1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that queueing the frame and the flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct bpf_cpu_map_entry; 42 struct bpf_cpu_map; 43 44 struct xdp_bulk_queue { 45 void *q[CPU_MAP_BULK_SIZE]; 46 struct list_head flush_node; 47 struct bpf_cpu_map_entry *obj; 48 unsigned int count; 49 }; 50 51 /* Struct for every remote "destination" CPU in map */ 52 struct bpf_cpu_map_entry { 53 u32 cpu; /* kthread CPU and map index */ 54 int map_id; /* Back reference to map */ 55 56 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 57 struct xdp_bulk_queue __percpu *bulkq; 58 59 struct bpf_cpu_map *cmap; 60 61 /* Queue with potential multi-producers, and single-consumer kthread */ 62 struct ptr_ring *queue; 63 struct task_struct *kthread; 64 65 struct bpf_cpumap_val value; 66 struct bpf_prog *prog; 67 68 atomic_t refcnt; /* Control when this struct can be free'ed */ 69 struct rcu_head rcu; 70 71 struct work_struct kthread_stop_wq; 72 }; 73 74 struct bpf_cpu_map { 75 struct bpf_map map; 76 /* Below members specific for map type */ 77 struct bpf_cpu_map_entry **cpu_map; 78 }; 79 80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 81 82 static int bq_flush_to_queue(struct xdp_bulk_queue *bq); 83 84 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 85 { 86 u32 value_size = attr->value_size; 87 struct bpf_cpu_map *cmap; 88 int err = -ENOMEM; 89 u64 cost; 90 int ret; 91 92 if (!bpf_capable()) 93 return ERR_PTR(-EPERM); 94 95 /* check sanity of attributes */ 96 if (attr->max_entries == 0 || attr->key_size != 4 || 97 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 98 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 99 attr->map_flags & ~BPF_F_NUMA_NODE) 100 return ERR_PTR(-EINVAL); 101 102 cmap = kzalloc(sizeof(*cmap), GFP_USER); 103 if (!cmap) 104 return ERR_PTR(-ENOMEM); 105 106 bpf_map_init_from_attr(&cmap->map, attr); 107 108 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 109 if (cmap->map.max_entries > NR_CPUS) { 110 err = -E2BIG; 111 goto free_cmap; 112 } 113 114 /* make sure page count doesn't overflow */ 115 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 116 117 /* Notice returns -EPERM on if map size is larger than memlock limit */ 118 ret = bpf_map_charge_init(&cmap->map.memory, cost); 119 if (ret) { 120 err = ret; 121 goto free_cmap; 122 } 123 124 /* Alloc array for possible remote "destination" CPUs */ 125 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 126 sizeof(struct bpf_cpu_map_entry *), 127 cmap->map.numa_node); 128 if (!cmap->cpu_map) 129 goto free_charge; 130 131 return &cmap->map; 132 free_charge: 133 bpf_map_charge_finish(&cmap->map.memory); 134 free_cmap: 135 kfree(cmap); 136 return ERR_PTR(err); 137 } 138 139 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 140 { 141 atomic_inc(&rcpu->refcnt); 142 } 143 144 /* called from workqueue, to workaround syscall using preempt_disable */ 145 static void cpu_map_kthread_stop(struct work_struct *work) 146 { 147 struct bpf_cpu_map_entry *rcpu; 148 149 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 150 151 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 152 * as it waits until all in-flight call_rcu() callbacks complete. 153 */ 154 rcu_barrier(); 155 156 /* kthread_stop will wake_up_process and wait for it to complete */ 157 kthread_stop(rcpu->kthread); 158 } 159 160 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 161 struct xdp_frame *xdpf, 162 struct sk_buff *skb) 163 { 164 unsigned int hard_start_headroom; 165 unsigned int frame_size; 166 void *pkt_data_start; 167 168 /* Part of headroom was reserved to xdpf */ 169 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 170 171 /* Memory size backing xdp_frame data already have reserved 172 * room for build_skb to place skb_shared_info in tailroom. 