1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bitops.h> 20 #include <linux/bpf.h> 21 #include <linux/filter.h> 22 #include <linux/ptr_ring.h> 23 #include <net/xdp.h> 24 25 #include <linux/sched.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/capability.h> 29 #include <trace/events/xdp.h> 30 31 #include <linux/netdevice.h> /* netif_receive_skb_list */ 32 #include <linux/etherdevice.h> /* eth_type_trans */ 33 34 /* General idea: XDP packets getting XDP redirected to another CPU, 35 * will maximum be stored/queued for one driver ->poll() call. It is 36 * guaranteed that queueing the frame and the flush operation happen on 37 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 38 * which queue in bpf_cpu_map_entry contains packets. 39 */ 40 41 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 42 struct bpf_cpu_map_entry; 43 struct bpf_cpu_map; 44 45 struct xdp_bulk_queue { 46 void *q[CPU_MAP_BULK_SIZE]; 47 struct list_head flush_node; 48 struct bpf_cpu_map_entry *obj; 49 unsigned int count; 50 }; 51 52 /* Struct for every remote "destination" CPU in map */ 53 struct bpf_cpu_map_entry { 54 u32 cpu; /* kthread CPU and map index */ 55 int map_id; /* Back reference to map */ 56 57 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 58 struct xdp_bulk_queue __percpu *bulkq; 59 60 struct bpf_cpu_map *cmap; 61 62 /* Queue with potential multi-producers, and single-consumer kthread */ 63 struct ptr_ring *queue; 64 struct task_struct *kthread; 65 66 struct bpf_cpumap_val value; 67 struct bpf_prog *prog; 68 69 atomic_t refcnt; /* Control when this struct can be free'ed */ 70 struct rcu_head rcu; 71 72 struct work_struct kthread_stop_wq; 73 }; 74 75 struct bpf_cpu_map { 76 struct bpf_map map; 77 /* Below members specific for map type */ 78 struct bpf_cpu_map_entry __rcu **cpu_map; 79 }; 80 81 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 82 83 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 84 { 85 u32 value_size = attr->value_size; 86 struct bpf_cpu_map *cmap; 87 int err = -ENOMEM; 88 89 if (!bpf_capable()) 90 return ERR_PTR(-EPERM); 91 92 /* check sanity of attributes */ 93 if (attr->max_entries == 0 || attr->key_size != 4 || 94 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 95 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 96 attr->map_flags & ~BPF_F_NUMA_NODE) 97 return ERR_PTR(-EINVAL); 98 99 cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT); 100 if (!cmap) 101 return ERR_PTR(-ENOMEM); 102 103 bpf_map_init_from_attr(&cmap->map, attr); 104 105 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 106 if (cmap->map.max_entries > NR_CPUS) { 107 err = -E2BIG; 108 goto free_cmap; 109 } 110 111 /* Alloc array for possible remote "destination" CPUs */ 112 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 113 sizeof(struct bpf_cpu_map_entry *), 114 cmap->map.numa_node); 115 if (!cmap->cpu_map) 116 goto free_cmap; 117 118 return &cmap->map; 119 free_cmap: 120 kfree(cmap); 121 return ERR_PTR(err); 122 } 123 124 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 125 { 126 atomic_inc(&rcpu->refcnt); 127 } 128 129 /* called from workqueue, to workaround syscall using preempt_disable */ 130 static void cpu_map_kthread_stop(struct work_struct *work) 131 { 132 struct bpf_cpu_map_entry *rcpu; 133 134 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 135 136 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 137 * as it waits until all in-flight call_rcu() callbacks complete. 138 */ 139 rcu_barrier(); 140 141 /* kthread_stop will wake_up_process and wait for it to complete */ 142 kthread_stop(rcpu->kthread); 143 } 144 145 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 146 { 147 /* The tear-down procedure should have made sure that queue is 148 * empty. See __cpu_map_entry_replace() and work-queue 149 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 150 * gracefully and warn once. 151 */ 152 struct xdp_frame *xdpf; 153 154 while ((xdpf = ptr_ring_consume(ring))) 155 if (WARN_ON_ONCE(xdpf)) 156 xdp_return_frame(xdpf); 157 } 158 159 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 160 { 161 if (atomic_dec_and_test(&rcpu->refcnt)) { 162 if (rcpu->prog) 163 bpf_prog_put(rcpu->prog); 164 /* The queue should be empty at this point */ 165 __cpu_map_ring_cleanup(rcpu->queue); 166 ptr_ring_cleanup(rcpu->queue, NULL); 