xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 911b8eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that queueing the frame and the flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry;
42 struct bpf_cpu_map;
43 
44 struct xdp_bulk_queue {
45 	void *q[CPU_MAP_BULK_SIZE];
46 	struct list_head flush_node;
47 	struct bpf_cpu_map_entry *obj;
48 	unsigned int count;
49 };
50 
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry {
53 	u32 cpu;    /* kthread CPU and map index */
54 	int map_id; /* Back reference to map */
55 
56 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
57 	struct xdp_bulk_queue __percpu *bulkq;
58 
59 	struct bpf_cpu_map *cmap;
60 
61 	/* Queue with potential multi-producers, and single-consumer kthread */
62 	struct ptr_ring *queue;
63 	struct task_struct *kthread;
64 
65 	struct bpf_cpumap_val value;
66 	struct bpf_prog *prog;
67 
68 	atomic_t refcnt; /* Control when this struct can be free'ed */
69 	struct rcu_head rcu;
70 
71 	struct work_struct kthread_stop_wq;
72 };
73 
74 struct bpf_cpu_map {
75 	struct bpf_map map;
76 	/* Below members specific for map type */
77 	struct bpf_cpu_map_entry **cpu_map;
78 };
79 
80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
81 
82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
83 {
84 	u32 value_size = attr->value_size;
85 	struct bpf_cpu_map *cmap;
86 	int err = -ENOMEM;
87 	u64 cost;
88 	int ret;
89 
90 	if (!bpf_capable())
91 		return ERR_PTR(-EPERM);
92 
93 	/* check sanity of attributes */
94 	if (attr->max_entries == 0 || attr->key_size != 4 ||
95 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
96 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
97 	    attr->map_flags & ~BPF_F_NUMA_NODE)
98 		return ERR_PTR(-EINVAL);
99 
100 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
101 	if (!cmap)
102 		return ERR_PTR(-ENOMEM);
103 
104 	bpf_map_init_from_attr(&cmap->map, attr);
105 
106 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
107 	if (cmap->map.max_entries > NR_CPUS) {
108 		err = -E2BIG;
109 		goto free_cmap;
110 	}
111 
112 	/* make sure page count doesn't overflow */
113 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
114 
115 	/* Notice returns -EPERM on if map size is larger than memlock limit */
116 	ret = bpf_map_charge_init(&cmap->map.memory, cost);
117 	if (ret) {
118 		err = ret;
119 		goto free_cmap;
120 	}
121 
122 	/* Alloc array for possible remote "destination" CPUs */
123 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
124 					   sizeof(struct bpf_cpu_map_entry *),
125 					   cmap->map.numa_node);
126 	if (!cmap->cpu_map)
127 		goto free_charge;
128 
129 	return &cmap->map;
130 free_charge:
131 	bpf_map_charge_finish(&cmap->map.memory);
132 free_cmap:
133 	kfree(cmap);
134 	return ERR_PTR(err);
135 }
136 
137 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
138 {
139 	atomic_inc(&rcpu->refcnt);
140 }
141 
142 /* called from workqueue, to workaround syscall using preempt_disable */
143 static void cpu_map_kthread_stop(struct work_struct *work)
144 {
145 	struct bpf_cpu_map_entry *rcpu;
146 
147 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
148 
149 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
150 	 * as it waits until all in-flight call_rcu() callbacks complete.
151 	 */
152 	rcu_barrier();
153 
154 	/* kthread_stop will wake_up_process and wait for it to complete */
155 	kthread_stop(rcpu->kthread);
156 }
157 
158 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
159 					 struct xdp_frame *xdpf,
160 					 struct sk_buff *skb)
161 {
162 	unsigned int hard_start_headroom;
163 	unsigned int frame_size;
164 	void *pkt_data_start;
165 
166 	/* Part of headroom was reserved to xdpf */
167 	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
168 
169 	/* Memory size backing xdp_frame data already have reserved
170 	 * room for build_skb to place skb_shared_info in tailroom.