173 */ 174 frame_size = xdpf->frame_sz; 175 176 pkt_data_start = xdpf->data - hard_start_headroom; 177 skb = build_skb_around(skb, pkt_data_start, frame_size); 178 if (unlikely(!skb)) 179 return NULL; 180 181 skb_reserve(skb, hard_start_headroom); 182 __skb_put(skb, xdpf->len); 183 if (xdpf->metasize) 184 skb_metadata_set(skb, xdpf->metasize); 185 186 /* Essential SKB info: protocol and skb->dev */ 187 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 188 189 /* Optional SKB info, currently missing: 190 * - HW checksum info (skb->ip_summed) 191 * - HW RX hash (skb_set_hash) 192 * - RX ring dev queue index (skb_record_rx_queue) 193 */ 194 195 /* Until page_pool get SKB return path, release DMA here */ 196 xdp_release_frame(xdpf); 197 198 /* Allow SKB to reuse area used by xdp_frame */ 199 xdp_scrub_frame(xdpf); 200 201 return skb; 202 } 203 204 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 205 { 206 /* The tear-down procedure should have made sure that queue is 207 * empty. See __cpu_map_entry_replace() and work-queue 208 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 209 * gracefully and warn once. 210 */ 211 struct xdp_frame *xdpf; 212 213 while ((xdpf = ptr_ring_consume(ring))) 214 if (WARN_ON_ONCE(xdpf)) 215 xdp_return_frame(xdpf); 216 } 217 218 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 219 { 220 if (atomic_dec_and_test(&rcpu->refcnt)) { 221 if (rcpu->prog) 222 bpf_prog_put(rcpu->prog); 223 /* The queue should be empty at this point */ 224 __cpu_map_ring_cleanup(rcpu->queue); 225 ptr_ring_cleanup(rcpu->queue, NULL); 226 kfree(rcpu->queue); 227 kfree(rcpu); 228 } 229 } 230 231 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 232 void **frames, int n, 233 struct xdp_cpumap_stats *stats) 234 { 235 struct xdp_rxq_info rxq; 236 struct xdp_buff xdp; 237 int i, nframes = 0; 238 239 if (!rcpu->prog) 240 return n; 241 242 rcu_read_lock_bh(); 243 244 xdp_set_return_frame_no_direct(); 245 xdp.rxq = &rxq; 246 247 for (i = 0; i < n; i++) { 248 struct xdp_frame *xdpf = frames[i]; 249 u32 act; 250 int err; 251 252 rxq.dev = xdpf->dev_rx; 253 rxq.mem = xdpf->mem; 254 /* TODO: report queue_index to xdp_rxq_info */ 255 256 xdp_convert_frame_to_buff(xdpf, &xdp); 257 258 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 259 switch (act) { 260 case XDP_PASS: 261 err = xdp_update_frame_from_buff(&xdp, xdpf); 262 if (err < 0) { 263 xdp_return_frame(xdpf); 264 stats->drop++; 265 } else { 266 frames[nframes++] = xdpf; 267 stats->pass++; 268 } 269 break; 270 case XDP_REDIRECT: 271 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 272 rcpu->prog); 273 if (unlikely(err)) { 274 xdp_return_frame(xdpf); 275 stats->drop++; 276 } else { 277 stats->redirect++; 278 } 279 break; 280 default: 281 bpf_warn_invalid_xdp_action(act); 282 fallthrough; 283 case XDP_DROP: 284 xdp_return_frame(xdpf); 285 stats->drop++; 286 break; 287 } 288 } 289 290 if (stats->redirect) 291 xdp_do_flush_map(); 292 293 xdp_clear_return_frame_no_direct(); 294 295 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 296 297 return nframes; 298 } 299 300 #define CPUMAP_BATCH 8 301 302 static int cpu_map_kthread_run(void *data) 303 { 304 struct bpf_cpu_map_entry *rcpu = data; 305 306 set_current_state(TASK_INTERRUPTIBLE); 307 308 /* When kthread gives stop order, then rcpu have been disconnected 309 * from map, thus no new packets can enter. Remaining in-flight 310 * per CPU stored packets are flushed to this queue. Wait honoring 311 * kthread_stop signal until queue is empty. 312 */ 313 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 314 struct xdp_cpumap_stats stats = {}; /* zero stats */ 315 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 316 unsigned int drops = 0, sched = 0; 317 void *frames[CPUMAP_BATCH]; 318 void *skbs[CPUMAP_BATCH]; 319 int i, n, m, nframes; 320 321 /* Release CPU reschedule checks */ 322 if (__ptr_ring_empty(rcpu->queue)) { 323 set_current_state(TASK_INTERRUPTIBLE); 324 /* Recheck to avoid lost wake-up */ 325 if (__ptr_ring_empty(rcpu->queue)) { 326 schedule(); 327 sched = 1; 328 } else { 329 __set_current_state(TASK_RUNNING); 330 } 331 } else { 332 sched = cond_resched(); 333 } 334 335 /* 336 * The bpf_cpu_map_entry is single consumer, with this 337 * kthread CPU pinned. Lockless access to ptr_ring 338 * consume side valid as no-resize allowed of queue. 