xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 8e2a46a4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that queueing the frame and the flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry;
42 struct bpf_cpu_map;
43 
44 struct xdp_bulk_queue {
45 	void *q[CPU_MAP_BULK_SIZE];
46 	struct list_head flush_node;
47 	struct bpf_cpu_map_entry *obj;
48 	unsigned int count;
49 };
50 
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry {
53 	u32 cpu;    /* kthread CPU and map index */
54 	int map_id; /* Back reference to map */
55 	u32 qsize;  /* Queue size placeholder for map lookup */
56 
57 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
58 	struct xdp_bulk_queue __percpu *bulkq;
59 
60 	struct bpf_cpu_map *cmap;
61 
62 	/* Queue with potential multi-producers, and single-consumer kthread */
63 	struct ptr_ring *queue;
64 	struct task_struct *kthread;
65 	struct work_struct kthread_stop_wq;
66 
67 	atomic_t refcnt; /* Control when this struct can be free'ed */
68 	struct rcu_head rcu;
69 };
70 
71 struct bpf_cpu_map {
72 	struct bpf_map map;
73 	/* Below members specific for map type */
74 	struct bpf_cpu_map_entry **cpu_map;
75 };
76 
77 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
78 
79 static int bq_flush_to_queue(struct xdp_bulk_queue *bq);
80 
81 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
82 {
83 	struct bpf_cpu_map *cmap;
84 	int err = -ENOMEM;
85 	u64 cost;
86 	int ret;
87 
88 	if (!bpf_capable())
89 		return ERR_PTR(-EPERM);
90 
91 	/* check sanity of attributes */
92 	if (attr->max_entries == 0 || attr->key_size != 4 ||
93 	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
94 		return ERR_PTR(-EINVAL);
95 
96 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
97 	if (!cmap)
98 		return ERR_PTR(-ENOMEM);
99 
100 	bpf_map_init_from_attr(&cmap->map, attr);
101 
102 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
103 	if (cmap->map.max_entries > NR_CPUS) {
104 		err = -E2BIG;
105 		goto free_cmap;
106 	}
107 
108 	/* make sure page count doesn't overflow */
109 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
110 
111 	/* Notice returns -EPERM on if map size is larger than memlock limit */
112 	ret = bpf_map_charge_init(&cmap->map.memory, cost);
113 	if (ret) {
114 		err = ret;
115 		goto free_cmap;
116 	}
117 
118 	/* Alloc array for possible remote "destination" CPUs */
119 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
120 					   sizeof(struct bpf_cpu_map_entry *),
121 					   cmap->map.numa_node);
122 	if (!cmap->cpu_map)
123 		goto free_charge;
124 
125 	return &cmap->map;
126 free_charge:
127 	bpf_map_charge_finish(&cmap->map.memory);
128 free_cmap:
129 	kfree(cmap);
130 	return ERR_PTR(err);
131 }
132 
133 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
134 {
135 	atomic_inc(&rcpu->refcnt);
136 }
137 
138 /* called from workqueue, to workaround syscall using preempt_disable */
139 static void cpu_map_kthread_stop(struct work_struct *work)
140 {
141 	struct bpf_cpu_map_entry *rcpu;
142 
143 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
144 
145 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
146 	 * as it waits until all in-flight call_rcu() callbacks complete.
147 	 */
148 	rcu_barrier();
149 
150 	/* kthread_stop will wake_up_process and wait for it to complete */
151 	kthread_stop(rcpu->kthread);
152 }
153 
154 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
155 					 struct xdp_frame *xdpf,
156 					 struct sk_buff *skb)
157 {
158 	unsigned int hard_start_headroom;
159 	unsigned int frame_size;
160 	void *pkt_data_start;
161 
162 	/* Part of headroom was reserved to xdpf */
163 	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
164 
165 	/* Memory size backing xdp_frame data already have reserved
166 	 * room for build_skb to place skb_shared_info in tailroom.
