1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that queueing the frame and the flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct bpf_cpu_map_entry; 42 struct bpf_cpu_map; 43 44 struct xdp_bulk_queue { 45 void *q[CPU_MAP_BULK_SIZE]; 46 struct list_head flush_node; 47 struct bpf_cpu_map_entry *obj; 48 unsigned int count; 49 }; 50 51 /* Struct for every remote "destination" CPU in map */ 52 struct bpf_cpu_map_entry { 53 u32 cpu; /* kthread CPU and map index */ 54 int map_id; /* Back reference to map */ 55 56 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 57 struct xdp_bulk_queue __percpu *bulkq; 58 59 struct bpf_cpu_map *cmap; 60 61 /* Queue with potential multi-producers, and single-consumer kthread */ 62 struct ptr_ring *queue; 63 struct task_struct *kthread; 64 65 struct bpf_cpumap_val value; 66 struct bpf_prog *prog; 67 68 atomic_t refcnt; /* Control when this struct can be free'ed */ 69 struct rcu_head rcu; 70 71 struct work_struct kthread_stop_wq; 72 }; 73 74 struct bpf_cpu_map { 75 struct bpf_map map; 76 /* Below members specific for map type */ 77 struct bpf_cpu_map_entry **cpu_map; 78 }; 79 80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 81 82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 83 { 84 u32 value_size = attr->value_size; 85 struct bpf_cpu_map *cmap; 86 int err = -ENOMEM; 87 u64 cost; 88 int ret; 89 90 if (!bpf_capable()) 91 return ERR_PTR(-EPERM); 92 93 /* check sanity of attributes */ 94 if (attr->max_entries == 0 || attr->key_size != 4 || 95 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 96 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 97 attr->map_flags & ~BPF_F_NUMA_NODE) 98 return ERR_PTR(-EINVAL); 99 100 cmap = kzalloc(sizeof(*cmap), GFP_USER); 101 if (!cmap) 102 return ERR_PTR(-ENOMEM); 103 104 bpf_map_init_from_attr(&cmap->map, attr); 105 106 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 107 if (cmap->map.max_entries > NR_CPUS) { 108 err = -E2BIG; 109 goto free_cmap; 110 } 111 112 /* make sure page count doesn't overflow */ 113 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 114 115 /* Notice returns -EPERM on if map size is larger than memlock limit */ 116 ret = bpf_map_charge_init(&cmap->map.memory, cost); 117 if (ret) { 118 err = ret; 119 goto free_cmap; 120 } 121 122 /* Alloc array for possible remote "destination" CPUs */ 123 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 124 sizeof(struct bpf_cpu_map_entry *), 125 cmap->map.numa_node); 126 if (!cmap->cpu_map) 127 goto free_charge; 128 129 return &cmap->map; 130 free_charge: 131 bpf_map_charge_finish(&cmap->map.memory); 132 free_cmap: 133 kfree(cmap); 134 return ERR_PTR(err); 135 } 136 137 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 138 { 139 atomic_inc(&rcpu->refcnt); 140 } 141 142 /* called from workqueue, to workaround syscall using preempt_disable */ 143 static void cpu_map_kthread_stop(struct work_struct *work) 144 { 145 struct bpf_cpu_map_entry *rcpu; 146 147 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 148 149 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 150 * as it waits until all in-flight call_rcu() callbacks complete. 151 */ 152 rcu_barrier(); 153 154 /* kthread_stop will wake_up_process and wait for it to complete */ 155 kthread_stop(rcpu->kthread); 156 } 157 158 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 159 struct xdp_frame *xdpf, 160 struct sk_buff *skb) 161 { 162 unsigned int hard_start_headroom; 163 unsigned int frame_size; 164 void *pkt_data_start; 165 166 /* Part of headroom was reserved to xdpf */ 167 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 168 169 /* Memory size backing xdp_frame data already have reserved 170 * room for build_skb to place skb_shared_info in tailroom. 