1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /** 8 * DOC: cpu map 9 * The 'cpumap' is primarily used as a backend map for XDP BPF helper 10 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 11 * 12 * Unlike devmap which redirects XDP frames out to another NIC device, 13 * this map type redirects raw XDP frames to another CPU. The remote 14 * CPU will do SKB-allocation and call the normal network stack. 15 */ 16 /* 17 * This is a scalability and isolation mechanism, that allow 18 * separating the early driver network XDP layer, from the rest of the 19 * netstack, and assigning dedicated CPUs for this stage. This 20 * basically allows for 10G wirespeed pre-filtering via bpf. 21 */ 22 #include <linux/bitops.h> 23 #include <linux/bpf.h> 24 #include <linux/filter.h> 25 #include <linux/ptr_ring.h> 26 #include <net/xdp.h> 27 28 #include <linux/sched.h> 29 #include <linux/workqueue.h> 30 #include <linux/kthread.h> 31 #include <linux/completion.h> 32 #include <trace/events/xdp.h> 33 #include <linux/btf_ids.h> 34 35 #include <linux/netdevice.h> /* netif_receive_skb_list */ 36 #include <linux/etherdevice.h> /* eth_type_trans */ 37 38 /* General idea: XDP packets getting XDP redirected to another CPU, 39 * will maximum be stored/queued for one driver ->poll() call. It is 40 * guaranteed that queueing the frame and the flush operation happen on 41 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 42 * which queue in bpf_cpu_map_entry contains packets. 43 */ 44 45 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 46 struct bpf_cpu_map_entry; 47 struct bpf_cpu_map; 48 49 struct xdp_bulk_queue { 50 void *q[CPU_MAP_BULK_SIZE]; 51 struct list_head flush_node; 52 struct bpf_cpu_map_entry *obj; 53 unsigned int count; 54 }; 55 56 /* Struct for every remote "destination" CPU in map */ 57 struct bpf_cpu_map_entry { 58 u32 cpu; /* kthread CPU and map index */ 59 int map_id; /* Back reference to map */ 60 61 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 62 struct xdp_bulk_queue __percpu *bulkq; 63 64 /* Queue with potential multi-producers, and single-consumer kthread */ 65 struct ptr_ring *queue; 66 struct task_struct *kthread; 67 68 struct bpf_cpumap_val value; 69 struct bpf_prog *prog; 70 71 atomic_t refcnt; /* Control when this struct can be free'ed */ 72 struct rcu_head rcu; 73 74 struct work_struct kthread_stop_wq; 75 struct completion kthread_running; 76 }; 77 78 struct bpf_cpu_map { 79 struct bpf_map map; 80 /* Below members specific for map type */ 81 struct bpf_cpu_map_entry __rcu **cpu_map; 82 }; 83 84 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 85 86 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 87 { 88 u32 value_size = attr->value_size; 89 struct bpf_cpu_map *cmap; 90 91 /* check sanity of attributes */ 92 if (attr->max_entries == 0 || attr->key_size != 4 || 93 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 94 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 95 attr->map_flags & ~BPF_F_NUMA_NODE) 96 return ERR_PTR(-EINVAL); 97 98 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 99 if (attr->max_entries > NR_CPUS) 100 return ERR_PTR(-E2BIG); 101 102 cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE); 103 if (!cmap) 104 return ERR_PTR(-ENOMEM); 105 106 bpf_map_init_from_attr(&cmap->map, attr); 107 108 /* Alloc array for possible remote "destination" CPUs */ 109 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 110 sizeof(struct bpf_cpu_map_entry *), 111 cmap->map.numa_node); 112 if (!cmap->cpu_map) { 113 bpf_map_area_free(cmap); 114 return ERR_PTR(-ENOMEM); 115 } 116 117 return &cmap->map; 118 } 119 120 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 121 { 122 atomic_inc(&rcpu->refcnt); 123 } 124 125 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 126 { 127 /* The tear-down procedure should have made