1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /** 8 * DOC: cpu map 9 * The 'cpumap' is primarily used as a backend map for XDP BPF helper 10 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 11 * 12 * Unlike devmap which redirects XDP frames out to another NIC device, 13 * this map type redirects raw XDP frames to another CPU. The remote 14 * CPU will do SKB-allocation and call the normal network stack. 15 */ 16 /* 17 * This is a scalability and isolation mechanism, that allow 18 * separating the early driver network XDP layer, from the rest of the 19 * netstack, and assigning dedicated CPUs for this stage. This 20 * basically allows for 10G wirespeed pre-filtering via bpf. 21 */ 22 #include <linux/bitops.h> 23 #include <linux/bpf.h> 24 #include <linux/filter.h> 25 #include <linux/ptr_ring.h> 26 #include <net/xdp.h> 27 28 #include <linux/sched.h> 29 #include <linux/workqueue.h> 30 #include <linux/kthread.h> 31 #include <trace/events/xdp.h> 32 #include <linux/btf_ids.h> 33 34 #include <linux/netdevice.h> /* netif_receive_skb_list */ 35 #include <linux/etherdevice.h> /* eth_type_trans */ 36 37 /* General idea: XDP packets getting XDP redirected to another CPU, 38 * will maximum be stored/queued for one driver ->poll() call. It is 39 * guaranteed that queueing the frame and the flush operation happen on 40 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 41 * which queue in bpf_cpu_map_entry contains packets. 42 */ 43 44 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 45 struct bpf_cpu_map_entry; 46 struct bpf_cpu_map; 47 48 struct xdp_bulk_queue { 49 void *q[CPU_MAP_BULK_SIZE]; 50 struct list_head flush_node; 51 struct bpf_cpu_map_entry *obj; 52 unsigned int count; 53 }; 54 55 /* Struct for every remote "destination" CPU in map */ 56 struct bpf_cpu_map_entry { 57 u32 cpu; /* kthread CPU and map index */ 58 int map_id; /* Back reference to map */ 59 60 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 61 struct xdp_bulk_queue __percpu *bulkq; 62 63 struct bpf_cpu_map *cmap; 64 65 /* Queue with potential multi-producers, and single-consumer kthread */ 66 struct ptr_ring *queue; 67 struct task_struct *kthread; 68 69 struct bpf_cpumap_val value; 70 struct bpf_prog *prog; 71 72 atomic_t refcnt; /* Control when this struct can be free'ed */ 73 struct rcu_head rcu; 74 75 struct work_struct kthread_stop_wq; 76 }; 77 78 struct bpf_cpu_map { 79 struct bpf_map map; 80 /* Below members specific for map type */ 81 struct bpf_cpu_map_entry __rcu **cpu_map; 82 }; 83 84 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 85 86 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 87 { 88 u32 value_size = attr->value_size; 89 struct bpf_cpu_map *cmap; 90 91 /* check sanity of attributes */ 92 if (attr->max_entries == 0 || attr->key_size != 4 || 93 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 94 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 95 attr->map_flags & ~BPF_F_NUMA_NODE) 96 return ERR_PTR(-EINVAL); 97 98 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 99 if (attr->max_entries > NR_CPUS) 100 return ERR_PTR(-E2BIG); 101 102 cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE); 103 if (!cmap) 104 return ERR_PTR(-ENOMEM); 105 106 bpf_map_init_from_attr(&cmap->map, attr); 107 108 /* Alloc array for possible remote "destination" CPUs */ 109 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 110 sizeof(struct bpf_cpu_map_entry *), 111 cmap->map.numa_node); 112 if (!cmap->cpu_map) { 113 bpf_map_area_free(cmap); 114 return ERR_PTR(-ENOMEM); 115 } 116 117 return &cmap->map; 118 } 119 120 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 121 { 122 atomic_inc(&rcpu->refcnt); 123 } 124 125 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 126 { 127 /* The tear-down procedure should have