171 */ 172 frame_size = xdpf->frame_sz; 173 174 pkt_data_start = xdpf->data - hard_start_headroom; 175 skb = build_skb_around(skb, pkt_data_start, frame_size); 176 if (unlikely(!skb)) 177 return NULL; 178 179 skb_reserve(skb, hard_start_headroom); 180 __skb_put(skb, xdpf->len); 181 if (xdpf->metasize) 182 skb_metadata_set(skb, xdpf->metasize); 183 184 /* Essential SKB info: protocol and skb->dev */ 185 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 186 187 /* Optional SKB info, currently missing: 188 * - HW checksum info (skb->ip_summed) 189 * - HW RX hash (skb_set_hash) 190 * - RX ring dev queue index (skb_record_rx_queue) 191 */ 192 193 /* Until page_pool get SKB return path, release DMA here */ 194 xdp_release_frame(xdpf); 195 196 /* Allow SKB to reuse area used by xdp_frame */ 197 xdp_scrub_frame(xdpf); 198 199 return skb; 200 } 201 202 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 203 { 204 /* The tear-down procedure should have made sure that queue is 205 * empty. See __cpu_map_entry_replace() and work-queue 206 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 207 * gracefully and warn once. 208 */ 209 struct xdp_frame *xdpf; 210 211 while ((xdpf = ptr_ring_consume(ring))) 212 if (WARN_ON_ONCE(xdpf)) 213 xdp_return_frame(xdpf); 214 } 215 216 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 217 { 218 if (atomic_dec_and_test(&rcpu->refcnt)) { 219 if (rcpu->prog) 220 bpf_prog_put(rcpu->prog); 221 /* The queue should be empty at this point */ 222 __cpu_map_ring_cleanup(rcpu->queue); 223 ptr_ring_cleanup(rcpu->queue, NULL); 224 kfree(rcpu->queue); 225 kfree(rcpu); 226 } 227 } 228 229 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 230 void **frames, int n, 231 struct xdp_cpumap_stats *stats) 232 { 233 struct xdp_rxq_info rxq; 234 struct xdp_buff xdp; 235 int i, nframes = 0; 236 237 if (!rcpu->prog) 238 return n; 239 240 rcu_read_lock_bh(); 241 242 xdp_set_return_frame_no_direct(); 243 xdp.rxq = &rxq; 244 245 for (i = 0; i < n; i++) { 246 struct xdp_frame *xdpf = frames[i]; 247 u32 act; 248 int err; 249 250 rxq.dev = xdpf->dev_rx; 251 rxq.mem = xdpf->mem; 252 /* TODO: report queue_index to xdp_rxq_info */ 253 254 xdp_convert_frame_to_buff(xdpf, &xdp); 255 256 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 257 switch (act) { 258 case XDP_PASS: 259 err = xdp_update_frame_from_buff(&xdp, xdpf); 260 if (err < 0) { 261 xdp_return_frame(xdpf); 262 stats->drop++; 263 } else { 264 frames[nframes++] = xdpf; 265 stats->pass++; 266 } 267 break; 268 case XDP_REDIRECT: 269 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 270 rcpu->prog); 271 if (unlikely(err)) { 272 xdp_return_frame(xdpf); 273 stats->drop++; 274 } else { 275 stats->redirect++; 276 } 277 break; 278 default: 279 bpf_warn_invalid_xdp_action(act); 280 fallthrough; 281 case XDP_DROP: 282 xdp_return_frame(xdpf); 283 stats->drop++; 284 break; 285 } 286 } 287 288 if (stats->redirect) 289 xdp_do_flush_map(); 290 291 xdp_clear_return_frame_no_direct(); 292 293 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 294 295 return nframes; 296 } 297 298 #define CPUMAP_BATCH 8 299 300 static int cpu_map_kthread_run(void *data) 301 { 302 struct bpf_cpu_map_entry *rcpu = data; 303 304 set_current_state(TASK_INTERRUPTIBLE); 305 306 /* When kthread gives stop order, then rcpu have been disconnected 307 * from map, thus no new packets can enter. Remaining in-flight 308 * per CPU stored packets are flushed to this queue. Wait honoring 309 * kthread_stop signal until queue is empty. 310 */ 311 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 312 struct xdp_cpumap_stats stats = {}; /* zero stats */ 313 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 314 unsigned int drops = 0, sched = 0; 315 void *frames[CPUMAP_BATCH]; 316 void *skbs[CPUMAP_BATCH]; 317 int i, n, m, nframes; 318 319 /* Release CPU reschedule checks */ 320 if (__ptr_ring_empty(rcpu->queue)) { 321 set_current_state(TASK_INTERRUPTIBLE); 322 /* Recheck to avoid lost wake-up */ 323 if (__ptr_ring_empty(rcpu->queue)) { 324 schedule(); 325 sched = 1; 326 } else { 327 __set_current_state(TASK_RUNNING); 328 } 329 } else { 330 sched = cond_resched(); 331 } 332 333 /* 334 * The bpf_cpu_map_entry is single consumer, with this 335 * kthread CPU pinned. Lockless access to ptr_ring 336 * consume side valid as no-resize allowed of queue. 