queue *bq; 426 427 /* Have map->numa_node, but choose node of redirect target CPU */ 428 numa = cpu_to_node(cpu); 429 430 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 431 if (!rcpu) 432 return NULL; 433 434 /* Alloc percpu bulkq */ 435 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 436 sizeof(void *), gfp); 437 if (!rcpu->bulkq) 438 goto free_rcu; 439 440 for_each_possible_cpu(i) { 441 bq = per_cpu_ptr(rcpu->bulkq, i); 442 bq->obj = rcpu; 443 } 444 445 /* Alloc queue */ 446 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 447 numa); 448 if (!rcpu->queue) 449 goto free_bulkq; 450 451 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 452 if (err) 453 goto free_queue; 454 455 rcpu->cpu = cpu; 456 rcpu->map_id = map->id; 457 rcpu->value.qsize = value->qsize; 458 459 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd)) 460 goto free_ptr_ring; 461 462 /* Setup kthread */ 463 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 464 "cpumap/%d/map:%d", cpu, 465 map->id); 466 if (IS_ERR(rcpu->kthread)) 467 goto free_prog; 468 469 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 470 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 471 472 /* Make sure kthread runs on a single CPU */ 473 kthread_bind(rcpu->kthread, cpu); 474 wake_up_process(rcpu->kthread); 475 476 return rcpu; 477 478 free_prog: 479 if (rcpu->prog) 480 bpf_prog_put(rcpu->prog); 481 free_ptr_ring: 482 ptr_ring_cleanup(rcpu->queue, NULL); 483 free_queue: 484 kfree(rcpu->queue); 485 free_bulkq: 486 free_percpu(rcpu->bulkq); 487 free_rcu: 488 kfree(rcpu); 489 return NULL; 490 } 491 492 static void __cpu_map_entry_free(struct rcu_head *rcu) 493 { 494 struct bpf_cpu_map_entry *rcpu; 495 496 /* This cpu_map_entry have been disconnected from map and one 497 * RCU grace-period have elapsed. Thus, XDP cannot queue any 498 * new packets and cannot change/set flush_needed that can 499 * find this entry. 500 */ 501 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 502 503 free_percpu(rcpu->bulkq); 504 /* Cannot kthread_stop() here, last put free rcpu resources */ 505 put_cpu_map_entry(rcpu); 506 } 507 508 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 509 * ensure any driver rcu critical sections have completed, but this 510 * does not guarantee a flush has happened yet. Because driver side 511 * rcu_read_lock/unlock only protects the running XDP program. The 512 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 513 * pending flush op doesn't fail. 514 * 515 * The bpf_cpu_map_entry is still used by the kthread, and there can 516 * still be pending packets (in queue and percpu bulkq). A refcnt 517 * makes sure to last user (kthread_stop vs. call_rcu) free memory 518 * resources. 519 * 520 * The rcu callback __cpu_map_entry_free flush remaining packets in 521 * percpu bulkq to queue. Due to caller map_delete_elem() disable 522 * preemption, cannot call kthread_stop() to make sure queue is empty. 523 * Instead a work_queue is started for stopping kthread, 524 * cpu_map_kthread_stop, which waits for an RCU grace period before 525 * stopping kthread, emptying the queue. 526 */ 527 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 528 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 529 { 530 struct bpf_cpu_map_entry *old_rcpu; 531 532 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 533 if (old_rcpu) { 534 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 535 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 536 schedule_work(&old_rcpu->kthread_stop_wq); 537 } 538 } 539 540 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 541 { 542 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 543 u32 key_cpu = *(u32 *)key; 544 545 if (key_cpu >= map->max_entries) 546 return -EINVAL; 547 548 /* notice caller map_delete_elem() use preempt_disable() */ 549 __cpu_map_entry_replace(cmap, key_cpu, NULL); 550 return 0; 551 } 552 553 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 554 u64 map_flags) 555 { 556 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 557 struct bpf_cpumap_val cpumap_value = {}; 558 struct bpf_cpu_map_entry *rcpu; 559 /* Array index key correspond to CPU number */ 560 u32 key_cpu = *(u32 *)key; 561 562 memcpy(&cpumap_value, value, map->value_size); 563 564 if (unlikely(map_flags > BPF_EXIST)) 565 return -EINVAL; 566 if (unlikely(key_cpu >= cmap->map.max_entries)) 567 return -E2BIG; 568 if (unlikely(map_flags == BPF_NOEXIST)) 569 return -EEXIST; 570 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 571 return -EOVERFLOW; 572 573 /* Make sure CPU is a valid possible cpu */ 574 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 575 return -ENODEV; 576 577 if (cpumap_value.qsize == 0) { 578 rcpu = NULL; /* Same as deleting */ 579 } else { 580 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 581 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 582 if (!rcpu) 583 return -ENOMEM; 584 rcpu->cmap = cmap; 585 } 586 rcu_read_lock(); 587 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 588 rcu_read_unlock(); 589 return 0; 590 } 591 592 static void cpu_map_free(struct bpf_map *map) 593 { 594 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 595 u32 i; 596 597 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 598 * so the bpf programs (can be more than one that used this map) were 599 * disconnected from events. Wait for outstanding critical sections in 600 * these programs to complete. The rcu critical section only guarantees 601 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 602 * It does __not__ ensure pending flush operations (if any) are 603 * complete. 