made sure that queue is 128 * empty. See __cpu_map_entry_replace() and work-queue 129 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 130 * gracefully and warn once. 131 */ 132 struct xdp_frame *xdpf; 133 134 while ((xdpf = ptr_ring_consume(ring))) 135 if (WARN_ON_ONCE(xdpf)) 136 xdp_return_frame(xdpf); 137 } 138 139 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 140 { 141 if (atomic_dec_and_test(&rcpu->refcnt)) { 142 if (rcpu->prog) 143 bpf_prog_put(rcpu->prog); 144 /* The queue should be empty at this point */ 145 __cpu_map_ring_cleanup(rcpu->queue); 146 ptr_ring_cleanup(rcpu->queue, NULL); 147 kfree(rcpu->queue); 148 kfree(rcpu); 149 } 150 } 151 152 /* called from workqueue, to workaround syscall using preempt_disable */ 153 static void cpu_map_kthread_stop(struct work_struct *work) 154 { 155 struct bpf_cpu_map_entry *rcpu; 156 int err; 157 158 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 159 160 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 161 * as it waits until all in-flight call_rcu() callbacks complete. 162 */ 163 rcu_barrier(); 164 165 /* kthread_stop will wake_up_process and wait for it to complete */ 166 err = kthread_stop(rcpu->kthread); 167 if (err) { 168 /* kthread_stop may be called before cpu_map_kthread_run 169 * is executed, so we need to release the memory related 170 * to rcpu. 171 */ 172 put_cpu_map_entry(rcpu); 173 } 174 } 175 176 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, 177 struct list_head *listp, 178 struct xdp_cpumap_stats *stats) 179 { 180 struct sk_buff *skb, *tmp; 181 struct xdp_buff xdp; 182 u32 act; 183 int err; 184 185 list_for_each_entry_safe(skb, tmp, listp, list) { 186 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); 187 switch (act) { 188 case XDP_PASS: 189 break; 190 case XDP_REDIRECT: 191 skb_list_del_init(skb); 192 err = xdp_do_generic_redirect(skb->dev, skb, &xdp, 193 rcpu->prog); 194 if (unlikely(err)) { 195 kfree_skb(skb); 196 stats->drop++; 197 } else { 198 stats->redirect++; 199 } 200 return; 201 default: 202 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 203 fallthrough; 204 case XDP_ABORTED: 205 trace_xdp_exception(skb->dev, rcpu->prog, act); 206 fallthrough; 207 case XDP_DROP: 208 skb_list_del_init(skb); 209 kfree_skb(skb); 210 stats->drop++; 211 return; 212 } 213 } 214 } 215 216 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 217 void **frames, int n, 218 struct xdp_cpumap_stats *stats) 219 { 220 struct xdp_rxq_info rxq; 221 struct xdp_buff xdp; 222 int i, nframes = 0; 223 224 xdp_set_return_frame_no_direct(); 225 xdp.rxq = &rxq; 226 227 for (i = 0; i < n; i++) { 228 struct xdp_frame *xdpf = frames[i]; 229 u32 act; 230 int err; 231 232 rxq.dev = xdpf->dev_rx; 233 rxq.mem = xdpf->mem; 234 /* TODO: report queue_index to xdp_rxq_info */ 235 236 xdp_convert_frame_to_buff(xdpf, &xdp); 237 238 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 239 switch (act) { 240 case XDP_PASS: 241 err = xdp_update_frame_from_buff(&xdp, xdpf); 242 if (err < 0) { 243 xdp_return_frame(xdpf); 244 stats->drop++; 245 } else { 246 frames[nframes++] = xdpf; 247 stats->pass++; 248 } 249 break; 250 case XDP_REDIRECT: 251 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 252 rcpu->prog); 253 if (unlikely(err)) { 254 xdp_return_frame(xdpf); 255 stats->drop++; 256 } else { 257 stats->redirect++; 258 } 259 break; 260 default: 261 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 262 fallthrough; 263 case XDP_DROP: 264 xdp_return_frame(xdpf); 265 stats->drop++; 266 break; 267 } 268 } 269 270 xdp_clear_return_frame_no_direct(); 271 272 return nframes; 273 } 274 275 #define CPUMAP_BATCH 8 276 277 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, 278 int xdp_n, struct xdp_cpumap_stats *stats, 279 struct list_head *list) 280 { 281 int nframes; 