xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 4a3fad70)
1 /* bpf/cpumap.c
2  *
3  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
4  * Released under terms in GPL version 2.  See COPYING.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 
23 #include <linux/sched.h>
24 #include <linux/workqueue.h>
25 #include <linux/kthread.h>
26 #include <linux/capability.h>
27 #include <trace/events/xdp.h>
28 
29 #include <linux/netdevice.h>   /* netif_receive_skb_core */
30 #include <linux/etherdevice.h> /* eth_type_trans */
31 
32 /* General idea: XDP packets getting XDP redirected to another CPU,
33  * will maximum be stored/queued for one driver ->poll() call.  It is
34  * guaranteed that setting flush bit and flush operation happen on
35  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
36  * which queue in bpf_cpu_map_entry contains packets.
37  */
38 
39 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
40 struct xdp_bulk_queue {
41 	void *q[CPU_MAP_BULK_SIZE];
42 	unsigned int count;
43 };
44 
45 /* Struct for every remote "destination" CPU in map */
46 struct bpf_cpu_map_entry {
47 	u32 cpu;    /* kthread CPU and map index */
48 	int map_id; /* Back reference to map */
49 	u32 qsize;  /* Queue size placeholder for map lookup */
50 
51 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
52 	struct xdp_bulk_queue __percpu *bulkq;
53 
54 	/* Queue with potential multi-producers, and single-consumer kthread */
55 	struct ptr_ring *queue;
56 	struct task_struct *kthread;
57 	struct work_struct kthread_stop_wq;
58 
59 	atomic_t refcnt; /* Control when this struct can be free'ed */
60 	struct rcu_head rcu;
61 };
62 
63 struct bpf_cpu_map {
64 	struct bpf_map map;
65 	/* Below members specific for map type */
66 	struct bpf_cpu_map_entry **cpu_map;
67 	unsigned long __percpu *flush_needed;
68 };
69 
70 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
71 			     struct xdp_bulk_queue *bq);
72 
73 static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
74 {
75 	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
76 }
77 
78 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
79 {
80 	struct bpf_cpu_map *cmap;
81 	int err = -ENOMEM;
82 	u64 cost;
83 	int ret;
84 
85 	if (!capable(CAP_SYS_ADMIN))
86 		return ERR_PTR(-EPERM);
87 
88 	/* check sanity of attributes */
89 	if (attr->max_entries == 0 || attr->key_size != 4 ||
90 	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
91 		return ERR_PTR(-EINVAL);
92 
93 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
94 	if (!cmap)
95 		return ERR_PTR(-ENOMEM);
96 
97 	/* mandatory map attributes */
98 	cmap->map.map_type = attr->map_type;
99 	cmap->map.key_size = attr->key_size;
100 	cmap->map.value_size = attr->value_size;
101 	cmap->map.max_entries = attr->max_entries;
102 	cmap->map.map_flags = attr->map_flags;
103 	cmap->map.numa_node = bpf_map_attr_numa_node(attr);
104 
105 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
106 	if (cmap->map.max_entries > NR_CPUS) {
107 		err = -E2BIG;
108 		goto free_cmap;
109 	}
110 
111 	/* make sure page count doesn't overflow */
112 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
113 	cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
114 	if (cost >= U32_MAX - PAGE_SIZE)
115 		goto free_cmap;
116 	cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
117 
118 	/* Notice returns -EPERM on if map size is larger than memlock limit */
119 	ret = bpf_map_precharge_memlock(cmap->map.pages);
120 	if (ret) {
121 		err = ret;
122 		goto free_cmap;
123 	}
124 
125 	/* A per cpu bitfield with a bit per possible CPU in map  */
126 	cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
127 					    __alignof__(unsigned long));
128 	if (!cmap->flush_needed)
129 		goto free_cmap;
130 
131 	/* Alloc array for possible remote "destination" CPUs */
132 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
133 					   sizeof(struct bpf_cpu_map_entry *),
134 					   cmap->map.numa_node);
135 	if (!cmap->cpu_map)
136 		goto free_percpu;
137 
138 	return &cmap->map;
139 free_percpu:
140 	free_percpu(cmap->flush_needed);
141 free_cmap:
142 	kfree(cmap);
143 	return ERR_PTR(err);
144 }
145 
146 void __cpu_map_queue_destructor(void *ptr)
147 {
148 	/* The tear-down procedure should have made sure that queue is
149 	 * empty.  See __cpu_map_entry_replace() and work-queue
150 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
151 	 * gracefully and warn once.
