xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 7288dd2f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /**
8  * DOC: cpu map
9  * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11  *
12  * Unlike devmap which redirects XDP frames out to another NIC device,
13  * this map type redirects raw XDP frames to another CPU.  The remote
14  * CPU will do SKB-allocation and call the normal network stack.
15  */
16 /*
17  * This is a scalability and isolation mechanism, that allow
18  * separating the early driver network XDP layer, from the rest of the
19  * netstack, and assigning dedicated CPUs for this stage.  This
20  * basically allows for 10G wirespeed pre-filtering via bpf.
21  */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27 
28 #include <linux/sched.h>
29 #include <linux/workqueue.h>
30 #include <linux/kthread.h>
31 #include <linux/completion.h>
32 #include <trace/events/xdp.h>
33 #include <linux/btf_ids.h>
34 
35 #include <linux/netdevice.h>   /* netif_receive_skb_list */
36 #include <linux/etherdevice.h> /* eth_type_trans */
37 
38 /* General idea: XDP packets getting XDP redirected to another CPU,
39  * will maximum be stored/queued for one driver ->poll() call.  It is
40  * guaranteed that queueing the frame and the flush operation happen on
41  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
42  * which queue in bpf_cpu_map_entry contains packets.
43  */
44 
45 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
46 struct bpf_cpu_map_entry;
47 struct bpf_cpu_map;
48 
49 struct xdp_bulk_queue {
50 	void *q[CPU_MAP_BULK_SIZE];
51 	struct list_head flush_node;
52 	struct bpf_cpu_map_entry *obj;
53 	unsigned int count;
54 };
55 
56 /* Struct for every remote "destination" CPU in map */
57 struct bpf_cpu_map_entry {
58 	u32 cpu;    /* kthread CPU and map index */
59 	int map_id; /* Back reference to map */
60 
61 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
62 	struct xdp_bulk_queue __percpu *bulkq;
63 
64 	/* Queue with potential multi-producers, and single-consumer kthread */
65 	struct ptr_ring *queue;
66 	struct task_struct *kthread;
67 
68 	struct bpf_cpumap_val value;
69 	struct bpf_prog *prog;
70 
71 	atomic_t refcnt; /* Control when this struct can be free'ed */
72 	struct rcu_head rcu;
73 
74 	struct work_struct kthread_stop_wq;
75 	struct completion kthread_running;
76 };
77 
78 struct bpf_cpu_map {
79 	struct bpf_map map;
80 	/* Below members specific for map type */
81 	struct bpf_cpu_map_entry __rcu **cpu_map;
82 };
83 
84 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
85 
86 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
87 {
88 	u32 value_size = attr->value_size;
89 	struct bpf_cpu_map *cmap;
90 
91 	/* check sanity of attributes */
92 	if (attr->max_entries == 0 || attr->key_size != 4 ||
93 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
94 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
95 	    attr->map_flags & ~BPF_F_NUMA_NODE)
96 		return ERR_PTR(-EINVAL);
97 
98 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
99 	if (attr->max_entries > NR_CPUS)
100 		return ERR_PTR(-E2BIG);
101 
102 	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
103 	if (!cmap)
104 		return ERR_PTR(-ENOMEM);
105 
106 	bpf_map_init_from_attr(&cmap->map, attr);
107 
108 	/* Alloc array for possible remote "destination" CPUs */
109 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
110 					   sizeof(struct bpf_cpu_map_entry *),
111 					   cmap->map.numa_node);
112 	if (!cmap->cpu_map) {
113 		bpf_map_area_free(cmap);
114 		return ERR_PTR(-ENOMEM);
115 	}
116 
117 	return &cmap->map;
118 }
119 
120 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
121 {
122 	atomic_inc(&rcpu->refcnt);
123 }
124 
125 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
126 {
127 	/* The tear-down procedure should have made sure that queue is
128 	 * empty.  See __cpu_map_entry_replace() and work-queue
129 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
130 	 * gracefully and warn once.