171 	 */
172 	frame_size = xdpf->frame_sz;
173 
174 	pkt_data_start = xdpf->data - hard_start_headroom;
175 	skb = build_skb_around(skb, pkt_data_start, frame_size);
176 	if (unlikely(!skb))
177 		return NULL;
178 
179 	skb_reserve(skb, hard_start_headroom);
180 	__skb_put(skb, xdpf->len);
181 	if (xdpf->metasize)
182 		skb_metadata_set(skb, xdpf->metasize);
183 
184 	/* Essential SKB info: protocol and skb->dev */
185 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
186 
187 	/* Optional SKB info, currently missing:
188 	 * - HW checksum info		(skb->ip_summed)
189 	 * - HW RX hash			(skb_set_hash)
190 	 * - RX ring dev queue index	(skb_record_rx_queue)
191 	 */
192 
193 	/* Until page_pool get SKB return path, release DMA here */
194 	xdp_release_frame(xdpf);
195 
196 	/* Allow SKB to reuse area used by xdp_frame */
197 	xdp_scrub_frame(xdpf);
198 
199 	return skb;
200 }
201 
202 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
203 {
204 	/* The tear-down procedure should have made sure that queue is
205 	 * empty.  See __cpu_map_entry_replace() and work-queue
206 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
207 	 * gracefully and warn once.
208 	 */
209 	struct xdp_frame *xdpf;
210 
211 	while ((xdpf = ptr_ring_consume(ring)))
212 		if (WARN_ON_ONCE(xdpf))
213 			xdp_return_frame(xdpf);
214 }
215 
216 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
217 {
218 	if (atomic_dec_and_test(&rcpu->refcnt)) {
219 		if (rcpu->prog)
220 			bpf_prog_put(rcpu->prog);
221 		/* The queue should be empty at this point */
222 		__cpu_map_ring_cleanup(rcpu->queue);
223 		ptr_ring_cleanup(rcpu->queue, NULL);
224 		kfree(rcpu->queue);
225 		kfree(rcpu);
226 	}
227 }
228 
229 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
230 				    void **frames, int n,
231 				    struct xdp_cpumap_stats *stats)
232 {
233 	struct xdp_rxq_info rxq;
234 	struct xdp_buff xdp;
235 	int i, nframes = 0;
236 
237 	if (!rcpu->prog)
238 		return n;
239 
240 	rcu_read_lock_bh();
241 
242 	xdp_set_return_frame_no_direct();
243 	xdp.rxq = &rxq;
244 
245 	for (i = 0; i < n; i++) {
246 		struct xdp_frame *xdpf = frames[i];
247 		u32 act;
248 		int err;
249 
250 		rxq.dev = xdpf->dev_rx;
251 		rxq.mem = xdpf->mem;
252 		/* TODO: report queue_index to xdp_rxq_info */
253 
254 		xdp_convert_frame_to_buff(xdpf, &xdp);
255 
256 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
257 		switch (act) {
258 		case XDP_PASS:
259 			err = xdp_update_frame_from_buff(&xdp, xdpf);
260 			if (err < 0) {
261 				xdp_return_frame(xdpf);
262 				stats->drop++;
263 			} else {
264 				frames[nframes++] = xdpf;
265 				stats->pass++;
266 			}
267 			break;
268 		case XDP_REDIRECT:
269 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
270 					      rcpu->prog);
271 			if (unlikely(err)) {
272 				xdp_return_frame(xdpf);
273 				stats->drop++;
274 			} else {
275 				stats->redirect++;
276 			}
277 			break;
278 		default:
279 			bpf_warn_invalid_xdp_action(act);
280 			fallthrough;
281 		case XDP_DROP:
282 			xdp_return_frame(xdpf);
283 			stats->drop++;
284 			break;
285 		}
286 	}
287 
288 	if (stats->redirect)
289 		xdp_do_flush_map();
290 
291 	xdp_clear_return_frame_no_direct();
292 
293 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
294 
295 	return nframes;
296 }
297 
298 #define CPUMAP_BATCH 8
299 
300 static int cpu_map_kthread_run(void *data)
301 {
302 	struct bpf_cpu_map_entry *rcpu = data;
303 
304 	set_current_state(TASK_INTERRUPTIBLE);
305 
306 	/* When kthread gives stop order, then rcpu have been disconnected
307 	 * from map, thus no new packets can enter. Remaining in-flight
308 	 * per CPU stored packets are flushed to this queue.  Wait honoring
309 	 * kthread_stop signal until queue is empty.
310 	 */
311 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
312 		struct xdp_cpumap_stats stats = {}; /* zero stats */
313 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
314 		unsigned int drops = 0, sched = 0;
315 		void *frames[CPUMAP_BATCH];
316 		void *skbs[CPUMAP_BATCH];
317 		int i, n, m, nframes;
318 
319 		/* Release CPU reschedule checks */
320 		if (__ptr_ring_empty(rcpu->queue)) {
321 			set_current_state(TASK_INTERRUPTIBLE);
322 			/* Recheck to avoid lost wake-up */
323 			if (__ptr_ring_empty(rcpu->queue)) {
324 				schedule();
325 				sched = 1;
326 			} else {
327 				__set_current_state(TASK_RUNNING);
328 			}
329 		} else {
330 			sched = cond_resched();
331 		}
332 
333 		/*
334 		 * The bpf_cpu_map_entry is single consumer, with this
335 		 * kthread CPU pinned. Lockless access to ptr_ring
336 		 * consume side valid as no-resize allowed of queue.
