1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that queueing the frame and the flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct bpf_cpu_map_entry; 42 struct bpf_cpu_map; 43 44 struct xdp_bulk_queue { 45 void *q[CPU_MAP_BULK_SIZE]; 46 struct list_head flush_node; 47 struct bpf_cpu_map_entry *obj; 48 unsigned int count; 49 }; 50 51 /* Struct for every remote "destination" CPU in map */ 52 struct bpf_cpu_map_entry { 53 u32 cpu; /* kthread CPU and map index */ 54 int map_id; /* Back reference to map */ 55 56 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 57 struct xdp_bulk_queue __percpu *bulkq; 58 59 struct bpf_cpu_map *cmap; 60 61 /* Queue with potential multi-producers, and single-consumer kthread */ 62 struct ptr_ring *queue; 63 struct task_struct *kthread; 64 65 struct bpf_cpumap_val value; 66 struct bpf_prog *prog; 67 68 atomic_t refcnt; /* Control when this struct can be free'ed */ 69 struct rcu_head rcu; 70 71 struct work_struct kthread_stop_wq; 72 }; 73 74 struct bpf_cpu_map { 75 struct bpf_map map; 76 /* Below members specific for map type */ 77 struct bpf_cpu_map_entry **cpu_map; 78 }; 79 80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 81 82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 83 { 84 u32 value_size = attr->value_size; 85 struct bpf_cpu_map *cmap; 86 int err = -ENOMEM; 87 u64 cost; 88 int ret; 89 90 if (!bpf_capable()) 91 return ERR_PTR(-EPERM); 92 93 /* check sanity of attributes */ 94 if (attr->max_entries == 0 || attr->key_size != 4 || 95 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 96 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 97 attr->map_flags & ~BPF_F_NUMA_NODE) 98 return ERR_PTR(-EINVAL); 99 100 cmap = kzalloc(sizeof(*cmap), GFP_USER); 101 if (!cmap) 102 return ERR_PTR(-ENOMEM); 103 104 bpf_map_init_from_attr(&cmap->map, attr); 105 106 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 107 if (cmap->map.max_entries > NR_CPUS) { 108 err = -E2BIG; 109 goto free_cmap; 110 } 111 112 /* make sure page count doesn't overflow */ 113 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 114 115 /* Notice returns -EPERM on if map size is larger than memlock limit */ 116 ret = bpf_map_charge_init(&cmap->map.memory, cost); 117 if (ret) { 118 err = ret; 119 goto free_cmap; 120 } 121 122 /* Alloc array for possible remote "destination" CPUs */ 123 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 124 sizeof(struct bpf_cpu_map_entry *), 125 cmap->map.numa_node); 126 if (!cmap->cpu_map) 127 goto free_charge; 128 129 return &cmap->map; 130 free_charge: 131 bpf_map_charge_finish(&cmap->map.memory); 132 free_cmap: 133 kfree(cmap); 134 return ERR_PTR(err); 135 } 136 137 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 138 { 139 atomic_inc(&rcpu->refcnt); 140 } 141 142 /* called from workqueue, to workaround syscall using preempt_disable */ 143 static void cpu_map_kthread_stop(struct work_struct *work) 144 { 145 struct bpf_cpu_map_entry *rcpu; 146 147 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 148 149 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 150 * as it waits until all in-flight call_rcu() callbacks complete. 151 */ 152 rcu_barrier(); 153 154 /* kthread_stop will wake_up_process and wait for it to complete */ 155 kthread_stop(rcpu->kthread); 156 } 157 158 static struct sk_buff *cpu_map_build_skb(struct xdp_frame *xdpf, 159 struct sk_buff *skb) 160 { 161 unsigned int hard_start_headroom; 162 unsigned int frame_size; 163 void *pkt_data_start; 164 165 /* Part of headroom was reserved to xdpf */ 166 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 167 168 /* Memory size backing xdp_frame data already have reserved 169 * room for build_skb to place skb_shared_info in tailroom. 