167 	 */
168 	frame_size = xdpf->frame_sz;
169 
170 	pkt_data_start = xdpf->data - hard_start_headroom;
171 	skb = build_skb_around(skb, pkt_data_start, frame_size);
172 	if (unlikely(!skb))
173 		return NULL;
174 
175 	skb_reserve(skb, hard_start_headroom);
176 	__skb_put(skb, xdpf->len);
177 	if (xdpf->metasize)
178 		skb_metadata_set(skb, xdpf->metasize);
179 
180 	/* Essential SKB info: protocol and skb->dev */
181 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
182 
183 	/* Optional SKB info, currently missing:
184 	 * - HW checksum info		(skb->ip_summed)
185 	 * - HW RX hash			(skb_set_hash)
186 	 * - RX ring dev queue index	(skb_record_rx_queue)
187 	 */
188 
189 	/* Until page_pool get SKB return path, release DMA here */
190 	xdp_release_frame(xdpf);
191 
192 	/* Allow SKB to reuse area used by xdp_frame */
193 	xdp_scrub_frame(xdpf);
194 
195 	return skb;
196 }
197 
198 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
199 {
200 	/* The tear-down procedure should have made sure that queue is
201 	 * empty.  See __cpu_map_entry_replace() and work-queue
202 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
203 	 * gracefully and warn once.
204 	 */
205 	struct xdp_frame *xdpf;
206 
207 	while ((xdpf = ptr_ring_consume(ring)))
208 		if (WARN_ON_ONCE(xdpf))
209 			xdp_return_frame(xdpf);
210 }
211 
212 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
213 {
214 	if (atomic_dec_and_test(&rcpu->refcnt)) {
215 		/* The queue should be empty at this point */
216 		__cpu_map_ring_cleanup(rcpu->queue);
217 		ptr_ring_cleanup(rcpu->queue, NULL);
218 		kfree(rcpu->queue);
219 		kfree(rcpu);
220 	}
221 }
222 
223 #define CPUMAP_BATCH 8
224 
225 static int cpu_map_kthread_run(void *data)
226 {
227 	struct bpf_cpu_map_entry *rcpu = data;
228 
229 	set_current_state(TASK_INTERRUPTIBLE);
230 
231 	/* When kthread gives stop order, then rcpu have been disconnected
232 	 * from map, thus no new packets can enter. Remaining in-flight
233 	 * per CPU stored packets are flushed to this queue.  Wait honoring
234 	 * kthread_stop signal until queue is empty.
235 	 */
236 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
237 		unsigned int drops = 0, sched = 0;
238 		void *frames[CPUMAP_BATCH];
239 		void *skbs[CPUMAP_BATCH];
240 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
241 		int i, n, m;
242 
243 		/* Release CPU reschedule checks */
244 		if (__ptr_ring_empty(rcpu->queue)) {
245 			set_current_state(TASK_INTERRUPTIBLE);
246 			/* Recheck to avoid lost wake-up */
247 			if (__ptr_ring_empty(rcpu->queue)) {
248 				schedule();
249 				sched = 1;
250 			} else {
251 				__set_current_state(TASK_RUNNING);
252 			}
253 		} else {
254 			sched = cond_resched();
255 		}
256 
257 		/*
258 		 * The bpf_cpu_map_entry is single consumer, with this
259 		 * kthread CPU pinned. Lockless access to ptr_ring
260 		 * consume side valid as no-resize allowed of queue.
261 		 */
262 		n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
263 
264 		for (i = 0; i < n; i++) {
265 			void *f = frames[i];
266 			struct page *page = virt_to_page(f);
267 
268 			/* Bring struct page memory area to curr CPU. Read by
269 			 * build_skb_around via page_is_pfmemalloc(), and when
270 			 * freed written by page_frag_free call.