337 */ 338 n = __ptr_ring_consume_batched(rcpu->queue, frames, 339 CPUMAP_BATCH); 340 for (i = 0; i < n; i++) { 341 void *f = frames[i]; 342 struct page *page = virt_to_page(f); 343 344 /* Bring struct page memory area to curr CPU. Read by 345 * build_skb_around via page_is_pfmemalloc(), and when 346 * freed written by page_frag_free call. 347 */ 348 prefetchw(page); 349 } 350 351 /* Support running another XDP prog on this CPU */ 352 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats); 353 if (nframes) { 354 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 355 if (unlikely(m == 0)) { 356 for (i = 0; i < nframes; i++) 357 skbs[i] = NULL; /* effect: xdp_return_frame */ 358 drops += nframes; 359 } 360 } 361 362 local_bh_disable(); 363 for (i = 0; i < nframes; i++) { 364 struct xdp_frame *xdpf = frames[i]; 365 struct sk_buff *skb = skbs[i]; 366 int ret; 367 368 skb = cpu_map_build_skb(rcpu, xdpf, skb); 369 if (!skb) { 370 xdp_return_frame(xdpf); 371 continue; 372 } 373 374 /* Inject into network stack */ 375 ret = netif_receive_skb_core(skb); 376 if (ret == NET_RX_DROP) 377 drops++; 378 } 379 /* Feedback loop via tracepoint */ 380 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats); 381 382 local_bh_enable(); /* resched point, may call do_softirq() */ 383 } 384 __set_current_state(TASK_RUNNING); 385 386 put_cpu_map_entry(rcpu); 387 return 0; 388 } 389 390 bool cpu_map_prog_allowed(struct bpf_map *map) 391 { 392 return map->map_type == BPF_MAP_TYPE_CPUMAP && 393 map->value_size != offsetofend(struct bpf_cpumap_val, qsize); 394 } 395 396 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd) 397 { 398 struct bpf_prog *prog; 399 400 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 401 if (IS_ERR(prog)) 402 return PTR_ERR(prog); 403 404 if (prog->expected_attach_type != BPF_XDP_CPUMAP) { 405 bpf_prog_put(prog); 406 return -EINVAL; 407 } 408 409 rcpu->value.bpf_prog.id = prog->aux->id; 410 rcpu->prog = prog; 411 412 return 0; 413 } 414 415 static struct bpf_cpu_map_entry * 416 __cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id) 417 { 418 int numa, err, i, fd = value->bpf_prog.fd; 419 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 420 struct bpf_cpu_map_entry *rcpu; 421 struct xdp_bulk_queue *bq; 422 423 /* Have map->numa_node, but choose node of redirect target CPU */ 424 numa = cpu_to_node(cpu); 425 426 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 427 if (!rcpu) 428 return NULL; 429 430 /* Alloc percpu bulkq */ 431 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 432 sizeof(void *), gfp); 433 if (!rcpu->bulkq) 434 goto free_rcu; 435 436 for_each_possible_cpu(i) { 437 bq = per_cpu_ptr(rcpu->bulkq, i); 438 bq->obj = rcpu; 439 } 440 441 /* Alloc queue */ 442 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 443 if (!rcpu->queue) 444 goto free_bulkq; 445 446 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 447 if (err) 448 goto free_queue; 449 450 rcpu->cpu = cpu; 451 rcpu->map_id = map_id; 452 rcpu->value.qsize = value->qsize; 453 454 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd)) 455 goto free_ptr_ring; 456 457 /* Setup kthread */ 458 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 459 "cpumap/%d/map:%d", cpu, map_id); 460 if (IS_ERR(rcpu->kthread)) 461 goto free_prog; 462 463 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 464 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 465 466 /* Make sure kthread runs on a single CPU */ 467 kthread_bind(rcpu->kthread, cpu); 468 wake_up_process(rcpu->kthread); 469 470 return rcpu; 471 472 free_prog: 473 if (rcpu->prog) 474 bpf_prog_put(rcpu->prog); 475 free_ptr_ring: 476 ptr_ring_cleanup(rcpu->queue, NULL); 477 free_queue: 478 kfree(rcpu->queue); 479 free_bulkq: 480 free_percpu(rcpu->bulkq); 481 free_rcu: 482 kfree(rcpu); 483 return NULL; 484 } 485 486 static void __cpu_map_entry_free(struct rcu_head *rcu) 487 { 488 struct bpf_cpu_map_entry *rcpu; 489 490 /* This cpu_map_entry have been disconnected from map and one 491 * RCU grace-period have elapsed. Thus, XDP cannot queue any 492 * new packets and cannot change/set flush_needed that can 493 * find this entry. 