282 283 if (!rcpu->prog) 284 return xdp_n; 285 286 rcu_read_lock_bh(); 287 288 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats); 289 290 if (stats->redirect) 291 xdp_do_flush(); 292 293 if (unlikely(!list_empty(list))) 294 cpu_map_bpf_prog_run_skb(rcpu, list, stats); 295 296 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 297 298 return nframes; 299 } 300 301 302 static int cpu_map_kthread_run(void *data) 303 { 304 struct bpf_cpu_map_entry *rcpu = data; 305 306 set_current_state(TASK_INTERRUPTIBLE); 307 308 /* When kthread gives stop order, then rcpu have been disconnected 309 * from map, thus no new packets can enter. Remaining in-flight 310 * per CPU stored packets are flushed to this queue. Wait honoring 311 * kthread_stop signal until queue is empty. 312 */ 313 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 314 struct xdp_cpumap_stats stats = {}; /* zero stats */ 315 unsigned int kmem_alloc_drops = 0, sched = 0; 316 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 317 int i, n, m, nframes, xdp_n; 318 void *frames[CPUMAP_BATCH]; 319 void *skbs[CPUMAP_BATCH]; 320 LIST_HEAD(list); 321 322 /* Release CPU reschedule checks */ 323 if (__ptr_ring_empty(rcpu->queue)) { 324 set_current_state(TASK_INTERRUPTIBLE); 325 /* Recheck to avoid lost wake-up */ 326 if (__ptr_ring_empty(rcpu->queue)) { 327 schedule(); 328 sched = 1; 329 } else { 330 __set_current_state(TASK_RUNNING); 331 } 332 } else { 333 sched = cond_resched(); 334 } 335 336 /* 337 * The bpf_cpu_map_entry is single consumer, with this 338 * kthread CPU pinned. Lockless access to ptr_ring 339 * consume side valid as no-resize allowed of queue. 340 */ 341 n = __ptr_ring_consume_batched(rcpu->queue, frames, 342 CPUMAP_BATCH); 343 for (i = 0, xdp_n = 0; i < n; i++) { 344 void *f = frames[i]; 345 struct page *page; 346 347 if (unlikely(__ptr_test_bit(0, &f))) { 348 struct sk_buff *skb = f; 349 350 __ptr_clear_bit(0, &skb); 351 list_add_tail(&skb->list, &list); 352 continue; 353 } 354 355 frames[xdp_n++] = f; 356 page = virt_to_page(f); 357 358 /* Bring struct page memory area to curr CPU. Read by 359 * build_skb_around via page_is_pfmemalloc(), and when 360 * freed written by page_frag_free call. 361 */ 362 prefetchw(page); 363 } 364 365 /* Support running another XDP prog on this CPU */ 366 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list); 367 if (nframes) { 368 m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs); 369 if (unlikely(m == 0)) { 370 for (i = 0; i < nframes; i++) 371 skbs[i] = NULL; /* effect: xdp_return_frame */ 372 kmem_alloc_drops += nframes; 373 } 374 } 375 376 local_bh_disable(); 377 for (i = 0; i < nframes; i++) { 378 struct xdp_frame *xdpf = frames[i]; 379 struct sk_buff *skb = skbs[i]; 380 381 skb = __xdp_build_skb_from_frame(xdpf, skb, 382 xdpf->dev_rx); 383 if (!skb) { 384 xdp_return_frame(xdpf); 385 continue; 386 } 387 388 list_add_tail(&skb->list, &list); 389 } 390 netif_receive_skb_list(&list); 391 392 /* Feedback loop via tracepoint */ 393 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 394 sched, &stats); 395 396 local_bh_enable(); /* resched point, may call do_softirq() */ 397 } 398 __set_current_state(TASK_RUNNING); 399 400 put_cpu_map_entry(rcpu); 401 return 0; 402 } 403 404 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, 405 struct bpf_map *map, int fd) 406 { 407 struct bpf_prog *prog; 408 409 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 410 if (IS_ERR(prog)) 411 return PTR_ERR(prog); 412 413 if (prog->expected_attach_type != BPF_XDP_CPUMAP || 414 !bpf_prog_map_compatible(map, prog)) { 415 bpf_prog_put(prog); 416 return -EINVAL; 417 } 418 419 rcpu->value.bpf_prog.id = prog->aux->id; 420 rcpu->prog = prog; 421 422 return 0; 423 } 424 425 static struct bpf_cpu_map_entry * 426 