152 	 */
153 	if (WARN_ON_ONCE(ptr))
154 		page_frag_free(ptr);
155 }
156 
157 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
158 {
159 	if (atomic_dec_and_test(&rcpu->refcnt)) {
160 		/* The queue should be empty at this point */
161 		ptr_ring_cleanup(rcpu->queue, __cpu_map_queue_destructor);
162 		kfree(rcpu->queue);
163 		kfree(rcpu);
164 	}
165 }
166 
167 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
168 {
169 	atomic_inc(&rcpu->refcnt);
170 }
171 
172 /* called from workqueue, to workaround syscall using preempt_disable */
173 static void cpu_map_kthread_stop(struct work_struct *work)
174 {
175 	struct bpf_cpu_map_entry *rcpu;
176 
177 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
178 
179 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
180 	 * as it waits until all in-flight call_rcu() callbacks complete.
181 	 */
182 	rcu_barrier();
183 
184 	/* kthread_stop will wake_up_process and wait for it to complete */
185 	kthread_stop(rcpu->kthread);
186 }
187 
188 /* For now, xdp_pkt is a cpumap internal data structure, with info
189  * carried between enqueue to dequeue. It is mapped into the top
190  * headroom of the packet, to avoid allocating separate mem.
191  */
192 struct xdp_pkt {
193 	void *data;
194 	u16 len;
195 	u16 headroom;
196 	u16 metasize;
197 	struct net_device *dev_rx;
198 };
199 
200 /* Convert xdp_buff to xdp_pkt */
201 static struct xdp_pkt *convert_to_xdp_pkt(struct xdp_buff *xdp)
202 {
203 	struct xdp_pkt *xdp_pkt;
204 	int metasize;
205 	int headroom;
206 
207 	/* Assure headroom is available for storing info */
208 	headroom = xdp->data - xdp->data_hard_start;
209 	metasize = xdp->data - xdp->data_meta;
210 	metasize = metasize > 0 ? metasize : 0;
211 	if (unlikely((headroom - metasize) < sizeof(*xdp_pkt)))
212 		return NULL;
213 
214 	/* Store info in top of packet */
215 	xdp_pkt = xdp->data_hard_start;
216 
217 	xdp_pkt->data = xdp->data;
218 	xdp_pkt->len  = xdp->data_end - xdp->data;
219 	xdp_pkt->headroom = headroom - sizeof(*xdp_pkt);
220 	xdp_pkt->metasize = metasize;
221 
222 	return xdp_pkt;
223 }
224 
225 struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
226 				  struct xdp_pkt *xdp_pkt)
227 {
228 	unsigned int frame_size;
229 	void *pkt_data_start;
230 	struct sk_buff *skb;
231 
232 	/* build_skb need to place skb_shared_info after SKB end, and
233 	 * also want to know the memory "truesize".  Thus, need to
234 	 * know the memory frame size backing xdp_buff.
235 	 *
236 	 * XDP was designed to have PAGE_SIZE frames, but this
237 	 * assumption is not longer true with ixgbe and i40e.  It
238 	 * would be preferred to set frame_size to 2048 or 4096
239 	 * depending on the driver.
240 	 *   frame_size = 2048;
241 	 *   frame_len  = frame_size - sizeof(*xdp_pkt);
242 	 *
243 	 * Instead, with info avail, skb_shared_info in placed after
244 	 * packet len.  This, unfortunately fakes the truesize.
245 	 * Another disadvantage of this approach, the skb_shared_info
246 	 * is not at a fixed memory location, with mixed length
247 	 * packets, which is bad for cache-line hotness.
248 	 */
249 	frame_size = SKB_DATA_ALIGN(xdp_pkt->len) + xdp_pkt->headroom +
250 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
251 
252 	pkt_data_start = xdp_pkt->data - xdp_pkt->headroom;
253 	skb = build_skb(pkt_data_start, frame_size);
254 	if (!skb)
255 		return NULL;
256 
257 	skb_reserve(skb, xdp_pkt->headroom);
258 	__skb_put(skb, xdp_pkt->len);
259 	if (xdp_pkt->metasize)
260 		skb_metadata_set(skb, xdp_pkt->metasize);
261 
262 	/* Essential SKB info: protocol and skb->dev */
263 	skb->protocol = eth_type_trans(skb, xdp_pkt->dev_rx);
264 
265 	/* Optional SKB info, currently missing:
266 	 * - HW checksum info		(skb->ip_summed)
267 	 * - HW RX hash			(skb_set_hash)
268 	 * - RX ring dev queue index	(skb_record_rx_queue)
269 	 */
270 
271 	return skb;
272 }
273 
274 static int cpu_map_kthread_run(void *data)
275 {
276 	struct bpf_cpu_map_entry *rcpu = data;
277 
278 	set_current_state(TASK_INTERRUPTIBLE);
279 
280 	/* When kthread gives stop order, then rcpu have been disconnected
281 	 * from map, thus no new packets can enter. Remaining in-flight
282 	 * per CPU stored packets are flushed to this queue.  Wait honoring
283 	 * kthread_stop signal until queue is empty.