131 	 */
132 	void *ptr;
133 
134 	while ((ptr = ptr_ring_consume(ring))) {
135 		WARN_ON_ONCE(1);
136 		if (unlikely(__ptr_test_bit(0, &ptr))) {
137 			__ptr_clear_bit(0, &ptr);
138 			kfree_skb(ptr);
139 			continue;
140 		}
141 		xdp_return_frame(ptr);
142 	}
143 }
144 
145 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
146 {
147 	if (atomic_dec_and_test(&rcpu->refcnt)) {
148 		if (rcpu->prog)
149 			bpf_prog_put(rcpu->prog);
150 		/* The queue should be empty at this point */
151 		__cpu_map_ring_cleanup(rcpu->queue);
152 		ptr_ring_cleanup(rcpu->queue, NULL);
153 		kfree(rcpu->queue);
154 		kfree(rcpu);
155 	}
156 }
157 
158 /* called from workqueue, to workaround syscall using preempt_disable */
159 static void cpu_map_kthread_stop(struct work_struct *work)
160 {
161 	struct bpf_cpu_map_entry *rcpu;
162 
163 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
164 
165 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
166 	 * as it waits until all in-flight call_rcu() callbacks complete.
167 	 */
168 	rcu_barrier();
169 
170 	/* kthread_stop will wake_up_process and wait for it to complete */
171 	kthread_stop(rcpu->kthread);
172 }
173 
174 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
175 				     struct list_head *listp,
176 				     struct xdp_cpumap_stats *stats)
177 {
178 	struct sk_buff *skb, *tmp;
179 	struct xdp_buff xdp;
180 	u32 act;
181 	int err;
182 
183 	list_for_each_entry_safe(skb, tmp, listp, list) {
184 		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
185 		switch (act) {
186 		case XDP_PASS:
187 			break;
188 		case XDP_REDIRECT:
189 			skb_list_del_init(skb);
190 			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
191 						      rcpu->prog);
192 			if (unlikely(err)) {
193 				kfree_skb(skb);
194 				stats->drop++;
195 			} else {
196 				stats->redirect++;
197 			}
198 			return;
199 		default:
200 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
201 			fallthrough;
202 		case XDP_ABORTED:
203 			trace_xdp_exception(skb->dev, rcpu->prog, act);
204 			fallthrough;
205 		case XDP_DROP:
206 			skb_list_del_init(skb);
207 			kfree_skb(skb);
208 			stats->drop++;
209 			return;
210 		}
211 	}
212 }
213 
214 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
215 				    void **frames, int n,
216 				    struct xdp_cpumap_stats *stats)
217 {
218 	struct xdp_rxq_info rxq;
219 	struct xdp_buff xdp;
220 	int i, nframes = 0;
221 
222 	xdp_set_return_frame_no_direct();
223 	xdp.rxq = &rxq;
224 
225 	for (i = 0; i < n; i++) {
226 		struct xdp_frame *xdpf = frames[i];
227 		u32 act;
228 		int err;
229 
230 		rxq.dev = xdpf->dev_rx;
231 		rxq.mem = xdpf->mem;
232 		/* TODO: report queue_index to xdp_rxq_info */
233 
234 		xdp_convert_frame_to_buff(xdpf, &xdp);
235 
236 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
237 		switch (act) {
238 		case XDP_PASS:
239 			err = xdp_update_frame_from_buff(&xdp, xdpf);
240 			if (err < 0) {
241 				xdp_return_frame(xdpf);
242 				stats->drop++;
243 			} else {
244 				frames[nframes++] = xdpf;
245 				stats->pass++;
246 			}
247 			break;
248 		case XDP_REDIRECT:
249 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
250 					      rcpu->prog);
251 			if (unlikely(err)) {
252 				xdp_return_frame(xdpf);
253 				stats->drop++;
254 			} else {
255 				stats->redirect++;
256 			}
257 			break;
258 		default:
259 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
260 			fallthrough;
261 		case XDP_DROP:
262 			xdp_return_frame(xdpf);
263 			stats->drop++;
264 			break;
265 		}
266 	}
267 
268 	xdp_clear_return_frame_no_direct();
269 
270 	return nframes;
271 }
272 
273 #define CPUMAP_BATCH 8
274 
275 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
276 				int xdp_n, struct xdp_cpumap_stats *stats,
277 				struct list_head *list)
278 {
279 	int nframes;
280 
281 	if (!rcpu->prog)
282 		return xdp_n;
283 
284 	rcu_read_lock_bh();
285 
286 	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
287 
288 	if (stats->redirect)
289 		xdp_do_flush();
290 
291 	if (unlikely(!list_empty(list)))
292 		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
293 
294 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
295 
296 	return nframes;
297 }
298 
299 static int cpu_map_kthread_run(void *data)
300 {
301 	struct bpf_cpu_map_entry *rcpu = data;
302 
303 	complete(&rcpu->kthread_running);
304 	set_current_state(TASK_INTERRUPTIBLE);
305 
306 	/* When kthread gives stop order, then rcpu have been disconnected
307 	 * from map, thus no new packets can enter. Remaining in-flight
308 	 * per CPU stored packets are flushed to this queue.  Wait honoring
309 	 * kthread_stop signal until queue is empty.