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 427 u32 cpu) 428 { 429 int numa, err, i, fd = value->bpf_prog.fd; 430 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 431 struct bpf_cpu_map_entry *rcpu; 432 struct xdp_bulk_queue *bq; 433 434 /* Have map->numa_node, but choose node of redirect target CPU */ 435 numa = cpu_to_node(cpu); 436 437 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 438 if (!rcpu) 439 return NULL; 440 441 /* Alloc percpu bulkq */ 442 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 443 sizeof(void *), gfp); 444 if (!rcpu->bulkq) 445 goto free_rcu; 446 447 for_each_possible_cpu(i) { 448 bq = per_cpu_ptr(rcpu->bulkq, i); 449 bq->obj = rcpu; 450 } 451 452 /* Alloc queue */ 453 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 454 numa); 455 if (!rcpu->queue) 456 goto free_bulkq; 457 458 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 459 if (err) 460 goto free_queue; 461 462 rcpu->cpu = cpu; 463 rcpu->map_id = map->id; 464 rcpu->value.qsize = value->qsize; 465 466 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd)) 467 goto free_ptr_ring; 468 469 /* Setup kthread */ 470 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 471 "cpumap/%d/map:%d", cpu, 472 map->id); 473 if (IS_ERR(rcpu->kthread)) 474 goto free_prog; 475 476 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 477 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 478 479 /* Make sure kthread runs on a single CPU */ 480 kthread_bind(rcpu->kthread, cpu); 481 wake_up_process(rcpu->kthread); 482 483 return rcpu; 484 485 free_prog: 486 if (rcpu->prog) 487 bpf_prog_put(rcpu->prog); 488 free_ptr_ring: 489 ptr_ring_cleanup(rcpu->queue, NULL); 490 free_queue: 491 kfree(rcpu->queue); 492 free_bulkq: 493 free_percpu(rcpu->bulkq); 494 free_rcu: 495 kfree(rcpu); 496 return NULL; 497 } 498 499 static void __cpu_map_entry_free(struct rcu_head *rcu) 500 { 501 struct bpf_cpu_map_entry *rcpu; 502 503 /* This cpu_map_entry have been disconnected from map and one 504 * RCU grace-period have elapsed. Thus, XDP cannot queue any 505 * new packets and cannot change/set flush_needed that can 506 * find this entry. 507 */ 508 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 509 510 free_percpu(rcpu->bulkq); 511 /* Cannot kthread_stop() here, last put free rcpu resources */ 512 put_cpu_map_entry(rcpu); 513 } 514 515 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 516 * ensure any driver rcu critical sections have completed, but this 517 * does not guarantee a flush has happened yet. Because driver side 518 * rcu_read_lock/unlock only protects the running XDP program. The 519 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 520 * pending flush op doesn't fail. 521 * 522 * The bpf_cpu_map_entry is still used by the kthread, and there can 523 * still be pending packets (in queue and percpu bulkq). A refcnt 524 * makes sure to last user (kthread_stop vs. call_rcu) free memory 525 * resources. 526 * 527 * The rcu callback __cpu_map_entry_free flush remaining packets in 528 * percpu bulkq to queue. Due to caller map_delete_elem() disable 529 * preemption, cannot call kthread_stop() to make sure queue is empty. 530 * Instead a work_queue is started for stopping kthread, 531 * cpu_map_kthread_stop, which waits for an RCU grace period before 532 * stopping kthread, emptying the queue. 