xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 5b7b41cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that queueing the frame and the flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry;
42 struct bpf_cpu_map;
43 
44 struct xdp_bulk_queue {
45 	void *q[CPU_MAP_BULK_SIZE];
46 	struct list_head flush_node;
47 	struct bpf_cpu_map_entry *obj;
48 	unsigned int count;
49 };
50 
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry {
53 	u32 cpu;    /* kthread CPU and map index */
54 	int map_id; /* Back reference to map */
55 
56 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
57 	struct xdp_bulk_queue __percpu *bulkq;
58 
59 	struct bpf_cpu_map *cmap;
60 
61 	/* Queue with potential multi-producers, and single-consumer kthread */
62 	struct ptr_ring *queue;
63 	struct task_struct *kthread;
64 
65 	struct bpf_cpumap_val value;
66 	struct bpf_prog *prog;
67 
68 	atomic_t refcnt; /* Control when this struct can be free'ed */
69 	struct rcu_head rcu;
70 
71 	struct work_struct kthread_stop_wq;
72 };
73 
74 struct bpf_cpu_map {
75 	struct bpf_map map;
76 	/* Below members specific for map type */
77 	struct bpf_cpu_map_entry **cpu_map;
78 };
79 
80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
81 
82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
83 {
84 	u32 value_size = attr->value_size;
85 	struct bpf_cpu_map *cmap;
86 	int err = -ENOMEM;
87 	u64 cost;
88 	int ret;
89 
90 	if (!bpf_capable())
91 		return ERR_PTR(-EPERM);
92 
93 	/* check sanity of attributes */
94 	if (attr->max_entries == 0 || attr->key_size != 4 ||
95 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
96 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
97 	    attr->map_flags & ~BPF_F_NUMA_NODE)
98 		return ERR_PTR(-EINVAL);
99 
100 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
101 	if (!cmap)
102 		return ERR_PTR(-ENOMEM);
103 
104 	bpf_map_init_from_attr(&cmap->map, attr);
105 
106 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
107 	if (cmap->map.max_entries > NR_CPUS) {
108 		err = -E2BIG;
109 		goto free_cmap;
110 	}
111 
112 	/* make sure page count doesn't overflow */
113 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
114 
115 	/* Notice returns -EPERM on if map size is larger than memlock limit */
116 	ret = bpf_map_charge_init(&cmap->map.memory, cost);
117 	if (ret) {
118 		err = ret;
119 		goto free_cmap;
120 	}
121 
122 	/* Alloc array for possible remote "destination" CPUs */
123 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
124 					   sizeof(struct bpf_cpu_map_entry *),
125 					   cmap->map.numa_node);
126 	if (!cmap->cpu_map)
127 		goto free_charge;
128 
129 	return &cmap->map;
130 free_charge:
131 	bpf_map_charge_finish(&cmap->map.memory);
132 free_cmap:
133 	kfree(cmap);
134 	return ERR_PTR(err);
135 }
136 
137 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
138 {
139 	atomic_inc(&rcpu->refcnt);
140 }
141 
142 /* called from workqueue, to workaround syscall using preempt_disable */
143 static void cpu_map_kthread_stop(struct work_struct *work)
144 {
145 	struct bpf_cpu_map_entry *rcpu;
146 
147 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
148 
149 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
150 	 * as it waits until all in-flight call_rcu() callbacks complete.
151 	 */
152 	rcu_barrier();
153 
154 	/* kthread_stop will wake_up_process and wait for it to complete */
155 	kthread_stop(rcpu->kthread);
156 }
157 
158 static struct sk_buff *cpu_map_build_skb(struct xdp_frame *xdpf,
159 					 struct sk_buff *skb)
160 {
161 	unsigned int hard_start_headroom;
162 	unsigned int frame_size;
163 	void *pkt_data_start;
164 
165 	/* Part of headroom was reserved to xdpf */
166 	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
167 
168 	/* Memory size backing xdp_frame data already have reserved
169 	 * room for build_skb to place skb_shared_info in tailroom.