167 kfree(rcpu->queue); 168 kfree(rcpu); 169 } 170 } 171 172 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, 173 struct list_head *listp, 174 struct xdp_cpumap_stats *stats) 175 { 176 struct sk_buff *skb, *tmp; 177 struct xdp_buff xdp; 178 u32 act; 179 int err; 180 181 list_for_each_entry_safe(skb, tmp, listp, list) { 182 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); 183 switch (act) { 184 case XDP_PASS: 185 break; 186 case XDP_REDIRECT: 187 skb_list_del_init(skb); 188 err = xdp_do_generic_redirect(skb->dev, skb, &xdp, 189 rcpu->prog); 190 if (unlikely(err)) { 191 kfree_skb(skb); 192 stats->drop++; 193 } else { 194 stats->redirect++; 195 } 196 return; 197 default: 198 bpf_warn_invalid_xdp_action(act); 199 fallthrough; 200 case XDP_ABORTED: 201 trace_xdp_exception(skb->dev, rcpu->prog, act); 202 fallthrough; 203 case XDP_DROP: 204 skb_list_del_init(skb); 205 kfree_skb(skb); 206 stats->drop++; 207 return; 208 } 209 } 210 } 211 212 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 213 void **frames, int n, 214 struct xdp_cpumap_stats *stats) 215 { 216 struct xdp_rxq_info rxq; 217 struct xdp_buff xdp; 218 int i, nframes = 0; 219 220 xdp_set_return_frame_no_direct(); 221 xdp.rxq = &rxq; 222 223 for (i = 0; i < n; i++) { 224 struct xdp_frame *xdpf = frames[i]; 225 u32 act; 226 int err; 227 228 rxq.dev = xdpf->dev_rx; 229 rxq.mem = xdpf->mem; 230 /* TODO: report queue_index to xdp_rxq_info */ 231 232 xdp_convert_frame_to_buff(xdpf, &xdp); 233 234 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 235 switch (act) { 236 case XDP_PASS: 237 err = xdp_update_frame_from_buff(&xdp, xdpf); 238 if (err < 0) { 239 xdp_return_frame(xdpf); 240 stats->drop++; 241 } else { 242 frames[nframes++] = xdpf; 243 stats->pass++; 244 } 245 break; 246 case XDP_REDIRECT: 247 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 248 rcpu->prog); 249 if (unlikely(err)) { 250 xdp_return_frame(xdpf); 251 stats->drop++; 252 } else { 253 stats->redirect++; 254 } 255 break; 256 default: 257 bpf_warn_invalid_xdp_action(act); 258 fallthrough; 259 case XDP_DROP: 260 xdp_return_frame(xdpf); 261 stats->drop++; 262 break; 263 } 264 } 265 266 xdp_clear_return_frame_no_direct(); 267 268 return nframes; 269 } 270 271 #define CPUMAP_BATCH 8 272 273 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, 274 int xdp_n, struct xdp_cpumap_stats *stats, 275 struct list_head *list) 276 { 277 int nframes; 278 279 if (!rcpu->prog) 280 return xdp_n; 281 282 rcu_read_lock_bh(); 283 284 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats); 285 286 if (stats->redirect) 287 xdp_do_flush(); 288 289 if (unlikely(!list_empty(list))) 290 cpu_map_bpf_prog_run_skb(rcpu, list, stats); 291 292 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 293 294 return nframes; 295 } 296 297 298 static int cpu_map_kthread_run(void *data) 299 { 300 struct bpf_cpu_map_entry *rcpu = data; 301 302 set_current_state(TASK_INTERRUPTIBLE); 303 304 /* When kthread gives stop order, then rcpu have been disconnected 305 * from map, thus no new packets can enter. Remaining in-flight 306 * per CPU stored packets are flushed to this queue. Wait honoring 307 * kthread_stop signal until queue is empty. 308 */ 309 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 310 struct xdp_cpumap_stats stats = {}; /* zero stats */ 311 unsigned int kmem_alloc_drops = 0, sched = 0; 312 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 313 int i, n, m, nframes, xdp_n; 314 void *frames[CPUMAP_BATCH]; 315 void *skbs[CPUMAP_BATCH]; 316 LIST_HEAD(list); 317 318 /* Release CPU reschedule checks */ 319 if (__ptr_ring_empty(rcpu->queue)) { 320 set_current_state(TASK_INTERRUPTIBLE); 321 /* Recheck to avoid lost wake-up */ 322 if (__ptr_ring_empty(rcpu->queue)) { 323 schedule(); 324 sched = 1; 325 } else { 326 __set_current_state(TASK_RUNNING); 327 } 328 } else { 329 sched = cond_resched(); 330 } 331 332 /* 333 * The bpf_cpu_map_entry is single consumer, with this 334 * kthread CPU pinned. Lockless access to ptr_ring 335 * consume side valid as no-resize allowed of queue. 