sure that queue is 128 * empty. See __cpu_map_entry_replace() and work-queue 129 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 130 * gracefully and warn once. 131 */ 132 void *ptr; 133 134 while ((ptr = ptr_ring_consume(ring))) { 135 WARN_ON_ONCE(1); 136 if (unlikely(__ptr_test_bit(0, &ptr))) { 137 __ptr_clear_bit(0, &ptr); 138 kfree_skb(ptr); 139 continue; 140 } 141 xdp_return_frame(ptr); 142 } 143 } 144 145 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 146 { 147 if (atomic_dec_and_test(&rcpu->refcnt)) { 148 if (rcpu->prog) 149 bpf_prog_put(rcpu->prog); 150 /* The queue should be empty at this point */ 151 __cpu_map_ring_cleanup(rcpu->queue); 152 ptr_ring_cleanup(rcpu->queue, NULL); 153 kfree(rcpu->queue); 154 kfree(rcpu); 155 } 156 } 157 158 /* called from workqueue, to workaround syscall using preempt_disable */ 159 static void cpu_map_kthread_stop(struct work_struct *work) 160 { 161 struct bpf_cpu_map_entry *rcpu; 162 163 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 164 165 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 166 * as it waits until all in-flight call_rcu() callbacks complete. 167 */ 168 rcu_barrier(); 169 170 /* kthread_stop will wake_up_process and wait for it to complete */ 171 kthread_stop(rcpu->kthread); 172 } 173 174 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, 175 struct list_head *listp, 176 struct xdp_cpumap_stats *stats) 177 { 178 struct sk_buff *skb, *tmp; 179 struct xdp_buff xdp; 180 u32 act; 181 int err; 182 183 list_for_each_entry_safe(skb, tmp, listp, list) { 184 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); 185 switch (act) { 186 case XDP_PASS: 187 break; 188 case XDP_REDIRECT: 189 skb_list_del_init(skb); 190 err = xdp_do_generic_redirect(skb->dev, skb, &xdp, 191 rcpu->prog); 192 if (unlikely(err)) { 193 kfree_skb(skb); 194 stats->drop++; 195 } else { 196 stats->redirect++; 197 } 198 return; 199 default: 200 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 201 fallthrough; 202 case XDP_ABORTED: 203 trace_xdp_exception(skb->dev, rcpu->prog, act); 204 fallthrough; 205 case XDP_DROP: 206 skb_list_del_init(skb); 207 kfree_skb(skb); 208 stats->drop++; 209 return; 210 } 211 } 212 } 213 214 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 215 void **frames, int n, 216 struct xdp_cpumap_stats *stats) 217 { 218 struct xdp_rxq_info rxq; 219 struct xdp_buff xdp; 220 int i, nframes = 0; 221 222 xdp_set_return_frame_no_direct(); 223 xdp.rxq = &rxq; 224 225 for (i = 0; i < n; i++) { 226 struct xdp_frame *xdpf = frames[i]; 227 u32 act; 228 int err; 229 230 rxq.dev = xdpf->dev_rx; 231 rxq.mem = xdpf->mem; 232 /* TODO: report queue_index to xdp_rxq_info */ 233 234 xdp_convert_frame_to_buff(xdpf, &xdp); 235 236 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 237 switch (act) { 238 case XDP_PASS: 239 err = xdp_update_frame_from_buff(&xdp, xdpf); 240 if (err < 0) { 241 xdp_return_frame(xdpf); 242 stats->drop++; 243 } else { 244 frames[nframes++] = xdpf; 245 stats->pass++; 246 } 247 break; 248 case XDP_REDIRECT: 249 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 250 rcpu->prog); 251 if (unlikely(err)) { 252 xdp_return_frame(xdpf); 253 stats->drop++; 254 } else { 255 stats->redirect++; 256 } 257 break; 258 default: 259 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 260 fallthrough; 261 case XDP_DROP: 262 xdp_return_frame(xdpf); 263 stats->drop++; 264 break; 265 } 266 } 267 268 xdp_clear_return_frame_no_direct(); 269 270 return nframes; 271 } 272 273 #define CPUMAP_BATCH 8 274 275 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, 276 int xdp_n, struct xdp_cpumap_stats *stats, 277 struct list_head *list) 278 { 279 int nframes; 280 281 if (!rcpu->prog) 282 return xdp_n; 283 284 rcu_read_lock_bh(); 285 286 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats); 287 288 if (stats->redirect) 289 xdp_do_flush(); 290 291 if (unlikely(!list_empty(list))) 292 cpu_map_bpf_prog_run_skb(rcpu, list, stats); 293 294 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 295 296 return nframes; 297 } 298 299 static int cpu_map_kthread_run(void *data) 300 { 301 struct bpf_cpu_map_entry *rcpu = data; 302 303 complete(&rcpu->kthread_running); 304 set_current_state(TASK_INTERRUPTIBLE); 305 306 /* When kthread gives stop order, then rcpu have been disconnected 307 * from map, thus no new packets can enter. Remaining in-flight 308 * per CPU stored packets are flushed to this queue. Wait honoring 309 * kthread_stop signal until queue is empty. 310 */ 311 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 312 struct xdp_cpumap_stats stats = {}; /* zero stats */ 313 unsigned int kmem_alloc_drops = 0, sched = 0; 314 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 315 int i, n, m, nframes, xdp_n; 316 void *frames[CPUMAP_BATCH]; 317 void *skbs[CPUMAP_BATCH]; 318 LIST_HEAD(list); 319 320 /* Release CPU reschedule checks */ 321 if (__ptr_ring_empty(rcpu->queue)) { 322 set_current_state(TASK_INTERRUPTIBLE); 323 /* Recheck to avoid lost wake-up */ 324 if (__ptr_ring_empty(rcpu->queue)) { 325 schedule(); 326 sched = 1; 327 } else { 328 __set_current_state(TASK_RUNNING); 329 } 330 } else { 331 sched = cond_resched(); 332 } 333 334 /* 335 * The bpf_cpu_map_entry is single consumer, with this 336 * kthread CPU pinned. Lockless access to ptr_ring 337 * consume side valid as no-resize allowed of queue. 338 */ 339 n = __ptr_ring_consume_batched(rcpu->queue, frames, 340 CPUMAP_BATCH); 341 for (i = 0, xdp_n = 0; i < n; i++) { 342 void *f = frames[i]; 343 struct page *page; 344 345 if (unlikely(__ptr_test_bit(0, &f))) { 346 struct sk_buff *skb = f; 347 348 __ptr_clear_bit(0, &skb); 349 list_add_tail(&skb->list, &list); 350 continue; 351 } 352 353 frames[xdp_n++] = f; 354 page = virt_to_page(f); 355 356 /* Bring struct page memory area to curr CPU. Read by 357 * build_skb_around via page_is_pfmemalloc(), and when 358 * freed written by page_frag_free call. 359 */ 360 prefetchw(page); 361 } 362 363 /* Support running another XDP prog on this CPU */ 364 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list); 365 if (nframes) { 366 m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs); 367 if (unlikely(m == 0)) { 368 for (i = 0; i < nframes; i++) 369 skbs[i] = NULL; /* effect: xdp_return_frame */ 370 kmem_alloc_drops += nframes; 371 } 372 } 373 374 local_bh_disable(); 375 for (i = 0; i < nframes; i++) { 376 struct xdp_frame *xdpf = frames[i]; 377 struct sk_buff *skb = skbs[i]; 378 379 skb = __xdp_build_skb_from_frame(xdpf, skb, 380 xdpf->dev_rx); 381 if (!skb) { 382 xdp_return_frame(xdpf); 383 continue; 384 } 385 386 list_add_tail(&skb->list, &list); 387 } 388 netif_receive_skb_list(&list); 389 390 /* Feedback loop via tracepoint */ 391 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 392 sched, &stats); 393 394 local_bh_enable(); /* resched point, may call do_softirq() */ 395 } 396 __set_current_state(TASK_RUNNING); 397 398 put_cpu_map_entry(rcpu); 399 return 0; 400 } 401 402 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, 403 struct bpf_map *map, int fd) 404 { 405 struct bpf_prog *prog; 406 407 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 408 if (IS_ERR(prog)) 409 return PTR_ERR(prog); 410 411 if (prog->expected_attach_type != BPF_XDP_CPUMAP || 412 !bpf_prog_map_compatible(map, prog)) { 413 bpf_prog_put(prog); 414 return -EINVAL; 415 } 416 417 rcpu->value.bpf_prog.id = prog->aux->id; 418 rcpu->prog = prog; 419 420 return 0; 421 } 422 423 static struct bpf_cpu_map_entry * 424 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 425 u32 cpu) 426 { 427 int numa, err, i, fd = value->bpf_prog.fd; 428 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 