533 */ 534 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 535 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 536 { 537 struct bpf_cpu_map_entry *old_rcpu; 538 539 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 540 if (old_rcpu) { 541 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 542 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 543 schedule_work(&old_rcpu->kthread_stop_wq); 544 } 545 } 546 547 static long cpu_map_delete_elem(struct bpf_map *map, void *key) 548 { 549 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 550 u32 key_cpu = *(u32 *)key; 551 552 if (key_cpu >= map->max_entries) 553 return -EINVAL; 554 555 /* notice caller map_delete_elem() use preempt_disable() */ 556 __cpu_map_entry_replace(cmap, key_cpu, NULL); 557 return 0; 558 } 559 560 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 561 u64 map_flags) 562 { 563 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 564 struct bpf_cpumap_val cpumap_value = {}; 565 struct bpf_cpu_map_entry *rcpu; 566 /* Array index key correspond to CPU number */ 567 u32 key_cpu = *(u32 *)key; 568 569 memcpy(&cpumap_value, value, map->value_size); 570 571 if (unlikely(map_flags > BPF_EXIST)) 572 return -EINVAL; 573 if (unlikely(key_cpu >= cmap->map.max_entries)) 574 return -E2BIG; 575 if (unlikely(map_flags == BPF_NOEXIST)) 576 return -EEXIST; 577 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 578 return -EOVERFLOW; 579 580 /* Make sure CPU is a valid possible cpu */ 581 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 582 return -ENODEV; 583 584 if (cpumap_value.qsize == 0) { 585 rcpu = NULL; /* Same as deleting */ 586 } else { 587 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 588 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 589 if (!rcpu) 590 return -ENOMEM; 591 rcpu->cmap = cmap; 592 } 593 rcu_read_lock(); 594 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 595 rcu_read_unlock(); 596 return 0; 597 } 598 599 static void cpu_map_free(struct bpf_map *map) 600 { 601 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 602 u32 i; 603 604 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 605 * so the bpf programs (can be more than one that used this map) were 606 * disconnected from events. Wait for outstanding critical sections in 607 * these programs to complete. The rcu critical section only guarantees 608 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 609 * It does __not__ ensure pending flush operations (if any) are 610 * complete. 611 */ 612 613 synchronize_rcu(); 614 615 /* For cpu_map the remote CPUs can still be using the entries 616 * (struct bpf_cpu_map_entry). 617 */ 618 for (i = 0; i < cmap->map.max_entries; i++) { 619 struct bpf_cpu_map_entry *rcpu; 620 621 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 622 if (!rcpu) 623 continue; 624 625 /* bq flush and cleanup happens after RCU grace-period */ 626 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 627 } 628 bpf_map_area_free(cmap->cpu_map); 629 bpf_map_area_free(cmap); 630 } 631 632 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 633 * by local_bh_disable() (from XDP calls inside NAPI). The 634 * rcu_read_lock_bh_held() below makes lockdep accept both. 635 */ 636 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 637 { 638 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 639 struct bpf_cpu_map_entry *rcpu; 640 641 if (key >= map->max_entries) 642 return NULL; 643 644 rcpu = rcu_dereference_check(cmap->cpu_map[key], 645 rcu_read_lock_bh_held()); 646 return rcpu; 647 } 648 649 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 650 { 651 struct bpf_cpu_map_entry *rcpu = 652 __cpu_map_lookup_elem(map, *(u32 *)key); 653 654 return rcpu ? &rcpu->value : NULL; 655 } 656 657 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 658 { 659 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 660 u32 index = key ? *(u32 *)key : U32_MAX; 661 u32 *next = next_key; 662 663 if (index >= cmap->map.max_entries) { 664 *next = 0; 665 return 0; 666 } 667 668 if (index == cmap->map.max_entries - 1) 669 return -ENOENT; 670 *next = index + 1; 671 return 0; 672 } 673 674 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags) 675 { 676 return __bpf_xdp_redirect_map(map, index, flags, 