284 	 */
285 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
286 		unsigned int processed = 0, drops = 0, sched = 0;
287 		struct xdp_pkt *xdp_pkt;
288 
289 		/* Release CPU reschedule checks */
290 		if (__ptr_ring_empty(rcpu->queue)) {
291 			set_current_state(TASK_INTERRUPTIBLE);
292 			/* Recheck to avoid lost wake-up */
293 			if (__ptr_ring_empty(rcpu->queue)) {
294 				schedule();
295 				sched = 1;
296 			} else {
297 				__set_current_state(TASK_RUNNING);
298 			}
299 		} else {
300 			sched = cond_resched();
301 		}
302 
303 		/* Process packets in rcpu->queue */
304 		local_bh_disable();
305 		/*
306 		 * The bpf_cpu_map_entry is single consumer, with this
307 		 * kthread CPU pinned. Lockless access to ptr_ring
308 		 * consume side valid as no-resize allowed of queue.
309 		 */
310 		while ((xdp_pkt = __ptr_ring_consume(rcpu->queue))) {
311 			struct sk_buff *skb;
312 			int ret;
313 
314 			skb = cpu_map_build_skb(rcpu, xdp_pkt);
315 			if (!skb) {
316 				page_frag_free(xdp_pkt);
317 				continue;
318 			}
319 
320 			/* Inject into network stack */
321 			ret = netif_receive_skb_core(skb);
322 			if (ret == NET_RX_DROP)
323 				drops++;
324 
325 			/* Limit BH-disable period */
326 			if (++processed == 8)
327 				break;
328 		}
329 		/* Feedback loop via tracepoint */
330 		trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
331 
332 		local_bh_enable(); /* resched point, may call do_softirq() */
333 	}
334 	__set_current_state(TASK_RUNNING);
335 
336 	put_cpu_map_entry(rcpu);
337 	return 0;
338 }
339 
340 struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, int map_id)
341 {
342 	gfp_t gfp = GFP_ATOMIC|__GFP_NOWARN;
343 	struct bpf_cpu_map_entry *rcpu;
344 	int numa, err;
345 
346 	/* Have map->numa_node, but choose node of redirect target CPU */
347 	numa = cpu_to_node(cpu);
348 
349 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
350 	if (!rcpu)
351 		return NULL;
352 
353 	/* Alloc percpu bulkq */
354 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
355 					 sizeof(void *), gfp);
356 	if (!rcpu->bulkq)
357 		goto free_rcu;
358 
359 	/* Alloc queue */
360 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
361 	if (!rcpu->queue)
362 		goto free_bulkq;
363 
364 	err = ptr_ring_init(rcpu->queue, qsize, gfp);
365 	if (err)
366 		goto free_queue;
367 
368 	rcpu->cpu    = cpu;
369 	rcpu->map_id = map_id;
370 	rcpu->qsize  = qsize;
371 
372 	/* Setup kthread */
373 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
374 					       "cpumap/%d/map:%d", cpu, map_id);
375 	if (IS_ERR(rcpu->kthread))
376 		goto free_ptr_ring;
377 
378 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
379 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
380 
381 	/* Make sure kthread runs on a single CPU */
382 	kthread_bind(rcpu->kthread, cpu);
383 	wake_up_process(rcpu->kthread);
384 
385 	return rcpu;
386 
387 free_ptr_ring:
388 	ptr_ring_cleanup(rcpu->queue, NULL);
389 free_queue:
390 	kfree(rcpu->queue);
391 free_bulkq:
392 	free_percpu(rcpu->bulkq);
393 free_rcu:
394 	kfree(rcpu);
395 	return NULL;
396 }
397 
398 void __cpu_map_entry_free(struct rcu_head *rcu)
399 {
400 	struct bpf_cpu_map_entry *rcpu;
401 	int cpu;
402 
403 	/* This cpu_map_entry have been disconnected from map and one
404 	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
405 	 * new packets and cannot change/set flush_needed that can
406 	 * find this entry.