310 	 */
311 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
312 		struct xdp_cpumap_stats stats = {}; /* zero stats */
313 		unsigned int kmem_alloc_drops = 0, sched = 0;
314 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
315 		int i, n, m, nframes, xdp_n;
316 		void *frames[CPUMAP_BATCH];
317 		void *skbs[CPUMAP_BATCH];
318 		LIST_HEAD(list);
319 
320 		/* Release CPU reschedule checks */
321 		if (__ptr_ring_empty(rcpu->queue)) {
322 			set_current_state(TASK_INTERRUPTIBLE);
323 			/* Recheck to avoid lost wake-up */
324 			if (__ptr_ring_empty(rcpu->queue)) {
325 				schedule();
326 				sched = 1;
327 			} else {
328 				__set_current_state(TASK_RUNNING);
329 			}
330 		} else {
331 			sched = cond_resched();
332 		}
333 
334 		/*
335 		 * The bpf_cpu_map_entry is single consumer, with this
336 		 * kthread CPU pinned. Lockless access to ptr_ring
337 		 * consume side valid as no-resize allowed of queue.
338 		 */
339 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
340 					       CPUMAP_BATCH);
341 		for (i = 0, xdp_n = 0; i < n; i++) {
342 			void *f = frames[i];
343 			struct page *page;
344 
345 			if (unlikely(__ptr_test_bit(0, &f))) {
346 				struct sk_buff *skb = f;
347 
348 				__ptr_clear_bit(0, &skb);
349 				list_add_tail(&skb->list, &list);
350 				continue;
351 			}
352 
353 			frames[xdp_n++] = f;
354 			page = virt_to_page(f);
355 
356 			/* Bring struct page memory area to curr CPU. Read by
357 			 * build_skb_around via page_is_pfmemalloc(), and when
358 			 * freed written by page_frag_free call.
359 			 */
360 			prefetchw(page);
361 		}
362 
363 		/* Support running another XDP prog on this CPU */
364 		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
365 		if (nframes) {
366 			m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs);
367 			if (unlikely(m == 0)) {
368 				for (i = 0; i < nframes; i++)
369 					skbs[i] = NULL; /* effect: xdp_return_frame */
370 				kmem_alloc_drops += nframes;
371 			}
372 		}
373 
374 		local_bh_disable();
375 		for (i = 0; i < nframes; i++) {
376 			struct xdp_frame *xdpf = frames[i];
377 			struct sk_buff *skb = skbs[i];
378 
379 			skb = __xdp_build_skb_from_frame(xdpf, skb,
380 							 xdpf->dev_rx);
381 			if (!skb) {
382 				xdp_return_frame(xdpf);
383 				continue;
384 			}
385 
386 			list_add_tail(&skb->list, &list);
387 		}
388 		netif_receive_skb_list(&list);
389 
390 		/* Feedback loop via tracepoint */
391 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
392 					 sched, &stats);
393 
394 		local_bh_enable(); /* resched point, may call do_softirq() */
395 	}
396 	__set_current_state(TASK_RUNNING);
397 
398 	put_cpu_map_entry(rcpu);
399 	return 0;
400 }
401 
402 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
403 				      struct bpf_map *map, int fd)
404 {
405 	struct bpf_prog *prog;
406 
407 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
408 	if (IS_ERR(prog))
409 		return PTR_ERR(prog);
410 
411 	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
412 	    !bpf_prog_map_compatible(map, prog)) {
413 		bpf_prog_put(prog);
414 		return -EINVAL;
415 	}
416 
417 	rcpu->value.bpf_prog.id = prog->aux->id;
418 	rcpu->prog = prog;
419 
420 	return 0;
421 }
422 
423 static struct bpf_cpu_map_entry *
424 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
425 		      u32 cpu)
426 {
427 	int numa, err, i, fd = value->bpf_prog.fd;
428 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