336 */ 337 n = __ptr_ring_consume_batched(rcpu->queue, frames, 338 CPUMAP_BATCH); 339 for (i = 0, xdp_n = 0; i < n; i++) { 340 void *f = frames[i]; 341 struct page *page; 342 343 if (unlikely(__ptr_test_bit(0, &f))) { 344 struct sk_buff *skb = f; 345 346 __ptr_clear_bit(0, &skb); 347 list_add_tail(&skb->list, &list); 348 continue; 349 } 350 351 frames[xdp_n++] = f; 352 page = virt_to_page(f); 353 354 /* Bring struct page memory area to curr CPU. Read by 355 * build_skb_around via page_is_pfmemalloc(), and when 356 * freed written by page_frag_free call. 357 */ 358 prefetchw(page); 359 } 360 361 /* Support running another XDP prog on this CPU */ 362 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list); 363 if (nframes) { 364 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 365 if (unlikely(m == 0)) { 366 for (i = 0; i < nframes; i++) 367 skbs[i] = NULL; /* effect: xdp_return_frame */ 368 kmem_alloc_drops += nframes; 369 } 370 } 371 372 local_bh_disable(); 373 for (i = 0; i < nframes; i++) { 374 struct xdp_frame *xdpf = frames[i]; 375 struct sk_buff *skb = skbs[i]; 376 377 skb = __xdp_build_skb_from_frame(xdpf, skb, 378 xdpf->dev_rx); 379 if (!skb) { 380 xdp_return_frame(xdpf); 381 continue; 382 } 383 384 list_add_tail(&skb->list, &list); 385 } 386 netif_receive_skb_list(&list); 387 388 /* Feedback loop via tracepoint */ 389 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 390 sched, &stats); 391 392 local_bh_enable(); /* resched point, may call do_softirq() */ 393 } 394 __set_current_state(TASK_RUNNING); 395 396 put_cpu_map_entry(rcpu); 397 return 0; 398 } 399 400 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd) 401 { 402 struct bpf_prog *prog; 403 404 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 405 if (IS_ERR(prog)) 406 return PTR_ERR(prog); 407 408 if (prog->expected_attach_type != BPF_XDP_CPUMAP) { 409 bpf_prog_put(prog); 410 return -EINVAL; 411 } 412 413 rcpu->value.bpf_prog.id = prog->aux->id; 414 rcpu->prog = prog; 415 416 return 0; 417 } 418 419 static struct bpf_cpu_map_entry * 420 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 421 u32 cpu) 422 { 423 int numa, err, i, fd = value->bpf_prog.fd; 424 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 425 struct bpf_cpu_map_entry *rcpu; 426 struct xdp_bulk_queue *bq; 427 428 /* Have map->numa_node, but choose node of redirect target CPU */ 429 numa = cpu_to_node(cpu); 430 431 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 432 if (!rcpu) 433 return NULL; 434 435 /* Alloc percpu bulkq */ 436 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 437 sizeof(void *), gfp); 438 if (!rcpu->bulkq) 439 goto free_rcu; 440 441 for_each_possible_cpu(i) { 442 bq = per_cpu_ptr(rcpu->bulkq, i); 443 bq->obj = rcpu; 444 } 445 446 /* Alloc queue */ 447 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 448 numa); 449 if (!rcpu->queue) 450 goto free_bulkq; 451 452 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 453 if (err) 454 goto free_queue; 455 456 rcpu->cpu = cpu; 457 rcpu->map_id = map->id; 458 rcpu->value.qsize = value->qsize; 459 460 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd)) 461 goto free_ptr_ring; 462 463 /* Setup kthread */ 464 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 465 "cpumap/%d/map:%d", cpu, 466 map->id); 467 if (IS_ERR(rcpu->kthread)) 468 goto free_prog; 469 470 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 471 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 472 473 /* Make sure kthread runs on a single CPU */ 474 kthread_bind(rcpu->kthread, cpu); 475 wake_up_process(rcpu->kthread); 476 477 return rcpu; 478 479 free_prog: 480 if (rcpu->prog) 481 bpf_prog_put(rcpu->prog); 482 free_ptr_ring: 483 ptr_ring_cleanup(rcpu->queue, NULL); 484 free_queue: 485 kfree(rcpu->queue); 486 free_bulkq: 487 free_percpu(rcpu->bulkq); 488 free_rcu: 489 kfree(rcpu); 490 return NULL; 491 } 492 493 static void __cpu_map_entry_free(struct rcu_head *rcu) 494 { 495 struct bpf_cpu_map_entry *rcpu; 496 497 /* This cpu_map_entry have been disconnected from map and one 498 * RCU grace-period have elapsed. Thus, XDP cannot queue any 499 * new packets and cannot change/set flush_needed that can 500 * find this entry. 