170 */ 171 frame_size = xdpf->frame_sz; 172 173 pkt_data_start = xdpf->data - hard_start_headroom; 174 skb = build_skb_around(skb, pkt_data_start, frame_size); 175 if (unlikely(!skb)) 176 return NULL; 177 178 skb_reserve(skb, hard_start_headroom); 179 __skb_put(skb, xdpf->len); 180 if (xdpf->metasize) 181 skb_metadata_set(skb, xdpf->metasize); 182 183 /* Essential SKB info: protocol and skb->dev */ 184 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 185 186 /* Optional SKB info, currently missing: 187 * - HW checksum info (skb->ip_summed) 188 * - HW RX hash (skb_set_hash) 189 * - RX ring dev queue index (skb_record_rx_queue) 190 */ 191 192 /* Until page_pool get SKB return path, release DMA here */ 193 xdp_release_frame(xdpf); 194 195 /* Allow SKB to reuse area used by xdp_frame */ 196 xdp_scrub_frame(xdpf); 197 198 return skb; 199 } 200 201 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 202 { 203 /* The tear-down procedure should have made sure that queue is 204 * empty. See __cpu_map_entry_replace() and work-queue 205 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 206 * gracefully and warn once. 207 */ 208 struct xdp_frame *xdpf; 209 210 while ((xdpf = ptr_ring_consume(ring))) 211 if (WARN_ON_ONCE(xdpf)) 212 xdp_return_frame(xdpf); 213 } 214 215 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 216 { 217 if (atomic_dec_and_test(&rcpu->refcnt)) { 218 if (rcpu->prog) 219 bpf_prog_put(rcpu->prog); 220 /* The queue should be empty at this point */ 221 __cpu_map_ring_cleanup(rcpu->queue); 222 ptr_ring_cleanup(rcpu->queue, NULL); 223 kfree(rcpu->queue); 224 kfree(rcpu); 225 } 226 } 227 228 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 229 void **frames, int n, 230 struct xdp_cpumap_stats *stats) 231 { 232 struct xdp_rxq_info rxq; 233 struct xdp_buff xdp; 234 int i, nframes = 0; 235 236 if (!rcpu->prog) 237 return n; 238 239 rcu_read_lock_bh(); 240 241 xdp_set_return_frame_no_direct(); 242 xdp.rxq = &rxq; 243 244 for (i = 0; i < n; i++) { 245 struct xdp_frame *xdpf = frames[i]; 246 u32 act; 247 int err; 248 249 rxq.dev = xdpf->dev_rx; 250 rxq.mem = xdpf->mem; 251 /* TODO: report queue_index to xdp_rxq_info */ 252 253 xdp_convert_frame_to_buff(xdpf, &xdp); 254 255 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 256 switch (act) { 257 case XDP_PASS: 258 err = xdp_update_frame_from_buff(&xdp, xdpf); 259 if (err < 0) { 260 xdp_return_frame(xdpf); 261 stats->drop++; 262 } else { 263 frames[nframes++] = xdpf; 264 stats->pass++; 265 } 266 break; 267 case XDP_REDIRECT: 268 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 269 rcpu->prog); 270 if (unlikely(err)) { 271 xdp_return_frame(xdpf); 272 stats->drop++; 273 } else { 274 stats->redirect++; 275 } 276 break; 277 default: 278 bpf_warn_invalid_xdp_action(act); 279 fallthrough; 280 case XDP_DROP: 281 xdp_return_frame(xdpf); 282 stats->drop++; 283 break; 284 } 285 } 286 287 if (stats->redirect) 288 xdp_do_flush_map(); 289 290 xdp_clear_return_frame_no_direct(); 291 292 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 293 294 return nframes; 295 } 296 297 #define CPUMAP_BATCH 8 298 299 static int cpu_map_kthread_run(void *data) 300 { 301 struct bpf_cpu_map_entry *rcpu = data; 302 303 set_current_state(TASK_INTERRUPTIBLE); 304 305 /* When kthread gives stop order, then rcpu have been disconnected 306 * from map, thus no new packets can enter. Remaining in-flight 307 * per CPU stored packets are flushed to this queue. Wait honoring 308 * kthread_stop signal until queue is empty. 309 */ 310 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 311 struct xdp_cpumap_stats stats = {}; /* zero stats */ 312 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 313 unsigned int drops = 0, sched = 0; 314 void *frames[CPUMAP_BATCH]; 315 void *skbs[CPUMAP_BATCH]; 316 int i, n, m, nframes; 317 318 /* Release CPU reschedule checks */ 319 if (__ptr_ring_empty(rcpu->queue)) { 320 set_current_state(TASK_INTERRUPTIBLE); 321 /* Recheck to avoid lost wake-up */ 322 if (__ptr_ring_empty(rcpu->queue)) { 323 schedule(); 324 sched = 1; 325 } else { 326 __set_current_state(TASK_RUNNING); 327 } 328 } else { 329 sched = cond_resched(); 330 } 331 332 /* 333 * The bpf_cpu_map_entry is single consumer, with this 334 * kthread CPU pinned. Lockless access to ptr_ring 335 * consume side valid as no-resize allowed of queue. 