170 	 */
171 	frame_size = xdpf->frame_sz;
172 
173 	pkt_data_start = xdpf->data - hard_start_headroom;
174 	skb = build_skb_around(skb, pkt_data_start, frame_size);
175 	if (unlikely(!skb))
176 		return NULL;
177 
178 	skb_reserve(skb, hard_start_headroom);
179 	__skb_put(skb, xdpf->len);
180 	if (xdpf->metasize)
181 		skb_metadata_set(skb, xdpf->metasize);
182 
183 	/* Essential SKB info: protocol and skb->dev */
184 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
185 
186 	/* Optional SKB info, currently missing:
187 	 * - HW checksum info		(skb->ip_summed)
188 	 * - HW RX hash			(skb_set_hash)
189 	 * - RX ring dev queue index	(skb_record_rx_queue)
190 	 */
191 
192 	/* Until page_pool get SKB return path, release DMA here */
193 	xdp_release_frame(xdpf);
194 
195 	/* Allow SKB to reuse area used by xdp_frame */
196 	xdp_scrub_frame(xdpf);
197 
198 	return skb;
199 }
200 
201 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
202 {
203 	/* The tear-down procedure should have made sure that queue is
204 	 * empty.  See __cpu_map_entry_replace() and work-queue
205 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
206 	 * gracefully and warn once.
207 	 */
208 	struct xdp_frame *xdpf;
209 
210 	while ((xdpf = ptr_ring_consume(ring)))
211 		if (WARN_ON_ONCE(xdpf))
212 			xdp_return_frame(xdpf);
213 }
214 
215 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
216 {
217 	if (atomic_dec_and_test(&rcpu->refcnt)) {
218 		if (rcpu->prog)
219 			bpf_prog_put(rcpu->prog);
220 		/* The queue should be empty at this point */
221 		__cpu_map_ring_cleanup(rcpu->queue);
222 		ptr_ring_cleanup(rcpu->queue, NULL);
223 		kfree(rcpu->queue);
224 		kfree(rcpu);
225 	}
226 }
227 
228 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
229 				    void **frames, int n,
230 				    struct xdp_cpumap_stats *stats)
231 {
232 	struct xdp_rxq_info rxq;
233 	struct xdp_buff xdp;
234 	int i, nframes = 0;
235 
236 	if (!rcpu->prog)
237 		return n;
238 
239 	rcu_read_lock_bh();
240 
241 	xdp_set_return_frame_no_direct();
242 	xdp.rxq = &rxq;
243 
244 	for (i = 0; i < n; i++) {
245 		struct xdp_frame *xdpf = frames[i];
246 		u32 act;
247 		int err;
248 
249 		rxq.dev = xdpf->dev_rx;
250 		rxq.mem = xdpf->mem;
251 		/* TODO: report queue_index to xdp_rxq_info */
252 
253 		xdp_convert_frame_to_buff(xdpf, &xdp);
254 
255 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
256 		switch (act) {
257 		case XDP_PASS:
258 			err = xdp_update_frame_from_buff(&xdp, xdpf);
259 			if (err < 0) {
260 				xdp_return_frame(xdpf);
261 				stats->drop++;
262 			} else {
263 				frames[nframes++] = xdpf;
264 				stats->pass++;
265 			}
266 			break;
267 		case XDP_REDIRECT:
268 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
269 					      rcpu->prog);
270 			if (unlikely(err)) {
271 				xdp_return_frame(xdpf);
272 				stats->drop++;
273 			} else {
274 				stats->redirect++;
275 			}
276 			break;
277 		default:
278 			bpf_warn_invalid_xdp_action(act);
279 			fallthrough;
280 		case XDP_DROP:
281 			xdp_return_frame(xdpf);
282 			stats->drop++;
283 			break;
284 		}
285 	}
286 
287 	if (stats->redirect)
288 		xdp_do_flush_map();
289 
290 	xdp_clear_return_frame_no_direct();
291 
292 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
293 
294 	return nframes;
295 }
296 
297 #define CPUMAP_BATCH 8
298 
299 static int cpu_map_kthread_run(void *data)
300 {
301 	struct bpf_cpu_map_entry *rcpu = data;
302 
303 	set_current_state(TASK_INTERRUPTIBLE);
304 
305 	/* When kthread gives stop order, then rcpu have been disconnected
306 	 * from map, thus no new packets can enter. Remaining in-flight
307 	 * per CPU stored packets are flushed to this queue.  Wait honoring
308 	 * kthread_stop signal until queue is empty.
309 	 */
310 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
311 		struct xdp_cpumap_stats stats = {}; /* zero stats */
312 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
313 		unsigned int drops = 0, sched = 0;
314 		void *frames[CPUMAP_BATCH];
315 		void *skbs[CPUMAP_BATCH];
316 		int i, n, m, nframes;
317 
318 		/* Release CPU reschedule checks */
319 		if (__ptr_ring_empty(rcpu->queue)) {
320 			set_current_state(TASK_INTERRUPTIBLE);
321 			/* Recheck to avoid lost wake-up */
322 			if (__ptr_ring_empty(rcpu->queue)) {
323 				schedule();
324 				sched = 1;
325 			} else {
326 				__set_current_state(TASK_RUNNING);
327 			}
328 		} else {
329 			sched = cond_resched();
330 		}
331 
332 		/*
333 		 * The bpf_cpu_map_entry is single consumer, with this
334 		 * kthread CPU pinned. Lockless access to ptr_ring
335 		 * consume side valid as no-resize allowed of queue.