494 */ 495 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 496 497 free_percpu(rcpu->bulkq); 498 /* Cannot kthread_stop() here, last put free rcpu resources */ 499 put_cpu_map_entry(rcpu); 500 } 501 502 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 503 * ensure any driver rcu critical sections have completed, but this 504 * does not guarantee a flush has happened yet. Because driver side 505 * rcu_read_lock/unlock only protects the running XDP program. The 506 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 507 * pending flush op doesn't fail. 508 * 509 * The bpf_cpu_map_entry is still used by the kthread, and there can 510 * still be pending packets (in queue and percpu bulkq). A refcnt 511 * makes sure to last user (kthread_stop vs. call_rcu) free memory 512 * resources. 513 * 514 * The rcu callback __cpu_map_entry_free flush remaining packets in 515 * percpu bulkq to queue. Due to caller map_delete_elem() disable 516 * preemption, cannot call kthread_stop() to make sure queue is empty. 517 * Instead a work_queue is started for stopping kthread, 518 * cpu_map_kthread_stop, which waits for an RCU grace period before 519 * stopping kthread, emptying the queue. 520 */ 521 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 522 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 523 { 524 struct bpf_cpu_map_entry *old_rcpu; 525 526 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 527 if (old_rcpu) { 528 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 529 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 530 schedule_work(&old_rcpu->kthread_stop_wq); 531 } 532 } 533 534 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 535 { 536 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 537 u32 key_cpu = *(u32 *)key; 538 539 if (key_cpu >= map->max_entries) 540 return -EINVAL; 541 542 /* notice caller map_delete_elem() use preempt_disable() */ 543 __cpu_map_entry_replace(cmap, key_cpu, NULL); 544 return 0; 545 } 546 547 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 548 u64 map_flags) 549 { 550 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 551 struct bpf_cpumap_val cpumap_value = {}; 552 struct bpf_cpu_map_entry *rcpu; 553 /* Array index key correspond to CPU number */ 554 u32 key_cpu = *(u32 *)key; 555 556 memcpy(&cpumap_value, value, map->value_size); 557 558 if (unlikely(map_flags > BPF_EXIST)) 559 return -EINVAL; 560 if (unlikely(key_cpu >= cmap->map.max_entries)) 561 return -E2BIG; 562 if (unlikely(map_flags == BPF_NOEXIST)) 563 return -EEXIST; 564 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 565 return -EOVERFLOW; 566 567 /* Make sure CPU is a valid possible cpu */ 568 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 569 return -ENODEV; 570 571 if (cpumap_value.qsize == 0) { 572 rcpu = NULL; /* Same as deleting */ 573 } else { 574 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 575 rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id); 576 if (!rcpu) 577 return -ENOMEM; 578 rcpu->cmap = cmap; 579 } 580 rcu_read_lock(); 581 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 582 rcu_read_unlock(); 583 return 0; 584 } 585 586 static void cpu_map_free(struct bpf_map *map) 587 { 588 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 589 u32 i; 590 591 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 592 * so the bpf programs (can be more than one that used this map) were 593 * disconnected from events. Wait for outstanding critical sections in 594 * these programs to complete. The rcu critical section only guarantees 595 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 596 * It does __not__ ensure pending flush operations (if any) are 597 * complete. 598 */ 599 600 bpf_clear_redirect_map(map); 601 synchronize_rcu(); 602 603 /* For cpu_map the remote CPUs can still be using the entries 604 * (struct bpf_cpu_map_entry). 