604 */ 605 606 synchronize_rcu(); 607 608 /* For cpu_map the remote CPUs can still be using the entries 609 * (struct bpf_cpu_map_entry). 610 */ 611 for (i = 0; i < cmap->map.max_entries; i++) { 612 struct bpf_cpu_map_entry *rcpu; 613 614 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 615 if (!rcpu) 616 continue; 617 618 /* bq flush and cleanup happens after RCU grace-period */ 619 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 620 } 621 bpf_map_area_free(cmap->cpu_map); 622 bpf_map_area_free(cmap); 623 } 624 625 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 626 * by local_bh_disable() (from XDP calls inside NAPI). The 627 * rcu_read_lock_bh_held() below makes lockdep accept both. 628 */ 629 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 630 { 631 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 632 struct bpf_cpu_map_entry *rcpu; 633 634 if (key >= map->max_entries) 635 return NULL; 636 637 rcpu = rcu_dereference_check(cmap->cpu_map[key], 638 rcu_read_lock_bh_held()); 639 return rcpu; 640 } 641 642 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 643 { 644 struct bpf_cpu_map_entry *rcpu = 645 __cpu_map_lookup_elem(map, *(u32 *)key); 646 647 return rcpu ? &rcpu->value : NULL; 648 } 649 650 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 651 { 652 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 653 u32 index = key ? *(u32 *)key : U32_MAX; 654 u32 *next = next_key; 655 656 if (index >= cmap->map.max_entries) { 657 *next = 0; 658 return 0; 659 } 660 661 if (index == cmap->map.max_entries - 1) 662 return -ENOENT; 663 *next = index + 1; 664 return 0; 665 } 666 667 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags) 668 { 669 return __bpf_xdp_redirect_map(map, ifindex, flags, 0, 670 __cpu_map_lookup_elem); 671 } 672 673 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) 674 const struct bpf_map_ops cpu_map_ops = { 675 .map_meta_equal = bpf_map_meta_equal, 676 .map_alloc = cpu_map_alloc, 677 .map_free = cpu_map_free, 678 .map_delete_elem = cpu_map_delete_elem, 679 .map_update_elem = cpu_map_update_elem, 680 .map_lookup_elem = cpu_map_lookup_elem, 681 .map_get_next_key = cpu_map_get_next_key, 682 .map_check_btf = map_check_no_btf, 683 .map_btf_id = &cpu_map_btf_ids[0], 684 .map_redirect = cpu_map_redirect, 685 }; 686 687 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 688 { 689 struct bpf_cpu_map_entry *rcpu = bq->obj; 690 unsigned int processed = 0, drops = 0; 691 const int to_cpu = rcpu->cpu; 692 struct ptr_ring *q; 693 int i; 694 695 if (unlikely(!bq->count)) 696 return; 697 698 q = rcpu->queue; 699 spin_lock(&q->producer_lock); 700 701 for (i = 0; i < bq->count; i++) { 702 struct xdp_frame *xdpf = bq->q[i]; 703 int err; 704 705 err = __ptr_ring_produce(q, xdpf); 706 if (err) { 707 drops++; 708 xdp_return_frame_rx_napi(xdpf); 709 } 710 processed++; 711 } 712 bq->count = 0; 713 spin_unlock(&q->producer_lock); 714 715 __list_del_clearprev(&bq->flush_node); 716 717 /* Feedback loop via tracepoints */ 718 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 719 } 720 721 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 722 * Thus, safe percpu variable access. 723 */ 724 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 725 { 726 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 727 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 728 729 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 730 bq_flush_to_queue(bq); 731 732 /* Notice, xdp_buff/page MUST be queued here, long enough for 733 * driver to code invoking us to finished, due to driver 734 * (e.g. ixgbe) recycle tricks based on page-refcnt. 735 * 736 * Thus, incoming xdp_frame is always queued here (else we race 737 * with another CPU on page-refcnt and remaining driver code). 738 * Queue time is very short, as driver will invoke flush 739 * operation, when completing napi->poll call. 740 */ 741 bq->q[bq->count++] = xdpf; 742 743 if (!bq->flush_node.prev) 744 list_add(&bq->flush_node, flush_list); 745 } 746 747 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 748 struct net_device *dev_rx) 749 { 750 /* Info needed when constructing SKB on remote CPU */ 751 xdpf->dev_rx = dev_rx; 752 753 bq_enqueue(rcpu, xdpf); 754 return 0; 755 } 756 757 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 758 struct sk_buff *skb) 759 { 760 int ret; 761 762 __skb_pull(skb, skb->mac_len); 763 skb_set_redirected(skb, false); 764 __ptr_set_bit(0, &skb); 765 766 ret = ptr_ring_produce(rcpu->queue, skb); 767 if (ret < 0) 768 goto trace; 769 770 wake_up_process(rcpu->kthread); 771 trace: 772 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); 773 return ret; 774 } 775 776 void __cpu_map_flush(void) 777 { 778 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 779 struct xdp_bulk_queue *bq, *tmp; 780 781 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 782 bq_flush_to_queue(bq); 783 784 /* If already running, costs spin_lock_irqsave + smb_mb */ 785 wake_up_process(bq->obj->kthread); 786 } 787 } 788 789 static int __init cpu_map_init(void) 790 { 791 int cpu; 792 793 for_each_possible_cpu(cpu) 794 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 795 return 0; 796 } 797 798 subsys_initcall(cpu_map_init); 799