429 	struct bpf_cpu_map_entry *rcpu;
430 	struct xdp_bulk_queue *bq;
431 
432 	/* Have map->numa_node, but choose node of redirect target CPU */
433 	numa = cpu_to_node(cpu);
434 
435 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
436 	if (!rcpu)
437 		return NULL;
438 
439 	/* Alloc percpu bulkq */
440 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
441 					   sizeof(void *), gfp);
442 	if (!rcpu->bulkq)
443 		goto free_rcu;
444 
445 	for_each_possible_cpu(i) {
446 		bq = per_cpu_ptr(rcpu->bulkq, i);
447 		bq->obj = rcpu;
448 	}
449 
450 	/* Alloc queue */
451 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
452 					   numa);
453 	if (!rcpu->queue)
454 		goto free_bulkq;
455 
456 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
457 	if (err)
458 		goto free_queue;
459 
460 	rcpu->cpu    = cpu;
461 	rcpu->map_id = map->id;
462 	rcpu->value.qsize  = value->qsize;
463 
464 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
465 		goto free_ptr_ring;
466 
467 	/* Setup kthread */
468 	init_completion(&rcpu->kthread_running);
469 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
470 					       "cpumap/%d/map:%d", cpu,
471 					       map->id);
472 	if (IS_ERR(rcpu->kthread))
473 		goto free_prog;
474 
475 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
476 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
477 
478 	/* Make sure kthread runs on a single CPU */
479 	kthread_bind(rcpu->kthread, cpu);
480 	wake_up_process(rcpu->kthread);
481 
482 	/* Make sure kthread has been running, so kthread_stop() will not
483 	 * stop the kthread prematurely and all pending frames or skbs
484 	 * will be handled by the kthread before kthread_stop() returns.
485 	 */
486 	wait_for_completion(&rcpu->kthread_running);
487 
488 	return rcpu;
489 
490 free_prog:
491 	if (rcpu->prog)
492 		bpf_prog_put(rcpu->prog);
493 free_ptr_ring:
494 	ptr_ring_cleanup(rcpu->queue, NULL);
495 free_queue:
496 	kfree(rcpu->queue);
497 free_bulkq:
498 	free_percpu(rcpu->bulkq);
499 free_rcu:
500 	kfree(rcpu);
501 	return NULL;
502 }
503 
504 static void __cpu_map_entry_free(struct rcu_head *rcu)
505 {
506 	struct bpf_cpu_map_entry *rcpu;
507 
508 	/* This cpu_map_entry have been disconnected from map and one
509 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
510 	 * new packets and cannot change/set flush_needed that can
511 	 * find this entry.
512 	 */
513 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
514 
515 	free_percpu(rcpu->bulkq);
516 	/* Cannot kthread_stop() here, last put free rcpu resources */
517 	put_cpu_map_entry(rcpu);
518 }
519 
520 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
521  * ensure any driver rcu critical sections have completed, but this
522  * does not guarantee a flush has happened yet. Because driver side
523  * rcu_read_lock/unlock only protects the running XDP program.  The
524  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
525  * pending flush op doesn't fail.
526  *
527  * The bpf_cpu_map_entry is still used by the kthread, and there can
528  * still be pending packets (in queue and percpu bulkq).  A refcnt
529  * makes sure to last user (kthread_stop vs. call_rcu) free memory
530  * resources.
531  *
532  * The rcu callback __cpu_map_entry_free flush remaining packets in
533  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
534  * preemption, cannot call kthread_stop() to make sure queue is empty.