339 */ 340 n = __ptr_ring_consume_batched(rcpu->queue, frames, 341 CPUMAP_BATCH); 342 for (i = 0; i < n; i++) { 343 void *f = frames[i]; 344 struct page *page = virt_to_page(f); 345 346 /* Bring struct page memory area to curr CPU. Read by 347 * build_skb_around via page_is_pfmemalloc(), and when 348 * freed written by page_frag_free call. 349 */ 350 prefetchw(page); 351 } 352 353 /* Support running another XDP prog on this CPU */ 354 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats); 355 if (nframes) { 356 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 357 if (unlikely(m == 0)) { 358 for (i = 0; i < nframes; i++) 359 skbs[i] = NULL; /* effect: xdp_return_frame */ 360 drops += nframes; 361 } 362 } 363 364 local_bh_disable(); 365 for (i = 0; i < nframes; i++) { 366 struct xdp_frame *xdpf = frames[i]; 367 struct sk_buff *skb = skbs[i]; 368 int ret; 369 370 skb = cpu_map_build_skb(rcpu, xdpf, skb); 371 if (!skb) { 372 xdp_return_frame(xdpf); 373 continue; 374 } 375 376 /* Inject into network stack */ 377 ret = netif_receive_skb_core(skb); 378 if (ret == NET_RX_DROP) 379 drops++; 380 } 381 /* Feedback loop via tracepoint */ 382 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats); 383 384 local_bh_enable(); /* resched point, may call do_softirq() */ 385 } 386 __set_current_state(TASK_RUNNING); 387 388 put_cpu_map_entry(rcpu); 389 return 0; 390 } 391 392 bool cpu_map_prog_allowed(struct bpf_map *map) 393 { 394 return map->map_type == BPF_MAP_TYPE_CPUMAP && 395 map->value_size != offsetofend(struct bpf_cpumap_val, qsize); 396 } 397 398 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd) 399 { 400 struct bpf_prog *prog; 401 402 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 403 if (IS_ERR(prog)) 404 return PTR_ERR(prog); 405 406 if (prog->expected_attach_type != BPF_XDP_CPUMAP) { 407 bpf_prog_put(prog); 408 return -EINVAL; 409 } 410 411 rcpu->value.bpf_prog.id = prog->aux->id; 412 rcpu->prog = prog; 413 414 return 0; 415 } 416 417 static struct bpf_cpu_map_entry * 418 __cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id) 419 { 420 int numa, err, i, fd = value->bpf_prog.fd; 421 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 422 struct bpf_cpu_map_entry *rcpu; 423 struct xdp_bulk_queue *bq; 424 425 /* Have map->numa_node, but choose node of redirect target CPU */ 426 numa = cpu_to_node(cpu); 427 428 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 429 if (!rcpu) 430 return NULL; 431 432 /* Alloc percpu bulkq */ 433 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 434 sizeof(void *), gfp); 435 if (!rcpu->bulkq) 436 goto free_rcu; 437 438 for_each_possible_cpu(i) { 439 bq = per_cpu_ptr(rcpu->bulkq, i); 440 bq->obj = rcpu; 441 } 442 443 /* Alloc queue */ 444 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 445 if (!rcpu->queue) 446 goto free_bulkq; 447 448 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 449 if (err) 450 goto free_queue; 451 452 rcpu->cpu = cpu; 453 rcpu->map_id = map_id; 454 rcpu->value.qsize = value->qsize; 455 456 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd)) 457 goto free_ptr_ring; 458 459 /* Setup kthread */ 460 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 461 "cpumap/%d/map:%d", cpu, map_id); 462 if (IS_ERR(rcpu->kthread)) 463 goto free_prog; 464 465 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 466 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 467 468 /* Make sure kthread runs on a single CPU */ 469 kthread_bind(rcpu->kthread, cpu); 470 wake_up_process(rcpu->kthread); 471 472 return rcpu; 473 474 free_prog: 475 if (rcpu->prog) 476 bpf_prog_put(rcpu->prog); 477 free_ptr_ring: 478 ptr_ring_cleanup(rcpu->queue, NULL); 479 free_queue: 480 kfree(rcpu->queue); 481 free_bulkq: 482 free_percpu(rcpu->bulkq); 483 free_rcu: 484 kfree(rcpu); 485 return NULL; 486 } 487 488 static void __cpu_map_entry_free(struct rcu_head *rcu) 489 { 490 struct bpf_cpu_map_entry *rcpu; 491 492 /* This cpu_map_entry have been disconnected from map and one 493 * RCU grace-period have elapsed. Thus, XDP cannot queue any 494 * new packets and cannot change/set flush_needed that can 495 * find this entry. 