407 	 */
408 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
409 
410 	/* Flush remaining packets in percpu bulkq */
411 	for_each_online_cpu(cpu) {
412 		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
413 
414 		/* No concurrent bq_enqueue can run at this point */
415 		bq_flush_to_queue(rcpu, bq);
416 	}
417 	free_percpu(rcpu->bulkq);
418 	/* Cannot kthread_stop() here, last put free rcpu resources */
419 	put_cpu_map_entry(rcpu);
420 }
421 
422 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
423  * ensure any driver rcu critical sections have completed, but this
424  * does not guarantee a flush has happened yet. Because driver side
425  * rcu_read_lock/unlock only protects the running XDP program.  The
426  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
427  * pending flush op doesn't fail.
428  *
429  * The bpf_cpu_map_entry is still used by the kthread, and there can
430  * still be pending packets (in queue and percpu bulkq).  A refcnt
431  * makes sure to last user (kthread_stop vs. call_rcu) free memory
432  * resources.
433  *
434  * The rcu callback __cpu_map_entry_free flush remaining packets in
435  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
436  * preemption, cannot call kthread_stop() to make sure queue is empty.
437  * Instead a work_queue is started for stopping kthread,
438  * cpu_map_kthread_stop, which waits for an RCU graze period before
439  * stopping kthread, emptying the queue.
440  */
441 void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
442 			     u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
443 {
444 	struct bpf_cpu_map_entry *old_rcpu;
445 
446 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
447 	if (old_rcpu) {
448 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
449 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
450 		schedule_work(&old_rcpu->kthread_stop_wq);
451 	}
452 }
453 
454 int cpu_map_delete_elem(struct bpf_map *map, void *key)
455 {
456 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
457 	u32 key_cpu = *(u32 *)key;
458 
459 	if (key_cpu >= map->max_entries)
460 		return -EINVAL;
461 
462 	/* notice caller map_delete_elem() use preempt_disable() */
463 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
464 	return 0;
465 }
466 
467 int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
468 				u64 map_flags)
469 {
470 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
471 	struct bpf_cpu_map_entry *rcpu;
472 
473 	/* Array index key correspond to CPU number */
474 	u32 key_cpu = *(u32 *)key;
475 	/* Value is the queue size */
476 	u32 qsize = *(u32 *)value;
477 
478 	if (unlikely(map_flags > BPF_EXIST))
479 		return -EINVAL;
480 	if (unlikely(key_cpu >= cmap->map.max_entries))
481 		return -E2BIG;
482 	if (unlikely(map_flags == BPF_NOEXIST))
483 		return -EEXIST;
484 	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
485 		return -EOVERFLOW;
486 
487 	/* Make sure CPU is a valid possible cpu */
488 	if (!cpu_possible(key_cpu))
489 		return -ENODEV;
490 
491 	if (qsize == 0) {
492 		rcpu = NULL; /* Same as deleting */
493 	} else {
494 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
495 		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
496 		if (!rcpu)
497 			return -ENOMEM;
498 	}
499 	rcu_read_lock();
500 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
501 	rcu_read_unlock();
502 	return 0;
503 }
504 
505 void cpu_map_free(struct bpf_map *map)
506 {
507 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
508 	int cpu;
509 	u32 i;
510 
511 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
512 	 * so the bpf programs (can be more than one that used this map) were
513 	 * disconnected from events. Wait for outstanding critical sections in
514 	 * these programs to complete. The rcu critical section only guarantees
515 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
516 	 * It does __not__ ensure pending flush operations (if any) are
517 	 * complete.
518 	 */
519 	synchronize_rcu();
520 
521 	/* To ensure all pending flush operations have completed wait for flush
522 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
523 	 * Because the above synchronize_rcu() ensures the map is disconnected
524 	 * from the program we can assume no new bits will be set.
525 	 */
526 	for_each_online_cpu(cpu) {
527 		unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
528 
529 		while (!bitmap_empty(bitmap, cmap->map.max_entries))
530 			cond_resched();
531 	}
532 
533 	/* For cpu_map the remote CPUs can still be using the entries
534 	 * (struct bpf_cpu_map_entry).