535  * Instead a work_queue is started for stopping kthread,
536  * cpu_map_kthread_stop, which waits for an RCU grace period before
537  * stopping kthread, emptying the queue.
538  */
539 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
540 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
541 {
542 	struct bpf_cpu_map_entry *old_rcpu;
543 
544 	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
545 	if (old_rcpu) {
546 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
547 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
548 		schedule_work(&old_rcpu->kthread_stop_wq);
549 	}
550 }
551 
552 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
553 {
554 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
555 	u32 key_cpu = *(u32 *)key;
556 
557 	if (key_cpu >= map->max_entries)
558 		return -EINVAL;
559 
560 	/* notice caller map_delete_elem() use preempt_disable() */
561 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
562 	return 0;
563 }
564 
565 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
566 				u64 map_flags)
567 {
568 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
569 	struct bpf_cpumap_val cpumap_value = {};
570 	struct bpf_cpu_map_entry *rcpu;
571 	/* Array index key correspond to CPU number */
572 	u32 key_cpu = *(u32 *)key;
573 
574 	memcpy(&cpumap_value, value, map->value_size);
575 
576 	if (unlikely(map_flags > BPF_EXIST))
577 		return -EINVAL;
578 	if (unlikely(key_cpu >= cmap->map.max_entries))
579 		return -E2BIG;
580 	if (unlikely(map_flags == BPF_NOEXIST))
581 		return -EEXIST;
582 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
583 		return -EOVERFLOW;
584 
585 	/* Make sure CPU is a valid possible cpu */
586 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
587 		return -ENODEV;
588 
589 	if (cpumap_value.qsize == 0) {
590 		rcpu = NULL; /* Same as deleting */
591 	} else {
592 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
593 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
594 		if (!rcpu)
595 			return -ENOMEM;
596 	}
597 	rcu_read_lock();
598 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
599 	rcu_read_unlock();
600 	return 0;
601 }
602 
603 static void cpu_map_free(struct bpf_map *map)
604 {
605 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
606 	u32 i;
607 
608 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
609 	 * so the bpf programs (can be more than one that used this map) were
610 	 * disconnected from events. Wait for outstanding critical sections in
611 	 * these programs to complete. The rcu critical section only guarantees
612 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
613 	 * It does __not__ ensure pending flush operations (if any) are
614 	 * complete.
615 	 */
616 
617 	synchronize_rcu();
618 
619 	/* For cpu_map the remote CPUs can still be using the entries
620 	 * (struct bpf_cpu_map_entry).
621 	 */
622 	for (i = 0; i < cmap->map.max_entries; i++) {
623 		struct bpf_cpu_map_entry *rcpu;
624 
625 		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
626 		if (!rcpu)
627 			continue;
628 
629 		/* bq flush and cleanup happens after RCU grace-period */
630 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
631 	}
632 	bpf_map_area_free(cmap->cpu_map);
633 	bpf_map_area_free(cmap);
634 }
635 
636 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
637  * by local_bh_disable() (from XDP calls inside NAPI). The
638  * rcu_read_lock_bh_held() below makes lockdep accept both.