496 */ 497 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 498 499 free_percpu(rcpu->bulkq); 500 /* Cannot kthread_stop() here, last put free rcpu resources */ 501 put_cpu_map_entry(rcpu); 502 } 503 504 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 505 * ensure any driver rcu critical sections have completed, but this 506 * does not guarantee a flush has happened yet. Because driver side 507 * rcu_read_lock/unlock only protects the running XDP program. The 508 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 509 * pending flush op doesn't fail. 510 * 511 * The bpf_cpu_map_entry is still used by the kthread, and there can 512 * still be pending packets (in queue and percpu bulkq). A refcnt 513 * makes sure to last user (kthread_stop vs. call_rcu) free memory 514 * resources. 515 * 516 * The rcu callback __cpu_map_entry_free flush remaining packets in 517 * percpu bulkq to queue. Due to caller map_delete_elem() disable 518 * preemption, cannot call kthread_stop() to make sure queue is empty. 519 * Instead a work_queue is started for stopping kthread, 520 * cpu_map_kthread_stop, which waits for an RCU grace period before 521 * stopping kthread, emptying the queue. 522 */ 523 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 524 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 525 { 526 struct bpf_cpu_map_entry *old_rcpu; 527 528 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 529 if (old_rcpu) { 530 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 531 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 532 schedule_work(&old_rcpu->kthread_stop_wq); 533 } 534 } 535 536 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 537 { 538 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 539 u32 key_cpu = *(u32 *)key; 540 541 if (key_cpu >= map->max_entries) 542 return -EINVAL; 543 544 /* notice caller map_delete_elem() use preempt_disable() */ 545 __cpu_map_entry_replace(cmap, key_cpu, NULL); 546 return 0; 547 } 548 549 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 550 u64 map_flags) 551 { 552 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 553 struct bpf_cpumap_val cpumap_value = {}; 554 struct bpf_cpu_map_entry *rcpu; 555 /* Array index key correspond to CPU number */ 556 u32 key_cpu = *(u32 *)key; 557 558 memcpy(&cpumap_value, value, map->value_size); 559 560 if (unlikely(map_flags > BPF_EXIST)) 561 return -EINVAL; 562 if (unlikely(key_cpu >= cmap->map.max_entries)) 563 return -E2BIG; 564 if (unlikely(map_flags == BPF_NOEXIST)) 565 return -EEXIST; 566 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 567 return -EOVERFLOW; 568 569 /* Make sure CPU is a valid possible cpu */ 570 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 571 return -ENODEV; 572 573 if (cpumap_value.qsize == 0) { 574 rcpu = NULL; /* Same as deleting */ 575 } else { 576 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 577 rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id); 578 if (!rcpu) 579 return -ENOMEM; 580 rcpu->cmap = cmap; 581 } 582 rcu_read_lock(); 583 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 584 rcu_read_unlock(); 585 return 0; 586 } 587 588 static void cpu_map_free(struct bpf_map *map) 589 { 590 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 591 u32 i; 592 593 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 594 * so the bpf programs (can be more than one that used this map) were 595 * disconnected from events. Wait for outstanding critical sections in 596 * these programs to complete. The rcu critical section only guarantees 597 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 598 * It does __not__ ensure pending flush operations (if any) are 599 * complete. 600 */ 601 602 bpf_clear_redirect_map(map); 603 synchronize_rcu(); 604 605 /* For cpu_map the remote CPUs can still be using the entries 606 * (struct bpf_cpu_map_entry). 