501 */ 502 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 503 504 free_percpu(rcpu->bulkq); 505 /* Cannot kthread_stop() here, last put free rcpu resources */ 506 put_cpu_map_entry(rcpu); 507 } 508 509 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 510 * ensure any driver rcu critical sections have completed, but this 511 * does not guarantee a flush has happened yet. Because driver side 512 * rcu_read_lock/unlock only protects the running XDP program. The 513 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 514 * pending flush op doesn't fail. 515 * 516 * The bpf_cpu_map_entry is still used by the kthread, and there can 517 * still be pending packets (in queue and percpu bulkq). A refcnt 518 * makes sure to last user (kthread_stop vs. call_rcu) free memory 519 * resources. 520 * 521 * The rcu callback __cpu_map_entry_free flush remaining packets in 522 * percpu bulkq to queue. Due to caller map_delete_elem() disable 523 * preemption, cannot call kthread_stop() to make sure queue is empty. 524 * Instead a work_queue is started for stopping kthread, 525 * cpu_map_kthread_stop, which waits for an RCU grace period before 526 * stopping kthread, emptying the queue. 527 */ 528 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 529 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 530 { 531 struct bpf_cpu_map_entry *old_rcpu; 532 533 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 534 if (old_rcpu) { 535 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 536 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 537 schedule_work(&old_rcpu->kthread_stop_wq); 538 } 539 } 540 541 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 542 { 543 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 544 u32 key_cpu = *(u32 *)key; 545 546 if (key_cpu >= map->max_entries) 547 return -EINVAL; 548 549 /* notice caller map_delete_elem() use preempt_disable() */ 550 __cpu_map_entry_replace(cmap, key_cpu, NULL); 551 return 0; 552 } 553 554 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 555 u64 map_flags) 556 { 557 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 558 struct bpf_cpumap_val cpumap_value = {}; 559 struct bpf_cpu_map_entry *rcpu; 560 /* Array index key correspond to CPU number */ 561 u32 key_cpu = *(u32 *)key; 562 563 memcpy(&cpumap_value, value, map->value_size); 564 565 if (unlikely(map_flags > BPF_EXIST)) 566 return -EINVAL; 567 if (unlikely(key_cpu >= cmap->map.max_entries)) 568 return -E2BIG; 569 if (unlikely(map_flags == BPF_NOEXIST)) 570 return -EEXIST; 571 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 572 return -EOVERFLOW; 573 574 /* Make sure CPU is a valid possible cpu */ 575 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 576 return -ENODEV; 577 578 if (cpumap_value.qsize == 0) { 579 rcpu = NULL; /* Same as deleting */ 580 } else { 581 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 582 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 583 if (!rcpu) 584 return -ENOMEM; 585 rcpu->cmap = cmap; 586 } 587 rcu_read_lock(); 588 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 589 rcu_read_unlock(); 590 return 0; 591 } 592 593 static void cpu_map_free(struct bpf_map *map) 594 { 595 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 596 u32 i; 597 598 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 599 * so the bpf programs (can be more than one that used this map) were 600 * disconnected from events. Wait for outstanding critical sections in 601 * these programs to complete. The rcu critical section only guarantees 602 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 603 * It does __not__ ensure pending flush operations (if any) are 604 * complete. 605 */ 606 607 synchronize_rcu(); 608 609 /* For cpu_map the remote CPUs can still be using the entries 610 * (struct bpf_cpu_map_entry). 611 */ 612 for (i = 0; i < cmap->map.max_entries; i++) { 613 struct bpf_cpu_map_entry *rcpu; 614 615 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 616 if (!rcpu) 617 continue; 618 619 /* bq flush and cleanup happens after RCU grace-period */ 620 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 621 } 622 bpf_map_area_free(cmap->cpu_map); 623 kfree(cmap); 624 } 625 626 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 627 * by local_bh_disable() (from XDP calls inside NAPI). The 628 * rcu_read_lock_bh_held() below makes lockdep accept both. 629 */ 630 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 631 { 632 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 633 struct bpf_cpu_map_entry *rcpu; 634 635 if (key >= map->max_entries) 636 return NULL; 637 638 rcpu = rcu_dereference_check(cmap->cpu_map[key], 639 rcu_read_lock_bh_held()); 640 return