639  */
640 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
641 {
642 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
643 	struct bpf_cpu_map_entry *rcpu;
644 
645 	if (key >= map->max_entries)
646 		return NULL;
647 
648 	rcpu = rcu_dereference_check(cmap->cpu_map[key],
649 				     rcu_read_lock_bh_held());
650 	return rcpu;
651 }
652 
653 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
654 {
655 	struct bpf_cpu_map_entry *rcpu =
656 		__cpu_map_lookup_elem(map, *(u32 *)key);
657 
658 	return rcpu ? &rcpu->value : NULL;
659 }
660 
661 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
662 {
663 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
664 	u32 index = key ? *(u32 *)key : U32_MAX;
665 	u32 *next = next_key;
666 
667 	if (index >= cmap->map.max_entries) {
668 		*next = 0;
669 		return 0;
670 	}
671 
672 	if (index == cmap->map.max_entries - 1)
673 		return -ENOENT;
674 	*next = index + 1;
675 	return 0;
676 }
677 
678 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
679 {
680 	return __bpf_xdp_redirect_map(map, index, flags, 0,
681 				      __cpu_map_lookup_elem);
682 }
683 
684 static u64 cpu_map_mem_usage(const struct bpf_map *map)
685 {
686 	u64 usage = sizeof(struct bpf_cpu_map);
687 
688 	/* Currently the dynamically allocated elements are not counted */
689 	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
690 	return usage;
691 }
692 
693 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
694 const struct bpf_map_ops cpu_map_ops = {
695 	.map_meta_equal		= bpf_map_meta_equal,
696 	.map_alloc		= cpu_map_alloc,
697 	.map_free		= cpu_map_free,
698 	.map_delete_elem	= cpu_map_delete_elem,
699 	.map_update_elem	= cpu_map_update_elem,
700 	.map_lookup_elem	= cpu_map_lookup_elem,
701 	.map_get_next_key	= cpu_map_get_next_key,
702 	.map_check_btf		= map_check_no_btf,
703 	.map_mem_usage		= cpu_map_mem_usage,
704 	.map_btf_id		= &cpu_map_btf_ids[0],
705 	.map_redirect		= cpu_map_redirect,
706 };
707 
708 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
709 {
710 	struct bpf_cpu_map_entry *rcpu = bq->obj;
711 	unsigned int processed = 0, drops = 0;
712 	const int to_cpu = rcpu->cpu;
713 	struct ptr_ring *q;
714 	int i;
715 
716 	if (unlikely(!bq->count))
717 		return;
718 
719 	q = rcpu->queue;
720 	spin_lock(&q->producer_lock);
721 
722 	for (i = 0; i < bq->count; i++) {
723 		struct xdp_frame *xdpf = bq->q[i];
724 		int err;
725 
726 		err = __ptr_ring_produce(q, xdpf);
727 		if (err) {
728 			drops++;
729 			xdp_return_frame_rx_napi(xdpf);
730 		}
731 		processed++;
732 	}
733 	bq->count = 0;
734 	spin_unlock(&q->producer_lock);
735 
736 	__list_del_clearprev(&bq->flush_node);
737 
738 	/* Feedback loop via tracepoints */
739 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
740 }
741 
742 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
743  * Thus, safe percpu variable access.
744  */
745 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
746 {
747 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
748 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
749 
750 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
751 		bq_flush_to_queue(bq);
752 
753 	/* Notice, xdp_buff/page MUST be queued here, long enough for
754 	 * driver to code invoking us to finished, due to driver
755 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
756 	 *
757 	 * Thus, incoming xdp_frame is always queued here (else we race
758 	 * with another CPU on page-refcnt and remaining driver code).
759 	 * Queue time is very short, as driver will invoke flush
760 	 * operation, when completing napi->poll call.
761 	 */
762 	bq->q[bq->count++] = xdpf;
763 
764 	if (!bq->flush_node.prev)
765 		list_add(&bq->flush_node, flush_list);
766 }
767 
768 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
769 		    struct net_device *dev_rx)
770 {
771 	/* Info needed when constructing SKB on remote CPU */
772 	xdpf->dev_rx = dev_rx;
773 
774 	bq_enqueue(rcpu, xdpf);
775 	return 0;
776 }
777 
778 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
779 			     struct sk_buff *skb)
780 {
781 	int ret;
782 
783 	__skb_pull(skb, skb->mac_len);
784 	skb_set_redirected(skb, false);
785 	__ptr_set_bit(0, &skb);
786 
787 	ret = ptr_ring_produce(rcpu->queue, skb);
788 	if (ret < 0)
789 		goto trace;
790 
791 	wake_up_process(rcpu->kthread);
792 trace:
793 	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
794 	return ret;
795 }
796 
797 void __cpu_map_flush(void)
798 {
799 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
800 	struct xdp_bulk_queue *bq, *tmp;
801 
802 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
803 		bq_flush_to_queue(bq);
804 
805 		/* If already running, costs spin_lock_irqsave + smb_mb */
806 		wake_up_process(bq->obj->kthread);
807 	}
808 }
809 
810 static int __init cpu_map_init(void)
811 {
812 	int cpu;
813 
814 	for_each_possible_cpu(cpu)
815 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
816 	return 0;
817 }
818 
819 subsys_initcall(cpu_map_init);
820