336 */ 337 n = __ptr_ring_consume_batched(rcpu->queue, frames, 338 CPUMAP_BATCH); 339 for (i = 0; i < n; i++) { 340 void *f = frames[i]; 341 struct page *page = virt_to_page(f); 342 343 /* Bring struct page memory area to curr CPU. Read by 344 * build_skb_around via page_is_pfmemalloc(), and when 345 * freed written by page_frag_free call. 346 */ 347 prefetchw(page); 348 } 349 350 /* Support running another XDP prog on this CPU */ 351 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats); 352 if (nframes) { 353 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 354 if (unlikely(m == 0)) { 355 for (i = 0; i < nframes; i++) 356 skbs[i] = NULL; /* effect: xdp_return_frame */ 357 drops += nframes; 358 } 359 } 360 361 local_bh_disable(); 362 for (i = 0; i < nframes; i++) { 363 struct xdp_frame *xdpf = frames[i]; 364 struct sk_buff *skb = skbs[i]; 365 int ret; 366 367 skb = cpu_map_build_skb(xdpf, skb); 368 if (!skb) { 369 xdp_return_frame(xdpf); 370 continue; 371 } 372 373 /* Inject into network stack */ 374 ret = netif_receive_skb_core(skb); 375 if (ret == NET_RX_DROP) 376 drops++; 377 } 378 /* Feedback loop via tracepoint */ 379 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats); 380 381 local_bh_enable(); /* resched point, may call do_softirq() */ 382 } 383 __set_current_state(TASK_RUNNING); 384 385 put_cpu_map_entry(rcpu); 386 return 0; 387 } 388 389 bool cpu_map_prog_allowed(struct bpf_map *map) 390 { 391 return map->map_type == BPF_MAP_TYPE_CPUMAP && 392 map->value_size != offsetofend(struct bpf_cpumap_val, qsize); 393 } 394 395 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd) 396 { 397 struct bpf_prog *prog; 398 399 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 400 if (IS_ERR(prog)) 401 return PTR_ERR(prog); 402 403 if (prog->expected_attach_type != BPF_XDP_CPUMAP) { 404 bpf_prog_put(prog); 405 return -EINVAL; 406 } 407 408 rcpu->value.bpf_prog.id = prog->aux->id; 409 rcpu->prog = prog; 410 411 return 0; 412 } 413 414 static struct bpf_cpu_map_entry * 415 __cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id) 416 { 417 int numa, err, i, fd = value->bpf_prog.fd; 418 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 419 struct bpf_cpu_map_entry *rcpu; 420 struct xdp_bulk_queue *bq; 421 422 /* Have map->numa_node, but choose node of redirect target CPU */ 423 numa = cpu_to_node(cpu); 424 425 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 426 if (!rcpu) 427 return NULL; 428 429 /* Alloc percpu bulkq */ 430 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 431 sizeof(void *), gfp); 432 if (!rcpu->bulkq) 433 goto free_rcu; 434 435 for_each_possible_cpu(i) { 436 bq = per_cpu_ptr(rcpu->bulkq, i); 437 bq->obj = rcpu; 438 } 439 440 /* Alloc queue */ 441 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 442 if (!rcpu->queue) 443 goto free_bulkq; 444 445 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 446 if (err) 447 goto free_queue; 448 449 rcpu->cpu = cpu; 450 rcpu->map_id = map_id; 451 rcpu->value.qsize = value->qsize; 452 453 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd)) 454 goto free_ptr_ring; 455 456 /* Setup kthread */ 457 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 458 "cpumap/%d/map:%d", cpu, map_id); 459 if (IS_ERR(rcpu->kthread)) 460 goto free_prog; 461 462 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 463 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 464 465 /* Make sure kthread runs on a single CPU */ 466 kthread_bind(rcpu->kthread, cpu); 467 wake_up_process(rcpu->kthread); 468 469 return rcpu; 470 471 free_prog: 472 if (rcpu->prog) 473 bpf_prog_put(rcpu->prog); 474 free_ptr_ring: 475 ptr_ring_cleanup(rcpu->queue, NULL); 476 free_queue: 477 kfree(rcpu->queue); 478 free_bulkq: 479 free_percpu(rcpu->bulkq); 480 free_rcu: 481 kfree(rcpu); 482 return NULL; 483 } 484 485 static void __cpu_map_entry_free(struct rcu_head *rcu) 486 { 487 struct bpf_cpu_map_entry *rcpu; 488 489 /* This cpu_map_entry have been disconnected from map and one 490 * RCU grace-period have elapsed. Thus, XDP cannot queue any 491 * new packets and cannot change/set flush_needed that can 492 * find this entry. 