535 	 */
536 	for (i = 0; i < cmap->map.max_entries; i++) {
537 		struct bpf_cpu_map_entry *rcpu;
538 
539 		rcpu = READ_ONCE(cmap->cpu_map[i]);
540 		if (!rcpu)
541 			continue;
542 
543 		/* bq flush and cleanup happens after RCU graze-period */
544 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
545 	}
546 	free_percpu(cmap->flush_needed);
547 	bpf_map_area_free(cmap->cpu_map);
548 	kfree(cmap);
549 }
550 
551 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
552 {
553 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
554 	struct bpf_cpu_map_entry *rcpu;
555 
556 	if (key >= map->max_entries)
557 		return NULL;
558 
559 	rcpu = READ_ONCE(cmap->cpu_map[key]);
560 	return rcpu;
561 }
562 
563 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
564 {
565 	struct bpf_cpu_map_entry *rcpu =
566 		__cpu_map_lookup_elem(map, *(u32 *)key);
567 
568 	return rcpu ? &rcpu->qsize : NULL;
569 }
570 
571 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
572 {
573 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
574 	u32 index = key ? *(u32 *)key : U32_MAX;
575 	u32 *next = next_key;
576 
577 	if (index >= cmap->map.max_entries) {
578 		*next = 0;
579 		return 0;
580 	}
581 
582 	if (index == cmap->map.max_entries - 1)
583 		return -ENOENT;
584 	*next = index + 1;
585 	return 0;
586 }
587 
588 const struct bpf_map_ops cpu_map_ops = {
589 	.map_alloc		= cpu_map_alloc,
590 	.map_free		= cpu_map_free,
591 	.map_delete_elem	= cpu_map_delete_elem,
592 	.map_update_elem	= cpu_map_update_elem,
593 	.map_lookup_elem	= cpu_map_lookup_elem,
594 	.map_get_next_key	= cpu_map_get_next_key,
595 };
596 
597 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
598 			     struct xdp_bulk_queue *bq)
599 {
600 	unsigned int processed = 0, drops = 0;
601 	const int to_cpu = rcpu->cpu;
602 	struct ptr_ring *q;
603 	int i;
604 
605 	if (unlikely(!bq->count))
606 		return 0;
607 
608 	q = rcpu->queue;
609 	spin_lock(&q->producer_lock);
610 
611 	for (i = 0; i < bq->count; i++) {
612 		void *xdp_pkt = bq->q[i];
613 		int err;
614 
615 		err = __ptr_ring_produce(q, xdp_pkt);
616 		if (err) {
617 			drops++;
618 			page_frag_free(xdp_pkt); /* Free xdp_pkt */
619 		}
620 		processed++;
621 	}
622 	bq->count = 0;
623 	spin_unlock(&q->producer_lock);
624 
625 	/* Feedback loop via tracepoints */
626 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
627 	return 0;
628 }
629 
630 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
631  * Thus, safe percpu variable access.
632  */
633 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_pkt *xdp_pkt)
634 {
635 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
636 
637 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
638 		bq_flush_to_queue(rcpu, bq);
639 
640 	/* Notice, xdp_buff/page MUST be queued here, long enough for
641 	 * driver to code invoking us to finished, due to driver
642 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
643 	 *
644 	 * Thus, incoming xdp_pkt is always queued here (else we race
645 	 * with another CPU on page-refcnt and remaining driver code).
646 	 * Queue time is very short, as driver will invoke flush
647 	 * operation, when completing napi->poll call.
648 	 */
649 	bq->q[bq->count++] = xdp_pkt;
650 	return 0;
651 }
652 
653 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
654 		    struct net_device *dev_rx)
655 {
656 	struct xdp_pkt *xdp_pkt;
657 
658 	xdp_pkt = convert_to_xdp_pkt(xdp);
659 	if (unlikely(!xdp_pkt))
660 		return -EOVERFLOW;
661 
662 	/* Info needed when constructing SKB on remote CPU */
663 	xdp_pkt->dev_rx = dev_rx;
664 
665 	bq_enqueue(rcpu, xdp_pkt);
666 	return 0;
667 }
668 
669 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
670 {
671 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
672 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
673 
674 	__set_bit(bit, bitmap);
675 }
676 
677 void __cpu_map_flush(struct bpf_map *map)
678 {
679 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
680 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
681 	u32 bit;
682 
683 	/* The napi->poll softirq makes sure __cpu_map_insert_ctx()
684 	 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
685 	 * bitmap indicate which percpu bulkq have packets.
686 	 */
687 	for_each_set_bit(bit, bitmap, map->max_entries) {
688 		struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
689 		struct xdp_bulk_queue *bq;
690 
691 		/* This is possible if entry is removed by user space
692 		 * between xdp redirect and flush op.
693 		 */
694 		if (unlikely(!rcpu))
695 			continue;
696 
697 		__clear_bit(bit, bitmap);
698 
699 		/* Flush all frames in bulkq to real queue */
700 		bq = this_cpu_ptr(rcpu->bulkq);
701 		bq_flush_to_queue(rcpu, bq);
702 
703 		/* If already running, costs spin_lock_irqsave + smb_mb */
704 		wake_up_process(rcpu->kthread);
705 	}
706 }
707