607 */ 608 for (i = 0; i < cmap->map.max_entries; i++) { 609 struct bpf_cpu_map_entry *rcpu; 610 611 rcpu = READ_ONCE(cmap->cpu_map[i]); 612 if (!rcpu) 613 continue; 614 615 /* bq flush and cleanup happens after RCU grace-period */ 616 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 617 } 618 bpf_map_area_free(cmap->cpu_map); 619 kfree(cmap); 620 } 621 622 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 623 { 624 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 625 struct bpf_cpu_map_entry *rcpu; 626 627 if (key >= map->max_entries) 628 return NULL; 629 630 rcpu = READ_ONCE(cmap->cpu_map[key]); 631 return rcpu; 632 } 633 634 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 635 { 636 struct bpf_cpu_map_entry *rcpu = 637 __cpu_map_lookup_elem(map, *(u32 *)key); 638 639 return rcpu ? &rcpu->value : NULL; 640 } 641 642 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 643 { 644 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 645 u32 index = key ? *(u32 *)key : U32_MAX; 646 u32 *next = next_key; 647 648 if (index >= cmap->map.max_entries) { 649 *next = 0; 650 return 0; 651 } 652 653 if (index == cmap->map.max_entries - 1) 654 return -ENOENT; 655 *next = index + 1; 656 return 0; 657 } 658 659 static int cpu_map_btf_id; 660 const struct bpf_map_ops cpu_map_ops = { 661 .map_alloc = cpu_map_alloc, 662 .map_free = cpu_map_free, 663 .map_delete_elem = cpu_map_delete_elem, 664 .map_update_elem = cpu_map_update_elem, 665 .map_lookup_elem = cpu_map_lookup_elem, 666 .map_get_next_key = cpu_map_get_next_key, 667 .map_check_btf = map_check_no_btf, 668 .map_btf_name = "bpf_cpu_map", 669 .map_btf_id = &cpu_map_btf_id, 670 }; 671 672 static int bq_flush_to_queue(struct xdp_bulk_queue *bq) 673 { 674 struct bpf_cpu_map_entry *rcpu = bq->obj; 675 unsigned int processed = 0, drops = 0; 676 const int to_cpu = rcpu->cpu; 677 struct ptr_ring *q; 678 int i; 679 680 if (unlikely(!bq->count)) 681 return 0; 682 683 q = rcpu->queue; 684 spin_lock(&q->producer_lock); 685 686 for (i = 0; i < bq->count; i++) { 687 struct xdp_frame *xdpf = bq->q[i]; 688 int err; 689 690 err = __ptr_ring_produce(q, xdpf); 691 if (err) { 692 drops++; 693 xdp_return_frame_rx_napi(xdpf); 694 } 695 processed++; 696 } 697 bq->count = 0; 698 spin_unlock(&q->producer_lock); 699 700 __list_del_clearprev(&bq->flush_node); 701 702 /* Feedback loop via tracepoints */ 703 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 704 return 0; 705 } 706 707 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 708 * Thus, safe percpu variable access. 709 */ 710 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 711 { 712 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 713 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 714 715 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 716 bq_flush_to_queue(bq); 717 718 /* Notice, xdp_buff/page MUST be queued here, long enough for 719 * driver to code invoking us to finished, due to driver 720 * (e.g. ixgbe) recycle tricks based on page-refcnt. 721 * 722 * Thus, incoming xdp_frame is always queued here (else we race 723 * with another CPU on page-refcnt and remaining driver code). 724 * Queue time is very short, as driver will invoke flush 725 * operation, when completing napi->poll call. 726 */ 727 bq->q[bq->count++] = xdpf; 728 729 if (!bq->flush_node.prev) 730 list_add(&bq->flush_node, flush_list); 731 732 return 0; 733 } 734 735 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 736 struct net_device *dev_rx) 737 { 738 struct xdp_frame *xdpf; 739 740 xdpf = xdp_convert_buff_to_frame(xdp); 741 if (unlikely(!xdpf)) 742 return -EOVERFLOW; 743 744 /* Info needed when constructing SKB on remote CPU */ 745 xdpf->dev_rx = dev_rx; 746 747 bq_enqueue(rcpu, xdpf); 748 return 0; 749 } 750 751 void __cpu_map_flush(void) 752 { 753 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 754 struct xdp_bulk_queue *bq, *tmp; 755 756 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 757 bq_flush_to_queue(bq); 758 759 /* If already running, costs spin_lock_irqsave + smb_mb */ 760 wake_up_process(bq->obj->kthread); 761 } 762 } 763 764 static int __init cpu_map_init(void) 765 { 766 int cpu; 767 768 for_each_possible_cpu(cpu) 769 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 770 return 0; 771 } 772 773 subsys_initcall(cpu_map_init); 774