336 		 */
337 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
338 					       CPUMAP_BATCH);
339 		for (i = 0; i < n; i++) {
340 			void *f = frames[i];
341 			struct page *page = virt_to_page(f);
342 
343 			/* Bring struct page memory area to curr CPU. Read by
344 			 * build_skb_around via page_is_pfmemalloc(), and when
345 			 * freed written by page_frag_free call.
346 			 */
347 			prefetchw(page);
348 		}
349 
350 		/* Support running another XDP prog on this CPU */
351 		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
352 		if (nframes) {
353 			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
354 			if (unlikely(m == 0)) {
355 				for (i = 0; i < nframes; i++)
356 					skbs[i] = NULL; /* effect: xdp_return_frame */
357 				drops += nframes;
358 			}
359 		}
360 
361 		local_bh_disable();
362 		for (i = 0; i < nframes; i++) {
363 			struct xdp_frame *xdpf = frames[i];
364 			struct sk_buff *skb = skbs[i];
365 			int ret;
366 
367 			skb = cpu_map_build_skb(xdpf, skb);
368 			if (!skb) {
369 				xdp_return_frame(xdpf);
370 				continue;
371 			}
372 
373 			/* Inject into network stack */
374 			ret = netif_receive_skb_core(skb);
375 			if (ret == NET_RX_DROP)
376 				drops++;
377 		}
378 		/* Feedback loop via tracepoint */
379 		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats);
380 
381 		local_bh_enable(); /* resched point, may call do_softirq() */
382 	}
383 	__set_current_state(TASK_RUNNING);
384 
385 	put_cpu_map_entry(rcpu);
386 	return 0;
387 }
388 
389 bool cpu_map_prog_allowed(struct bpf_map *map)
390 {
391 	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
392 	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
393 }
394 
395 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
396 {
397 	struct bpf_prog *prog;
398 
399 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
400 	if (IS_ERR(prog))
401 		return PTR_ERR(prog);
402 
403 	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
404 		bpf_prog_put(prog);
405 		return -EINVAL;
406 	}
407 
408 	rcpu->value.bpf_prog.id = prog->aux->id;
409 	rcpu->prog = prog;
410 
411 	return 0;
412 }
413 
414 static struct bpf_cpu_map_entry *
415 __cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id)
416 {
417 	int numa, err, i, fd = value->bpf_prog.fd;
418 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
419 	struct bpf_cpu_map_entry *rcpu;
420 	struct xdp_bulk_queue *bq;
421 
422 	/* Have map->numa_node, but choose node of redirect target CPU */
423 	numa = cpu_to_node(cpu);
424 
425 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
426 	if (!rcpu)
427 		return NULL;
428 
429 	/* Alloc percpu bulkq */
430 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
431 					 sizeof(void *), gfp);
432 	if (!rcpu->bulkq)
433 		goto free_rcu;
434 
435 	for_each_possible_cpu(i) {
436 		bq = per_cpu_ptr(rcpu->bulkq, i);
437 		bq->obj = rcpu;
438 	}
439 
440 	/* Alloc queue */
441 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
442 	if (!rcpu->queue)
443 		goto free_bulkq;
444 
445 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
446 	if (err)
447 		goto free_queue;
448 
449 	rcpu->cpu    = cpu;
450 	rcpu->map_id = map_id;
451 	rcpu->value.qsize  = value->qsize;
452 
453 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
454 		goto free_ptr_ring;
455 
456 	/* Setup kthread */
457 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
458 					       "cpumap/%d/map:%d", cpu, map_id);
459 	if (IS_ERR(rcpu->kthread))
460 		goto free_prog;
461 
462 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
463 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
464 
465 	/* Make sure kthread runs on a single CPU */
466 	kthread_bind(rcpu->kthread, cpu);
467 	wake_up_process(rcpu->kthread);
468 
469 	return rcpu;
470 
471 free_prog:
472 	if (rcpu->prog)
473 		bpf_prog_put(rcpu->prog);
474 free_ptr_ring:
475 	ptr_ring_cleanup(rcpu->queue, NULL);
476 free_queue:
477 	kfree(rcpu->queue);
478 free_bulkq:
479 	free_percpu(rcpu->bulkq);
480 free_rcu:
481 	kfree(rcpu);
482 	return NULL;
483 }
484 
485 static void __cpu_map_entry_free(struct rcu_head *rcu)
486 {
487 	struct bpf_cpu_map_entry *rcpu;
488 
489 	/* This cpu_map_entry have been disconnected from map and one
490 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
491 	 * new packets and cannot change/set flush_needed that can
492 	 * find this entry.