605 */ 606 for (i = 0; i < cmap->map.max_entries; i++) { 607 struct bpf_cpu_map_entry *rcpu; 608 609 rcpu = READ_ONCE(cmap->cpu_map[i]); 610 if (!rcpu) 611 continue; 612 613 /* bq flush and cleanup happens after RCU grace-period */ 614 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 615 } 616 bpf_map_area_free(cmap->cpu_map); 617 kfree(cmap); 618 } 619 620 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 621 { 622 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 623 struct bpf_cpu_map_entry *rcpu; 624 625 if (key >= map->max_entries) 626 return NULL; 627 628 rcpu = READ_ONCE(cmap->cpu_map[key]); 629 return rcpu; 630 } 631 632 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 633 { 634 struct bpf_cpu_map_entry *rcpu = 635 __cpu_map_lookup_elem(map, *(u32 *)key); 636 637 return rcpu ? &rcpu->value : NULL; 638 } 639 640 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 641 { 642 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 643 u32 index = key ? *(u32 *)key : U32_MAX; 644 u32 *next = next_key; 645 646 if (index >= cmap->map.max_entries) { 647 *next = 0; 648 return 0; 649 } 650 651 if (index == cmap->map.max_entries - 1) 652 return -ENOENT; 653 *next = index + 1; 654 return 0; 655 } 656 657 static int cpu_map_btf_id; 658 const struct bpf_map_ops cpu_map_ops = { 659 .map_meta_equal = bpf_map_meta_equal, 660 .map_alloc = cpu_map_alloc, 661 .map_free = cpu_map_free, 662 .map_delete_elem = cpu_map_delete_elem, 663 .map_update_elem = cpu_map_update_elem, 664 .map_lookup_elem = cpu_map_lookup_elem, 665 .map_get_next_key = cpu_map_get_next_key, 666 .map_check_btf = map_check_no_btf, 667 .map_btf_name = "bpf_cpu_map", 668 .map_btf_id = &cpu_map_btf_id, 669 }; 670 671 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 672 { 673 struct bpf_cpu_map_entry *rcpu = bq->obj; 674 unsigned int processed = 0, drops = 0; 675 const int to_cpu = rcpu->cpu; 676 struct ptr_ring *q; 677 int i; 678 679 if (unlikely(!bq->count)) 680 return; 681 682 q = rcpu->queue; 683 spin_lock(&q->producer_lock); 684 685 for (i = 0; i < bq->count; i++) { 686 struct xdp_frame *xdpf = bq->q[i]; 687 int err; 688 689 err = __ptr_ring_produce(q, xdpf); 690 if (err) { 691 drops++; 692 xdp_return_frame_rx_napi(xdpf); 693 } 694 processed++; 695 } 696 bq->count = 0; 697 spin_unlock(&q->producer_lock); 698 699 __list_del_clearprev(&bq->flush_node); 700 701 /* Feedback loop via tracepoints */ 702 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 703 } 704 705 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 706 * Thus, safe percpu variable access. 707 */ 708 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 709 { 710 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 711 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 712 713 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 714 bq_flush_to_queue(bq); 715 716 /* Notice, xdp_buff/page MUST be queued here, long enough for 717 * driver to code invoking us to finished, due to driver 718 * (e.g. ixgbe) recycle tricks based on page-refcnt. 719 * 720 * Thus, incoming xdp_frame is always queued here (else we race 721 * with another CPU on page-refcnt and remaining driver code). 722 * Queue time is very short, as driver will invoke flush 723 * operation, when completing napi->poll call. 724 */ 725 bq->q[bq->count++] = xdpf; 726 727 if (!bq->flush_node.prev) 728 list_add(&bq->flush_node, flush_list); 729 } 730 731 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 732 struct net_device *dev_rx) 733 { 734 struct xdp_frame *xdpf; 735 736 xdpf = xdp_convert_buff_to_frame(xdp); 737 if (unlikely(!xdpf)) 738 return -EOVERFLOW; 739 740 /* Info needed when constructing SKB on remote CPU */ 741 xdpf->dev_rx = dev_rx; 742 743 bq_enqueue(rcpu, xdpf); 744 return 0; 745 } 746 747 void __cpu_map_flush(void) 748 { 749 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 750 struct xdp_bulk_queue *bq, *tmp; 751 752 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 753 bq_flush_to_queue(bq); 754 755 /* If already running, costs spin_lock_irqsave + smb_mb */ 756 wake_up_process(bq->obj->kthread); 757 } 758 } 759 760 static int __init cpu_map_init(void) 761 { 762 int cpu; 763 764 for_each_possible_cpu(cpu) 765 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 766 return 0; 767 } 768 769 subsys_initcall(cpu_map_init); 770