429 struct bpf_cpu_map_entry *rcpu; 430 struct xdp_bulk_queue *bq; 431 432 /* Have map->numa_node, but choose node of redirect target CPU */ 433 numa = cpu_to_node(cpu); 434 435 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 436 if (!rcpu) 437 return NULL; 438 439 /* Alloc percpu bulkq */ 440 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 441 sizeof(void *), gfp); 442 if (!rcpu->bulkq) 443 goto free_rcu; 444 445 for_each_possible_cpu(i) { 446 bq = per_cpu_ptr(rcpu->bulkq, i); 447 bq->obj = rcpu; 448 } 449 450 /* Alloc queue */ 451 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 452 numa); 453 if (!rcpu->queue) 454 goto free_bulkq; 455 456 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 457 if (err) 458 goto free_queue; 459 460 rcpu->cpu = cpu; 461 rcpu->map_id = map->id; 462 rcpu->value.qsize = value->qsize; 463 464 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd)) 465 goto free_ptr_ring; 466 467 /* Setup kthread */ 468 init_completion(&rcpu->kthread_running); 469 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 470 "cpumap/%d/map:%d", cpu, 471 map->id); 472 if (IS_ERR(rcpu->kthread)) 473 goto free_prog; 474 475 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 476 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 477 478 /* Make sure kthread runs on a single CPU */ 479 kthread_bind(rcpu->kthread, cpu); 480 wake_up_process(rcpu->kthread); 481 482 /* Make sure kthread has been running, so kthread_stop() will not 483 * stop the kthread prematurely and all pending frames or skbs 484 * will be handled by the kthread before kthread_stop() returns. 485 */ 486 wait_for_completion(&rcpu->kthread_running); 487 488 return rcpu; 489 490 free_prog: 491 if (rcpu->prog) 492 bpf_prog_put(rcpu->prog); 493 free_ptr_ring: 494 ptr_ring_cleanup(rcpu->queue, NULL); 495 free_queue: 496 kfree(rcpu->queue); 497 free_bulkq: 498 free_percpu(rcpu->bulkq); 499 free_rcu: 500 kfree(rcpu); 501 return NULL; 502 } 503 504 static void __cpu_map_entry_free(struct rcu_head *rcu) 505 { 506 struct bpf_cpu_map_entry *rcpu; 507 508 /* This cpu_map_entry have been disconnected from map and one 509 * RCU grace-period have elapsed. Thus, XDP cannot queue any 510 * new packets and cannot change/set flush_needed that can 511 * find this entry. 512 */ 513 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 514 515 free_percpu(rcpu->bulkq); 516 /* Cannot kthread_stop() here, last put free rcpu resources */ 517 put_cpu_map_entry(rcpu); 518 } 519 520 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 521 * ensure any driver rcu critical sections have completed, but this 522 * does not guarantee a flush has happened yet. Because driver side 523 * rcu_read_lock/unlock only protects the running XDP program. The 524 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 525 * pending flush op doesn't fail. 526 * 527 * The bpf_cpu_map_entry is still used by the kthread, and there can 528 * still be pending packets (in queue and percpu bulkq). A refcnt 529 * makes sure to last user (kthread_stop vs. call_rcu) free memory 530 * resources. 531 * 532 * The rcu callback __cpu_map_entry_free flush remaining packets in 533 * percpu bulkq to queue. Due to caller map_delete_elem() disable 534 * preemption, cannot call kthread_stop() to make sure queue is empty. 535 * Instead a work_queue is started for stopping kthread, 536 * cpu_map_kthread_stop, which waits for an RCU grace period before 537 * stopping kthread, emptying the queue. 