493 */ 494 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 495 496 free_percpu(rcpu->bulkq); 497 /* Cannot kthread_stop() here, last put free rcpu resources */ 498 put_cpu_map_entry(rcpu); 499 } 500 501 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 502 * ensure any driver rcu critical sections have completed, but this 503 * does not guarantee a flush has happened yet. Because driver side 504 * rcu_read_lock/unlock only protects the running XDP program. The 505 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 506 * pending flush op doesn't fail. 507 * 508 * The bpf_cpu_map_entry is still used by the kthread, and there can 509 * still be pending packets (in queue and percpu bulkq). A refcnt 510 * makes sure to last user (kthread_stop vs. call_rcu) free memory 511 * resources. 512 * 513 * The rcu callback __cpu_map_entry_free flush remaining packets in 514 * percpu bulkq to queue. Due to caller map_delete_elem() disable 515 * preemption, cannot call kthread_stop() to make sure queue is empty. 516 * Instead a work_queue is started for stopping kthread, 517 * cpu_map_kthread_stop, which waits for an RCU grace period before 518 * stopping kthread, emptying the queue. 519 */ 520 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 521 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 522 { 523 struct bpf_cpu_map_entry *old_rcpu; 524 525 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 526 if (old_rcpu) { 527 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 528 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 529 schedule_work(&old_rcpu->kthread_stop_wq); 530 } 531 } 532 533 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 534 { 535 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 536 u32 key_cpu = *(u32 *)key; 537 538 if (key_cpu >= map->max_entries) 539 return -EINVAL; 540 541 /* notice caller map_delete_elem() use preempt_disable() */ 542 __cpu_map_entry_replace(cmap, key_cpu, NULL); 543 return 0; 544 } 545 546 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 547 u64 map_flags) 548 { 549 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 550 struct bpf_cpumap_val cpumap_value = {}; 551 struct bpf_cpu_map_entry *rcpu; 552 /* Array index key correspond to CPU number */ 553 u32 key_cpu = *(u32 *)key; 554 555 memcpy(&cpumap_value, value, map->value_size); 556 557 if (unlikely(map_flags > BPF_EXIST)) 558 return -EINVAL; 559 if (unlikely(key_cpu >= cmap->map.max_entries)) 560 return -E2BIG; 561 if (unlikely(map_flags == BPF_NOEXIST)) 562 return -EEXIST; 563 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 564 return -EOVERFLOW; 565 566 /* Make sure CPU is a valid possible cpu */ 567 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 568 return -ENODEV; 569 570 if (cpumap_value.qsize == 0) { 571 rcpu = NULL; /* Same as deleting */ 572 } else { 573 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 574 rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id); 575 if (!rcpu) 576 return -ENOMEM; 577 rcpu->cmap = cmap; 578 } 579 rcu_read_lock(); 580 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 581 rcu_read_unlock(); 582 return 0; 583 } 584 585 static void cpu_map_free(struct bpf_map *map) 586 { 587 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 588 u32 i; 589 590 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 591 * so the bpf programs (can be more than one that used this map) were 592 * disconnected from events. Wait for outstanding critical sections in 593 * these programs to complete. The rcu critical section only guarantees 594 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 595 * It does __not__ ensure pending flush operations (if any) are 596 * complete. 597 */ 598 599 bpf_clear_redirect_map(map); 600 synchronize_rcu(); 601 602 /* For cpu_map the remote CPUs can still be using the entries 603 * (struct bpf_cpu_map_entry). 