337 		 */
338 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
339 					       CPUMAP_BATCH);
340 		for (i = 0; i < n; i++) {
341 			void *f = frames[i];
342 			struct page *page = virt_to_page(f);
343 
344 			/* Bring struct page memory area to curr CPU. Read by
345 			 * build_skb_around via page_is_pfmemalloc(), and when
346 			 * freed written by page_frag_free call.
347 			 */
348 			prefetchw(page);
349 		}
350 
351 		/* Support running another XDP prog on this CPU */
352 		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
353 		if (nframes) {
354 			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
355 			if (unlikely(m == 0)) {
356 				for (i = 0; i < nframes; i++)
357 					skbs[i] = NULL; /* effect: xdp_return_frame */
358 				drops += nframes;
359 			}
360 		}
361 
362 		local_bh_disable();
363 		for (i = 0; i < nframes; i++) {
364 			struct xdp_frame *xdpf = frames[i];
365 			struct sk_buff *skb = skbs[i];
366 			int ret;
367 
368 			skb = cpu_map_build_skb(rcpu, xdpf, skb);
369 			if (!skb) {
370 				xdp_return_frame(xdpf);
371 				continue;
372 			}
373 
374 			/* Inject into network stack */
375 			ret = netif_receive_skb_core(skb);
376 			if (ret == NET_RX_DROP)
377 				drops++;
378 		}
379 		/* Feedback loop via tracepoint */
380 		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats);
381 
382 		local_bh_enable(); /* resched point, may call do_softirq() */
383 	}
384 	__set_current_state(TASK_RUNNING);
385 
386 	put_cpu_map_entry(rcpu);
387 	return 0;
388 }
389 
390 bool cpu_map_prog_allowed(struct bpf_map *map)
391 {
392 	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
393 	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
394 }
395 
396 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
397 {
398 	struct bpf_prog *prog;
399 
400 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
401 	if (IS_ERR(prog))
402 		return PTR_ERR(prog);
403 
404 	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
405 		bpf_prog_put(prog);
406 		return -EINVAL;
407 	}
408 
409 	rcpu->value.bpf_prog.id = prog->aux->id;
410 	rcpu->prog = prog;
411 
412 	return 0;
413 }
414 
415 static struct bpf_cpu_map_entry *
416 __cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id)
417 {
418 	int numa, err, i, fd = value->bpf_prog.fd;
419 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
420 	struct bpf_cpu_map_entry *rcpu;
421 	struct xdp_bulk_queue *bq;
422 
423 	/* Have map->numa_node, but choose node of redirect target CPU */
424 	numa = cpu_to_node(cpu);
425 
426 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
427 	if (!rcpu)
428 		return NULL;
429 
430 	/* Alloc percpu bulkq */
431 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
432 					 sizeof(void *), gfp);
433 	if (!rcpu->bulkq)
434 		goto free_rcu;
435 
436 	for_each_possible_cpu(i) {
437 		bq = per_cpu_ptr(rcpu->bulkq, i);
438 		bq->obj = rcpu;
439 	}
440 
441 	/* Alloc queue */
442 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
443 	if (!rcpu->queue)
444 		goto free_bulkq;
445 
446 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
447 	if (err)
448 		goto free_queue;
449 
450 	rcpu->cpu    = cpu;
451 	rcpu->map_id = map_id;
452 	rcpu->value.qsize  = value->qsize;
453 
454 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
455 		goto free_ptr_ring;
456 
457 	/* Setup kthread */
458 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
459 					       "cpumap/%d/map:%d", cpu, map_id);
460 	if (IS_ERR(rcpu->kthread))
461 		goto free_prog;
462 
463 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
464 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
465 
466 	/* Make sure kthread runs on a single CPU */
467 	kthread_bind(rcpu->kthread, cpu);
468 	wake_up_process(rcpu->kthread);
469 
470 	return rcpu;
471 
472 free_prog:
473 	if (rcpu->prog)
474 		bpf_prog_put(rcpu->prog);
475 free_ptr_ring:
476 	ptr_ring_cleanup(rcpu->queue, NULL);
477 free_queue:
478 	kfree(rcpu->queue);
479 free_bulkq:
480 	free_percpu(rcpu->bulkq);
481 free_rcu:
482 	kfree(rcpu);
483 	return NULL;
484 }
485 
486 static void __cpu_map_entry_free(struct rcu_head *rcu)
487 {
488 	struct bpf_cpu_map_entry *rcpu;
489 
490 	/* This cpu_map_entry have been disconnected from map and one
491 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
492 	 * new packets and cannot change/set flush_needed that can
493 	 * find this entry.