0, 677 __cpu_map_lookup_elem); 678 } 679 680 static u64 cpu_map_mem_usage(const struct bpf_map *map) 681 { 682 u64 usage = sizeof(struct bpf_cpu_map); 683 684 /* Currently the dynamically allocated elements are not counted */ 685 usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *); 686 return usage; 687 } 688 689 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) 690 const struct bpf_map_ops cpu_map_ops = { 691 .map_meta_equal = bpf_map_meta_equal, 692 .map_alloc = cpu_map_alloc, 693 .map_free = cpu_map_free, 694 .map_delete_elem = cpu_map_delete_elem, 695 .map_update_elem = cpu_map_update_elem, 696 .map_lookup_elem = cpu_map_lookup_elem, 697 .map_get_next_key = cpu_map_get_next_key, 698 .map_check_btf = map_check_no_btf, 699 .map_mem_usage = cpu_map_mem_usage, 700 .map_btf_id = &cpu_map_btf_ids[0], 701 .map_redirect = cpu_map_redirect, 702 }; 703 704 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 705 { 706 struct bpf_cpu_map_entry *rcpu = bq->obj; 707 unsigned int processed = 0, drops = 0; 708 const int to_cpu = rcpu->cpu; 709 struct ptr_ring *q; 710 int i; 711 712 if (unlikely(!bq->count)) 713 return; 714 715 q = rcpu->queue; 716 spin_lock(&q->producer_lock); 717 718 for (i = 0; i < bq->count; i++) { 719 struct xdp_frame *xdpf = bq->q[i]; 720 int err; 721 722 err = __ptr_ring_produce(q, xdpf); 723 if (err) { 724 drops++; 725 xdp_return_frame_rx_napi(xdpf); 726 } 727 processed++; 728 } 729 bq->count = 0; 730 spin_unlock(&q->producer_lock); 731 732 __list_del_clearprev(&bq->flush_node); 733 734 /* Feedback loop via tracepoints */ 735 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 736 } 737 738 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 739 * Thus, safe percpu variable access. 740 */ 741 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 742 { 743 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 744 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 745 746 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 747 bq_flush_to_queue(bq); 748 749 /* Notice, xdp_buff/page MUST be queued here, long enough for 750 * driver to code invoking us to finished, due to driver 751 * (e.g. ixgbe) recycle tricks based on page-refcnt. 752 * 753 * Thus, incoming xdp_frame is always queued here (else we race 754 * with another CPU on page-refcnt and remaining driver code). 755 * Queue time is very short, as driver will invoke flush 756 * operation, when completing napi->poll call. 757 */ 758 bq->q[bq->count++] = xdpf; 759 760 if (!bq->flush_node.prev) 761 list_add(&bq->flush_node, flush_list); 762 } 763 764 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 765 struct net_device *dev_rx) 766 { 767 /* Info needed when constructing SKB on remote CPU */ 768 xdpf->dev_rx = dev_rx; 769 770 bq_enqueue(rcpu, xdpf); 771 return 0; 772 } 773 774 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 775 struct sk_buff *skb) 776 { 777 int ret; 778 779 __skb_pull(skb, skb->mac_len); 780 skb_set_redirected(skb, false); 781 __ptr_set_bit(0, &skb); 782 783 ret = ptr_ring_produce(rcpu->queue, skb); 784 if (ret < 0) 785 goto trace; 786 787 wake_up_process(rcpu->kthread); 788 trace: 789 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); 790 return ret; 791 } 792 793 void __cpu_map_flush(void) 794 { 795 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 796 struct xdp_bulk_queue *bq, *tmp; 797 798 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 799 bq_flush_to_queue(bq); 800 801 /* If already running, costs spin_lock_irqsave + smb_mb */ 802 wake_up_process(bq->obj->kthread); 803 } 804 } 805 806 static int __init cpu_map_init(void) 807 { 808 int cpu; 809 810 for_each_possible_cpu(cpu) 811 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 812 return 0; 813 } 814 815 subsys_initcall(cpu_map_init); 816