271 			 */
272 			prefetchw(page);
273 		}
274 
275 		m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
276 		if (unlikely(m == 0)) {
277 			for (i = 0; i < n; i++)
278 				skbs[i] = NULL; /* effect: xdp_return_frame */
279 			drops = n;
280 		}
281 
282 		local_bh_disable();
283 		for (i = 0; i < n; i++) {
284 			struct xdp_frame *xdpf = frames[i];
285 			struct sk_buff *skb = skbs[i];
286 			int ret;
287 
288 			skb = cpu_map_build_skb(rcpu, xdpf, skb);
289 			if (!skb) {
290 				xdp_return_frame(xdpf);
291 				continue;
292 			}
293 
294 			/* Inject into network stack */
295 			ret = netif_receive_skb_core(skb);
296 			if (ret == NET_RX_DROP)
297 				drops++;
298 		}
299 		/* Feedback loop via tracepoint */
300 		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
301 
302 		local_bh_enable(); /* resched point, may call do_softirq() */
303 	}
304 	__set_current_state(TASK_RUNNING);
305 
306 	put_cpu_map_entry(rcpu);
307 	return 0;
308 }
309 
310 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
311 						       int map_id)
312 {
313 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
314 	struct bpf_cpu_map_entry *rcpu;
315 	struct xdp_bulk_queue *bq;
316 	int numa, err, i;
317 
318 	/* Have map->numa_node, but choose node of redirect target CPU */
319 	numa = cpu_to_node(cpu);
320 
321 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
322 	if (!rcpu)
323 		return NULL;
324 
325 	/* Alloc percpu bulkq */
326 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
327 					 sizeof(void *), gfp);
328 	if (!rcpu->bulkq)
329 		goto free_rcu;
330 
331 	for_each_possible_cpu(i) {
332 		bq = per_cpu_ptr(rcpu->bulkq, i);
333 		bq->obj = rcpu;
334 	}
335 
336 	/* Alloc queue */
337 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
338 	if (!rcpu->queue)
339 		goto free_bulkq;
340 
341 	err = ptr_ring_init(rcpu->queue, qsize, gfp);
342 	if (err)
343 		goto free_queue;
344 
345 	rcpu->cpu    = cpu;
346 	rcpu->map_id = map_id;
347 	rcpu->qsize  = qsize;
348 
349 	/* Setup kthread */
350 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
351 					       "cpumap/%d/map:%d", cpu, map_id);
352 	if (IS_ERR(rcpu->kthread))
353 		goto free_ptr_ring;
354 
355 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
356 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
357 
358 	/* Make sure kthread runs on a single CPU */
359 	kthread_bind(rcpu->kthread, cpu);
360 	wake_up_process(rcpu->kthread);
361 
362 	return rcpu;
363 
364 free_ptr_ring:
365 	ptr_ring_cleanup(rcpu->queue, NULL);
366 free_queue:
367 	kfree(rcpu->queue);
368 free_bulkq:
369 	free_percpu(rcpu->bulkq);
370 free_rcu:
371 	kfree(rcpu);
372 	return NULL;
373 }
374 
375 static void __cpu_map_entry_free(struct rcu_head *rcu)
376 {
377 	struct bpf_cpu_map_entry *rcpu;
378 
379 	/* This cpu_map_entry have been disconnected from map and one
380 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
381 	 * new packets and cannot change/set flush_needed that can
382 	 * find this entry.
383 	 */
384 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
385 
386 	free_percpu(rcpu->bulkq);
387 	/* Cannot kthread_stop() here, last put free rcpu resources */
388 	put_cpu_map_entry(rcpu);
389 }
390 
391 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
392  * ensure any driver rcu critical sections have completed, but this
393  * does not guarantee a flush has happened yet. Because driver side
394  * rcu_read_lock/unlock only protects the running XDP program.  The
395  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
396  * pending flush op doesn't fail.