rcpu; 641 } 642 643 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 644 { 645 struct bpf_cpu_map_entry *rcpu = 646 __cpu_map_lookup_elem(map, *(u32 *)key); 647 648 return rcpu ? &rcpu->value : NULL; 649 } 650 651 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 652 { 653 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 654 u32 index = key ? *(u32 *)key : U32_MAX; 655 u32 *next = next_key; 656 657 if (index >= cmap->map.max_entries) { 658 *next = 0; 659 return 0; 660 } 661 662 if (index == cmap->map.max_entries - 1) 663 return -ENOENT; 664 *next = index + 1; 665 return 0; 666 } 667 668 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags) 669 { 670 return __bpf_xdp_redirect_map(map, ifindex, flags, 0, 671 __cpu_map_lookup_elem); 672 } 673 674 static int cpu_map_btf_id; 675 const struct bpf_map_ops cpu_map_ops = { 676 .map_meta_equal = bpf_map_meta_equal, 677 .map_alloc = cpu_map_alloc, 678 .map_free = cpu_map_free, 679 .map_delete_elem = cpu_map_delete_elem, 680 .map_update_elem = cpu_map_update_elem, 681 .map_lookup_elem = cpu_map_lookup_elem, 682 .map_get_next_key = cpu_map_get_next_key, 683 .map_check_btf = map_check_no_btf, 684 .map_btf_name = "bpf_cpu_map", 685 .map_btf_id = &cpu_map_btf_id, 686 .map_redirect = cpu_map_redirect, 687 }; 688 689 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 690 { 691 struct bpf_cpu_map_entry *rcpu = bq->obj; 692 unsigned int processed = 0, drops = 0; 693 const int to_cpu = rcpu->cpu; 694 struct ptr_ring *q; 695 int i; 696 697 if (unlikely(!bq->count)) 698 return; 699 700 q = rcpu->queue; 701 spin_lock(&q->producer_lock); 702 703 for (i = 0; i < bq->count; i++) { 704 struct xdp_frame *xdpf = bq->q[i]; 705 int err; 706 707 err = __ptr_ring_produce(q, xdpf); 708 if (err) { 709 drops++; 710 xdp_return_frame_rx_napi(xdpf); 711 } 712 processed++; 713 } 714 bq->count = 0; 715 spin_unlock(&q->producer_lock); 716 717 __list_del_clearprev(&bq->flush_node); 718 719 /* Feedback loop via tracepoints */ 720 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 721 } 722 723 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 724 * Thus, safe percpu variable access. 725 */ 726 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 727 { 728 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 729 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 730 731 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 732 bq_flush_to_queue(bq); 733 734 /* Notice, xdp_buff/page MUST be queued here, long enough for 735 * driver to code invoking us to finished, due to driver 736 * (e.g. ixgbe) recycle tricks based on page-refcnt. 737 * 738 * Thus, incoming xdp_frame is always queued here (else we race 739 * with another CPU on page-refcnt and remaining driver code). 740 * Queue time is very short, as driver will invoke flush 741 * operation, when completing napi->poll call. 742 */ 743 bq->q[bq->count++] = xdpf; 744 745 if (!bq->flush_node.prev) 746 list_add(&bq->flush_node, flush_list); 747 } 748 749 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 750 struct net_device *dev_rx) 751 { 752 struct xdp_frame *xdpf; 753 754 xdpf = xdp_convert_buff_to_frame(xdp); 755 if (unlikely(!xdpf)) 756 return -EOVERFLOW; 757 758 /* Info needed when constructing SKB on remote CPU */ 759 xdpf->dev_rx = dev_rx; 760 761 bq_enqueue(rcpu, xdpf); 762 return 0; 763 } 764 765 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 766 struct sk_buff *skb) 767 { 768 int ret; 769 770 __skb_pull(skb, skb->mac_len); 771 skb_set_redirected(skb, false); 772 __ptr_set_bit(0, &skb); 773 774 ret = ptr_ring_produce(rcpu->queue, skb); 775 if (ret < 0) 776 goto trace; 777 778 wake_up_process(rcpu->kthread); 779 trace: 780 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); 781 return ret; 782 } 783 784 void __cpu_map_flush(void) 785 { 786 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 787 struct xdp_bulk_queue *bq, *tmp; 788 789 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 790 bq_flush_to_queue(bq); 791 792 /* If already running, costs spin_lock_irqsave + smb_mb */ 793 wake_up_process(bq->obj->kthread); 794 } 795 } 796 797 static int __init cpu_map_init(void) 798 { 799 int cpu; 800 801 for_each_possible_cpu(cpu) 802 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 803 return 0; 804 } 805 806 subsys_initcall(cpu_map_init); 807