538 */ 539 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 540 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 541 { 542 struct bpf_cpu_map_entry *old_rcpu; 543 544 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 545 if (old_rcpu) { 546 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 547 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 548 schedule_work(&old_rcpu->kthread_stop_wq); 549 } 550 } 551 552 static long cpu_map_delete_elem(struct bpf_map *map, void *key) 553 { 554 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 555 u32 key_cpu = *(u32 *)key; 556 557 if (key_cpu >= map->max_entries) 558 return -EINVAL; 559 560 /* notice caller map_delete_elem() use preempt_disable() */ 561 __cpu_map_entry_replace(cmap, key_cpu, NULL); 562 return 0; 563 } 564 565 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 566 u64 map_flags) 567 { 568 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 569 struct bpf_cpumap_val cpumap_value = {}; 570 struct bpf_cpu_map_entry *rcpu; 571 /* Array index key correspond to CPU number */ 572 u32 key_cpu = *(u32 *)key; 573 574 memcpy(&cpumap_value, value, map->value_size); 575 576 if (unlikely(map_flags > BPF_EXIST)) 577 return -EINVAL; 578 if (unlikely(key_cpu >= cmap->map.max_entries)) 579 return -E2BIG; 580 if (unlikely(map_flags == BPF_NOEXIST)) 581 return -EEXIST; 582 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 583 return -EOVERFLOW; 584 585 /* Make sure CPU is a valid possible cpu */ 586 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 587 return -ENODEV; 588 589 if (cpumap_value.qsize == 0) { 590 rcpu = NULL; /* Same as deleting */ 591 } else { 592 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 593 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 594 if (!rcpu) 595 return -ENOMEM; 596 } 597 rcu_read_lock(); 598 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 599 rcu_read_unlock(); 600 return 0; 601 } 602 603 static void cpu_map_free(struct bpf_map *map) 604 { 605 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 606 u32 i; 607 608 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 609 * so the bpf programs (can be more than one that used this map) were 610 * disconnected from events. Wait for outstanding critical sections in 611 * these programs to complete. The rcu critical section only guarantees 612 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 613 * It does __not__ ensure pending flush operations (if any) are 614 * complete. 615 */ 616 617 synchronize_rcu(); 618 619 /* For cpu_map the remote CPUs can still be using the entries 620 * (struct bpf_cpu_map_entry). 621 */ 622 for (i = 0; i < cmap->map.max_entries; i++) { 623 struct bpf_cpu_map_entry *rcpu; 624 625 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 626 if (!rcpu) 627 continue; 628 629 /* bq flush and cleanup happens after RCU grace-period */ 630 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 631 } 632 bpf_map_area_free(cmap->cpu_map); 633 bpf_map_area_free(cmap); 634 } 635 636 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 637 * by local_bh_disable() (from XDP calls inside NAPI). The 638 * rcu_read_lock_bh_held() below makes lockdep accept both. 639 */ 640 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 641 { 642 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 643 struct bpf_cpu_map_entry *rcpu; 644 645 if (key >= map->max_entries) 646 return NULL; 647 648 rcpu = rcu_dereference_check(cmap->cpu_map[key], 649 rcu_read_lock_bh_held()); 650 return rcpu; 651 } 652 653 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 654 { 655 struct bpf_cpu_map_entry *rcpu = 656 __cpu_map_lookup_elem(map, *(u32 *)key); 657 658 return rcpu ? &rcpu->value : NULL; 659 } 660 661 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 662 { 663 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 664 u32 index = key ? *(u32 *)key : U32_MAX; 665 u32 *next = next_key; 666 667 if (index >= cmap->map.max_entries) { 668 *next = 0; 669 return 0; 670 } 671 672 if (index == cmap->map.max_entries - 1) 673 return -ENOENT; 674 *next = index + 1; 675 return 0; 676 } 677 678 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags) 679 { 680 