397  *
398  * The bpf_cpu_map_entry is still used by the kthread, and there can
399  * still be pending packets (in queue and percpu bulkq).  A refcnt
400  * makes sure to last user (kthread_stop vs. call_rcu) free memory
401  * resources.
402  *
403  * The rcu callback __cpu_map_entry_free flush remaining packets in
404  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
405  * preemption, cannot call kthread_stop() to make sure queue is empty.
406  * Instead a work_queue is started for stopping kthread,
407  * cpu_map_kthread_stop, which waits for an RCU grace period before
408  * stopping kthread, emptying the queue.
409  */
410 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
411 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
412 {
413 	struct bpf_cpu_map_entry *old_rcpu;
414 
415 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
416 	if (old_rcpu) {
417 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
418 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
419 		schedule_work(&old_rcpu->kthread_stop_wq);
420 	}
421 }
422 
423 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
424 {
425 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
426 	u32 key_cpu = *(u32 *)key;
427 
428 	if (key_cpu >= map->max_entries)
429 		return -EINVAL;
430 
431 	/* notice caller map_delete_elem() use preempt_disable() */
432 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
433 	return 0;
434 }
435 
436 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
437 			       u64 map_flags)
438 {
439 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
440 	struct bpf_cpu_map_entry *rcpu;
441 
442 	/* Array index key correspond to CPU number */
443 	u32 key_cpu = *(u32 *)key;
444 	/* Value is the queue size */
445 	u32 qsize = *(u32 *)value;
446 
447 	if (unlikely(map_flags > BPF_EXIST))
448 		return -EINVAL;
449 	if (unlikely(key_cpu >= cmap->map.max_entries))
450 		return -E2BIG;
451 	if (unlikely(map_flags == BPF_NOEXIST))
452 		return -EEXIST;
453 	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
454 		return -EOVERFLOW;
455 
456 	/* Make sure CPU is a valid possible cpu */
457 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
458 		return -ENODEV;
459 
460 	if (qsize == 0) {
461 		rcpu = NULL; /* Same as deleting */
462 	} else {
463 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
464 		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
465 		if (!rcpu)
466 			return -ENOMEM;
467 		rcpu->cmap = cmap;
468 	}
469 	rcu_read_lock();
470 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
471 	rcu_read_unlock();
472 	return 0;
473 }
474 
475 static void cpu_map_free(struct bpf_map *map)
476 {
477 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
478 	u32 i;
479 
480 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
481 	 * so the bpf programs (can be more than one that used this map) were
482 	 * disconnected from events. Wait for outstanding critical sections in
483 	 * these programs to complete. The rcu critical section only guarantees
484 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
485 	 * It does __not__ ensure pending flush operations (if any) are
486 	 * complete.
487 	 */
488 
489 	bpf_clear_redirect_map(map);
490 	synchronize_rcu();
491 
492 	/* For cpu_map the remote CPUs can still be using the entries
493 	 * (struct bpf_cpu_map_entry).