493 	 */
494 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
495 
496 	free_percpu(rcpu->bulkq);
497 	/* Cannot kthread_stop() here, last put free rcpu resources */
498 	put_cpu_map_entry(rcpu);
499 }
500 
501 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
502  * ensure any driver rcu critical sections have completed, but this
503  * does not guarantee a flush has happened yet. Because driver side
504  * rcu_read_lock/unlock only protects the running XDP program.  The
505  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
506  * pending flush op doesn't fail.
507  *
508  * The bpf_cpu_map_entry is still used by the kthread, and there can
509  * still be pending packets (in queue and percpu bulkq).  A refcnt
510  * makes sure to last user (kthread_stop vs. call_rcu) free memory
511  * resources.
512  *
513  * The rcu callback __cpu_map_entry_free flush remaining packets in
514  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
515  * preemption, cannot call kthread_stop() to make sure queue is empty.
516  * Instead a work_queue is started for stopping kthread,
517  * cpu_map_kthread_stop, which waits for an RCU grace period before
518  * stopping kthread, emptying the queue.
519  */
520 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
521 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
522 {
523 	struct bpf_cpu_map_entry *old_rcpu;
524 
525 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
526 	if (old_rcpu) {
527 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
528 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
529 		schedule_work(&old_rcpu->kthread_stop_wq);
530 	}
531 }
532 
533 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
534 {
535 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
536 	u32 key_cpu = *(u32 *)key;
537 
538 	if (key_cpu >= map->max_entries)
539 		return -EINVAL;
540 
541 	/* notice caller map_delete_elem() use preempt_disable() */
542 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
543 	return 0;
544 }
545 
546 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
547 			       u64 map_flags)
548 {
549 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
550 	struct bpf_cpumap_val cpumap_value = {};
551 	struct bpf_cpu_map_entry *rcpu;
552 	/* Array index key correspond to CPU number */
553 	u32 key_cpu = *(u32 *)key;
554 
555 	memcpy(&cpumap_value, value, map->value_size);
556 
557 	if (unlikely(map_flags > BPF_EXIST))
558 		return -EINVAL;
559 	if (unlikely(key_cpu >= cmap->map.max_entries))
560 		return -E2BIG;
561 	if (unlikely(map_flags == BPF_NOEXIST))
562 		return -EEXIST;
563 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
564 		return -EOVERFLOW;
565 
566 	/* Make sure CPU is a valid possible cpu */
567 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
568 		return -ENODEV;
569 
570 	if (cpumap_value.qsize == 0) {
571 		rcpu = NULL; /* Same as deleting */
572 	} else {
573 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
574 		rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id);
575 		if (!rcpu)
576 			return -ENOMEM;
577 		rcpu->cmap = cmap;
578 	}
579 	rcu_read_lock();
580 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
581 	rcu_read_unlock();
582 	return 0;
583 }
584 
585 static void cpu_map_free(struct bpf_map *map)
586 {
587 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
588 	u32 i;
589 
590 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
591 	 * so the bpf programs (can be more than one that used this map) were
592 	 * disconnected from events. Wait for outstanding critical sections in
593 	 * these programs to complete. The rcu critical section only guarantees
594 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
595 	 * It does __not__ ensure pending flush operations (if any) are
596 	 * complete.
597 	 */
598 
599 	bpf_clear_redirect_map(map);
600 	synchronize_rcu();
601 
602 	/* For cpu_map the remote CPUs can still be using the entries
603 	 * (struct bpf_cpu_map_entry).