return __bpf_xdp_redirect_map(map, index, flags, 0, 681 __cpu_map_lookup_elem); 682 } 683 684 static u64 cpu_map_mem_usage(const struct bpf_map *map) 685 { 686 u64 usage = sizeof(struct bpf_cpu_map); 687 688 /* Currently the dynamically allocated elements are not counted */ 689 usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *); 690 return usage; 691 } 692 693 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) 694 const struct bpf_map_ops cpu_map_ops = { 695 .map_meta_equal = bpf_map_meta_equal, 696 .map_alloc = cpu_map_alloc, 697 .map_free = cpu_map_free, 698 .map_delete_elem = cpu_map_delete_elem, 699 .map_update_elem = cpu_map_update_elem, 700 .map_lookup_elem = cpu_map_lookup_elem, 701 .map_get_next_key = cpu_map_get_next_key, 702 .map_check_btf = map_check_no_btf, 703 .map_mem_usage = cpu_map_mem_usage, 704 .map_btf_id = &cpu_map_btf_ids[0], 705 .map_redirect = cpu_map_redirect, 706 }; 707 708 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 709 { 710 struct bpf_cpu_map_entry *rcpu = bq->obj; 711 unsigned int processed = 0, drops = 0; 712 const int to_cpu = rcpu->cpu; 713 struct ptr_ring *q; 714 int i; 715 716 if (unlikely(!bq->count)) 717 return; 718 719 q = rcpu->queue; 720 spin_lock(&q->producer_lock); 721 722 for (i = 0; i < bq->count; i++) { 723 struct xdp_frame *xdpf = bq->q[i]; 724 int err; 725 726 err = __ptr_ring_produce(q, xdpf); 727 if (err) { 728 drops++; 729 xdp_return_frame_rx_napi(xdpf); 730 } 731 processed++; 732 } 733 bq->count = 0; 734 spin_unlock(&q->producer_lock); 735 736 __list_del_clearprev(&bq->flush_node); 737 738 /* Feedback loop via tracepoints */ 739 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 740 } 741 742 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 743 * Thus, safe percpu variable access. 744 */ 745 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 746 { 747 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 748 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 749 750 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 751 bq_flush_to_queue(bq); 752 753 /* Notice, xdp_buff/page MUST be queued here, long enough for 754 * driver to code invoking us to finished, due to driver 755 * (e.g. ixgbe) recycle tricks based on page-refcnt. 756 * 757 * Thus, incoming xdp_frame is always queued here (else we race 758 * with another CPU on page-refcnt and remaining driver code). 759 * Queue time is very short, as driver will invoke flush 760 * operation, when completing napi->poll call. 761 */ 762 bq->q[bq->count++] = xdpf; 763 764 if (!bq->flush_node.prev) 765 list_add(&bq->flush_node, flush_list); 766 } 767 768 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 769 struct net_device *dev_rx) 770 { 771 /* Info needed when constructing SKB on remote CPU */ 772 xdpf->dev_rx = dev_rx; 773 774 bq_enqueue(rcpu, xdpf); 775 return 0; 776 } 777 778 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 779 struct sk_buff *skb) 780 { 781 int ret; 782 783 __skb_pull(skb, skb->mac_len); 784 skb_set_redirected(skb, false); 785 __ptr_set_bit(0, &skb); 786 787 ret = ptr_ring_produce(rcpu->queue, skb); 788 if (ret < 0) 789 goto trace; 790 791 wake_up_process(rcpu->kthread); 792 trace: 793 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); 794 return ret; 795 } 796 797 void __cpu_map_flush(void) 798 { 799 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 800 struct xdp_bulk_queue *bq, *tmp; 801 802 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 803 bq_flush_to_queue(bq); 804 805 /* If already running, costs spin_lock_irqsave + smb_mb */ 806 wake_up_process(bq->obj->kthread); 807 } 808 } 809 810 static int __init cpu_map_init(void) 811 { 812 int cpu; 813 814 for_each_possible_cpu(cpu) 815 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 816 return 0; 817 } 818 819 subsys_initcall(cpu_map_init); 820