494 	 */
495 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
496 
497 	free_percpu(rcpu->bulkq);
498 	/* Cannot kthread_stop() here, last put free rcpu resources */
499 	put_cpu_map_entry(rcpu);
500 }
501 
502 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
503  * ensure any driver rcu critical sections have completed, but this
504  * does not guarantee a flush has happened yet. Because driver side
505  * rcu_read_lock/unlock only protects the running XDP program.  The
506  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
507  * pending flush op doesn't fail.
508  *
509  * The bpf_cpu_map_entry is still used by the kthread, and there can
510  * still be pending packets (in queue and percpu bulkq).  A refcnt
511  * makes sure to last user (kthread_stop vs. call_rcu) free memory
512  * resources.
513  *
514  * The rcu callback __cpu_map_entry_free flush remaining packets in
515  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
516  * preemption, cannot call kthread_stop() to make sure queue is empty.
517  * Instead a work_queue is started for stopping kthread,
518  * cpu_map_kthread_stop, which waits for an RCU grace period before
519  * stopping kthread, emptying the queue.
520  */
521 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
522 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
523 {
524 	struct bpf_cpu_map_entry *old_rcpu;
525 
526 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
527 	if (old_rcpu) {
528 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
529 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
530 		schedule_work(&old_rcpu->kthread_stop_wq);
531 	}
532 }
533 
534 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
535 {
536 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
537 	u32 key_cpu = *(u32 *)key;
538 
539 	if (key_cpu >= map->max_entries)
540 		return -EINVAL;
541 
542 	/* notice caller map_delete_elem() use preempt_disable() */
543 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
544 	return 0;
545 }
546 
547 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
548 			       u64 map_flags)
549 {
550 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
551 	struct bpf_cpumap_val cpumap_value = {};
552 	struct bpf_cpu_map_entry *rcpu;
553 	/* Array index key correspond to CPU number */
554 	u32 key_cpu = *(u32 *)key;
555 
556 	memcpy(&cpumap_value, value, map->value_size);
557 
558 	if (unlikely(map_flags > BPF_EXIST))
559 		return -EINVAL;
560 	if (unlikely(key_cpu >= cmap->map.max_entries))
561 		return -E2BIG;
562 	if (unlikely(map_flags == BPF_NOEXIST))
563 		return -EEXIST;
564 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
565 		return -EOVERFLOW;
566 
567 	/* Make sure CPU is a valid possible cpu */
568 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
569 		return -ENODEV;
570 
571 	if (cpumap_value.qsize == 0) {
572 		rcpu = NULL; /* Same as deleting */
573 	} else {
574 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
575 		rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id);
576 		if (!rcpu)
577 			return -ENOMEM;
578 		rcpu->cmap = cmap;
579 	}
580 	rcu_read_lock();
581 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
582 	rcu_read_unlock();
583 	return 0;
584 }
585 
586 static void cpu_map_free(struct bpf_map *map)
587 {
588 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
589 	u32 i;
590 
591 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
592 	 * so the bpf programs (can be more than one that used this map) were
593 	 * disconnected from events. Wait for outstanding critical sections in
594 	 * these programs to complete. The rcu critical section only guarantees
595 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
596 	 * It does __not__ ensure pending flush operations (if any) are
597 	 * complete.
598 	 */
599 
600 	bpf_clear_redirect_map(map);
601 	synchronize_rcu();
602 
603 	/* For cpu_map the remote CPUs can still be using the entries
604 	 * (struct bpf_cpu_map_entry).