604 	 */
605 	for (i = 0; i < cmap->map.max_entries; i++) {
606 		struct bpf_cpu_map_entry *rcpu;
607 
608 		rcpu = READ_ONCE(cmap->cpu_map[i]);
609 		if (!rcpu)
610 			continue;
611 
612 		/* bq flush and cleanup happens after RCU grace-period */
613 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
614 	}
615 	bpf_map_area_free(cmap->cpu_map);
616 	kfree(cmap);
617 }
618 
619 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
620 {
621 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
622 	struct bpf_cpu_map_entry *rcpu;
623 
624 	if (key >= map->max_entries)
625 		return NULL;
626 
627 	rcpu = READ_ONCE(cmap->cpu_map[key]);
628 	return rcpu;
629 }
630 
631 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
632 {
633 	struct bpf_cpu_map_entry *rcpu =
634 		__cpu_map_lookup_elem(map, *(u32 *)key);
635 
636 	return rcpu ? &rcpu->value : NULL;
637 }
638 
639 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
640 {
641 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
642 	u32 index = key ? *(u32 *)key : U32_MAX;
643 	u32 *next = next_key;
644 
645 	if (index >= cmap->map.max_entries) {
646 		*next = 0;
647 		return 0;
648 	}
649 
650 	if (index == cmap->map.max_entries - 1)
651 		return -ENOENT;
652 	*next = index + 1;
653 	return 0;
654 }
655 
656 static int cpu_map_btf_id;
657 const struct bpf_map_ops cpu_map_ops = {
658 	.map_meta_equal		= bpf_map_meta_equal,
659 	.map_alloc		= cpu_map_alloc,
660 	.map_free		= cpu_map_free,
661 	.map_delete_elem	= cpu_map_delete_elem,
662 	.map_update_elem	= cpu_map_update_elem,
663 	.map_lookup_elem	= cpu_map_lookup_elem,
664 	.map_get_next_key	= cpu_map_get_next_key,
665 	.map_check_btf		= map_check_no_btf,
666 	.map_btf_name		= "bpf_cpu_map",
667 	.map_btf_id		= &cpu_map_btf_id,
668 };
669 
670 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
671 {
672 	struct bpf_cpu_map_entry *rcpu = bq->obj;
673 	unsigned int processed = 0, drops = 0;
674 	const int to_cpu = rcpu->cpu;
675 	struct ptr_ring *q;
676 	int i;
677 
678 	if (unlikely(!bq->count))
679 		return;
680 
681 	q = rcpu->queue;
682 	spin_lock(&q->producer_lock);
683 
684 	for (i = 0; i < bq->count; i++) {
685 		struct xdp_frame *xdpf = bq->q[i];
686 		int err;
687 
688 		err = __ptr_ring_produce(q, xdpf);
689 		if (err) {
690 			drops++;
691 			xdp_return_frame_rx_napi(xdpf);
692 		}
693 		processed++;
694 	}
695 	bq->count = 0;
696 	spin_unlock(&q->producer_lock);
697 
698 	__list_del_clearprev(&bq->flush_node);
699 
700 	/* Feedback loop via tracepoints */
701 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
702 }
703 
704 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
705  * Thus, safe percpu variable access.
706  */
707 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
708 {
709 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
710 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
711 
712 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
713 		bq_flush_to_queue(bq);
714 
715 	/* Notice, xdp_buff/page MUST be queued here, long enough for
716 	 * driver to code invoking us to finished, due to driver
717 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
718 	 *
719 	 * Thus, incoming xdp_frame is always queued here (else we race
720 	 * with another CPU on page-refcnt and remaining driver code).
721 	 * Queue time is very short, as driver will invoke flush
722 	 * operation, when completing napi->poll call.
723 	 */
724 	bq->q[bq->count++] = xdpf;
725 
726 	if (!bq->flush_node.prev)
727 		list_add(&bq->flush_node, flush_list);
728 }
729 
730 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
731 		    struct net_device *dev_rx)
732 {
733 	struct xdp_frame *xdpf;
734 
735 	xdpf = xdp_convert_buff_to_frame(xdp);
736 	if (unlikely(!xdpf))
737 		return -EOVERFLOW;
738 
739 	/* Info needed when constructing SKB on remote CPU */
740 	xdpf->dev_rx = dev_rx;
741 
742 	bq_enqueue(rcpu, xdpf);
743 	return 0;
744 }
745 
746 void __cpu_map_flush(void)
747 {
748 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
749 	struct xdp_bulk_queue *bq, *tmp;
750 
751 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
752 		bq_flush_to_queue(bq);
753 
754 		/* If already running, costs spin_lock_irqsave + smb_mb */
755 		wake_up_process(bq->obj->kthread);
756 	}
757 }
758 
759 static int __init cpu_map_init(void)
760 {
761 	int cpu;
762 
763 	for_each_possible_cpu(cpu)
764 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
765 	return 0;
766 }
767 
768 subsys_initcall(cpu_map_init);
769