494 	 */
495 	for (i = 0; i < cmap->map.max_entries; i++) {
496 		struct bpf_cpu_map_entry *rcpu;
497 
498 		rcpu = READ_ONCE(cmap->cpu_map[i]);
499 		if (!rcpu)
500 			continue;
501 
502 		/* bq flush and cleanup happens after RCU grace-period */
503 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
504 	}
505 	bpf_map_area_free(cmap->cpu_map);
506 	kfree(cmap);
507 }
508 
509 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
510 {
511 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
512 	struct bpf_cpu_map_entry *rcpu;
513 
514 	if (key >= map->max_entries)
515 		return NULL;
516 
517 	rcpu = READ_ONCE(cmap->cpu_map[key]);
518 	return rcpu;
519 }
520 
521 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
522 {
523 	struct bpf_cpu_map_entry *rcpu =
524 		__cpu_map_lookup_elem(map, *(u32 *)key);
525 
526 	return rcpu ? &rcpu->qsize : NULL;
527 }
528 
529 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
530 {
531 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
532 	u32 index = key ? *(u32 *)key : U32_MAX;
533 	u32 *next = next_key;
534 
535 	if (index >= cmap->map.max_entries) {
536 		*next = 0;
537 		return 0;
538 	}
539 
540 	if (index == cmap->map.max_entries - 1)
541 		return -ENOENT;
542 	*next = index + 1;
543 	return 0;
544 }
545 
546 const struct bpf_map_ops cpu_map_ops = {
547 	.map_alloc		= cpu_map_alloc,
548 	.map_free		= cpu_map_free,
549 	.map_delete_elem	= cpu_map_delete_elem,
550 	.map_update_elem	= cpu_map_update_elem,
551 	.map_lookup_elem	= cpu_map_lookup_elem,
552 	.map_get_next_key	= cpu_map_get_next_key,
553 	.map_check_btf		= map_check_no_btf,
554 };
555 
556 static int bq_flush_to_queue(struct xdp_bulk_queue *bq)
557 {
558 	struct bpf_cpu_map_entry *rcpu = bq->obj;
559 	unsigned int processed = 0, drops = 0;
560 	const int to_cpu = rcpu->cpu;
561 	struct ptr_ring *q;
562 	int i;
563 
564 	if (unlikely(!bq->count))
565 		return 0;
566 
567 	q = rcpu->queue;
568 	spin_lock(&q->producer_lock);
569 
570 	for (i = 0; i < bq->count; i++) {
571 		struct xdp_frame *xdpf = bq->q[i];
572 		int err;
573 
574 		err = __ptr_ring_produce(q, xdpf);
575 		if (err) {
576 			drops++;
577 			xdp_return_frame_rx_napi(xdpf);
578 		}
579 		processed++;
580 	}
581 	bq->count = 0;
582 	spin_unlock(&q->producer_lock);
583 
584 	__list_del_clearprev(&bq->flush_node);
585 
586 	/* Feedback loop via tracepoints */
587 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
588 	return 0;
589 }
590 
591 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
592  * Thus, safe percpu variable access.
593  */
594 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
595 {
596 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
597 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
598 
599 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
600 		bq_flush_to_queue(bq);
601 
602 	/* Notice, xdp_buff/page MUST be queued here, long enough for
603 	 * driver to code invoking us to finished, due to driver
604 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
605 	 *
606 	 * Thus, incoming xdp_frame is always queued here (else we race
607 	 * with another CPU on page-refcnt and remaining driver code).
608 	 * Queue time is very short, as driver will invoke flush
609 	 * operation, when completing napi->poll call.
610 	 */
611 	bq->q[bq->count++] = xdpf;
612 
613 	if (!bq->flush_node.prev)
614 		list_add(&bq->flush_node, flush_list);
615 
616 	return 0;
617 }
618 
619 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
620 		    struct net_device *dev_rx)
621 {
622 	struct xdp_frame *xdpf;
623 
624 	xdpf = xdp_convert_buff_to_frame(xdp);
625 	if (unlikely(!xdpf))
626 		return -EOVERFLOW;
627 
628 	/* Info needed when constructing SKB on remote CPU */
629 	xdpf->dev_rx = dev_rx;
630 
631 	bq_enqueue(rcpu, xdpf);
632 	return 0;
633 }
634 
635 void __cpu_map_flush(void)
636 {
637 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
638 	struct xdp_bulk_queue *bq, *tmp;
639 
640 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
641 		bq_flush_to_queue(bq);
642 
643 		/* If already running, costs spin_lock_irqsave + smb_mb */
644 		wake_up_process(bq->obj->kthread);
645 	}
646 }
647 
648 static int __init cpu_map_init(void)
649 {
650 	int cpu;
651 
652 	for_each_possible_cpu(cpu)
653 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
654 	return 0;
655 }
656 
657 subsys_initcall(cpu_map_init);
658