605 	 */
606 	for (i = 0; i < cmap->map.max_entries; i++) {
607 		struct bpf_cpu_map_entry *rcpu;
608 
609 		rcpu = READ_ONCE(cmap->cpu_map[i]);
610 		if (!rcpu)
611 			continue;
612 
613 		/* bq flush and cleanup happens after RCU grace-period */
614 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
615 	}
616 	bpf_map_area_free(cmap->cpu_map);
617 	kfree(cmap);
618 }
619 
620 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
621 {
622 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
623 	struct bpf_cpu_map_entry *rcpu;
624 
625 	if (key >= map->max_entries)
626 		return NULL;
627 
628 	rcpu = READ_ONCE(cmap->cpu_map[key]);
629 	return rcpu;
630 }
631 
632 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
633 {
634 	struct bpf_cpu_map_entry *rcpu =
635 		__cpu_map_lookup_elem(map, *(u32 *)key);
636 
637 	return rcpu ? &rcpu->value : NULL;
638 }
639 
640 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
641 {
642 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
643 	u32 index = key ? *(u32 *)key : U32_MAX;
644 	u32 *next = next_key;
645 
646 	if (index >= cmap->map.max_entries) {
647 		*next = 0;
648 		return 0;
649 	}
650 
651 	if (index == cmap->map.max_entries - 1)
652 		return -ENOENT;
653 	*next = index + 1;
654 	return 0;
655 }
656 
657 static int cpu_map_btf_id;
658 const struct bpf_map_ops cpu_map_ops = {
659 	.map_meta_equal		= bpf_map_meta_equal,
660 	.map_alloc		= cpu_map_alloc,
661 	.map_free		= cpu_map_free,
662 	.map_delete_elem	= cpu_map_delete_elem,
663 	.map_update_elem	= cpu_map_update_elem,
664 	.map_lookup_elem	= cpu_map_lookup_elem,
665 	.map_get_next_key	= cpu_map_get_next_key,
666 	.map_check_btf		= map_check_no_btf,
667 	.map_btf_name		= "bpf_cpu_map",
668 	.map_btf_id		= &cpu_map_btf_id,
669 };
670 
671 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
672 {
673 	struct bpf_cpu_map_entry *rcpu = bq->obj;
674 	unsigned int processed = 0, drops = 0;
675 	const int to_cpu = rcpu->cpu;
676 	struct ptr_ring *q;
677 	int i;
678 
679 	if (unlikely(!bq->count))
680 		return;
681 
682 	q = rcpu->queue;
683 	spin_lock(&q->producer_lock);
684 
685 	for (i = 0; i < bq->count; i++) {
686 		struct xdp_frame *xdpf = bq->q[i];
687 		int err;
688 
689 		err = __ptr_ring_produce(q, xdpf);
690 		if (err) {
691 			drops++;
692 			xdp_return_frame_rx_napi(xdpf);
693 		}
694 		processed++;
695 	}
696 	bq->count = 0;
697 	spin_unlock(&q->producer_lock);
698 
699 	__list_del_clearprev(&bq->flush_node);
700 
701 	/* Feedback loop via tracepoints */
702 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
703 }
704 
705 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
706  * Thus, safe percpu variable access.
707  */
708 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
709 {
710 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
711 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
712 
713 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
714 		bq_flush_to_queue(bq);
715 
716 	/* Notice, xdp_buff/page MUST be queued here, long enough for
717 	 * driver to code invoking us to finished, due to driver
718 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
719 	 *
720 	 * Thus, incoming xdp_frame is always queued here (else we race
721 	 * with another CPU on page-refcnt and remaining driver code).
722 	 * Queue time is very short, as driver will invoke flush
723 	 * operation, when completing napi->poll call.
724 	 */
725 	bq->q[bq->count++] = xdpf;
726 
727 	if (!bq->flush_node.prev)
728 		list_add(&bq->flush_node, flush_list);
729 }
730 
731 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
732 		    struct net_device *dev_rx)
733 {
734 	struct xdp_frame *xdpf;
735 
736 	xdpf = xdp_convert_buff_to_frame(xdp);
737 	if (unlikely(!xdpf))
738 		return -EOVERFLOW;
739 
740 	/* Info needed when constructing SKB on remote CPU */
741 	xdpf->dev_rx = dev_rx;
742 
743 	bq_enqueue(rcpu, xdpf);
744 	return 0;
745 }
746 
747 void __cpu_map_flush(void)
748 {
749 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
750 	struct xdp_bulk_queue *bq, *tmp;
751 
752 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
753 		bq_flush_to_queue(bq);
754 
755 		/* If already running, costs spin_lock_irqsave + smb_mb */
756 		wake_up_process(bq->obj->kthread);
757 	}
758 }
759 
760 static int __init cpu_map_init(void)
761 {
762 	int cpu;
763 
764 	for_each_possible_cpu(cpu)
765 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
766 	return 0;
767 }
768 
769 subsys_initcall(cpu_map_init);
770