604 */ 605 for (i = 0; i < cmap->map.max_entries; i++) { 606 struct bpf_cpu_map_entry *rcpu; 607 608 rcpu = READ_ONCE(cmap->cpu_map[i]); 609 if (!rcpu) 610 continue; 611 612 /* bq flush and cleanup happens after RCU grace-period */ 613 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 614 } 615 bpf_map_area_free(cmap->cpu_map); 616 kfree(cmap); 617 } 618 619 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 620 { 621 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 622 struct bpf_cpu_map_entry *rcpu; 623 624 if (key >= map->max_entries) 625 return NULL; 626 627 rcpu = READ_ONCE(cmap->cpu_map[key]); 628 return rcpu; 629 } 630 631 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 632 { 633 struct bpf_cpu_map_entry *rcpu = 634 __cpu_map_lookup_elem(map, *(u32 *)key); 635 636 return rcpu ? &rcpu->value : NULL; 637 } 638 639 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 640 { 641 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 642 u32 index = key ? *(u32 *)key : U32_MAX; 643 u32 *next = next_key; 644 645 if (index >= cmap->map.max_entries) { 646 *next = 0; 647 return 0; 648 } 649 650 if (index == cmap->map.max_entries - 1) 651 return -ENOENT; 652 *next = index + 1; 653 return 0; 654 } 655 656 static int cpu_map_btf_id; 657 const struct bpf_map_ops cpu_map_ops = { 658 .map_meta_equal = bpf_map_meta_equal, 659 .map_alloc = cpu_map_alloc, 660 .map_free = cpu_map_free, 661 .map_delete_elem = cpu_map_delete_elem, 662 .map_update_elem = cpu_map_update_elem, 663 .map_lookup_elem = cpu_map_lookup_elem, 664 .map_get_next_key = cpu_map_get_next_key, 665 .map_check_btf = map_check_no_btf, 666 .map_btf_name = "bpf_cpu_map", 667 .map_btf_id = &cpu_map_btf_id, 668 }; 669 670 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 671 { 672 struct bpf_cpu_map_entry *rcpu = bq->obj; 673 unsigned int processed = 0, drops = 0; 674 const int to_cpu = rcpu->cpu; 675 struct ptr_ring *q; 676 int i; 677 678 if (unlikely(!bq->count)) 679 return; 680 681 q = rcpu->queue; 682 spin_lock(&q->producer_lock); 683 684 for (i = 0; i < bq->count; i++) { 685 struct xdp_frame *xdpf = bq->q[i]; 686 int err; 687 688 err = __ptr_ring_produce(q, xdpf); 689 if (err) { 690 drops++; 691 xdp_return_frame_rx_napi(xdpf); 692 } 693 processed++; 694 } 695 bq->count = 0; 696 spin_unlock(&q->producer_lock); 697 698 __list_del_clearprev(&bq->flush_node); 699 700 /* Feedback loop via tracepoints */ 701 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 702 } 703 704 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 705 * Thus, safe percpu variable access. 706 */ 707 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 708 { 709 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 710 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 711 712 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 713 bq_flush_to_queue(bq); 714 715 /* Notice, xdp_buff/page MUST be queued here, long enough for 716 * driver to code invoking us to finished, due to driver 717 * (e.g. ixgbe) recycle tricks based on page-refcnt. 718 * 719 * Thus, incoming xdp_frame is always queued here (else we race 720 * with another CPU on page-refcnt and remaining driver code). 721 * Queue time is very short, as driver will invoke flush 722 * operation, when completing napi->poll call. 723 */ 724 bq->q[bq->count++] = xdpf; 725 726 if (!bq->flush_node.prev) 727 list_add(&bq->flush_node, flush_list); 728 } 729 730 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 731 struct net_device *dev_rx) 732 { 733 struct xdp_frame *xdpf; 734 735 xdpf = xdp_convert_buff_to_frame(xdp); 736 if (unlikely(!xdpf)) 737 return -EOVERFLOW; 738 739 /* Info needed when constructing SKB on remote CPU */ 740 xdpf->dev_rx = dev_rx; 741 742 bq_enqueue(rcpu, xdpf); 743 return 0; 744 } 745 746 void __cpu_map_flush(void) 747 { 748 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 749 struct xdp_bulk_queue *bq, *tmp; 750 751 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 752 bq_flush_to_queue(bq); 753 754 /* If already running, costs spin_lock_irqsave + smb_mb */ 755 wake_up_process(bq->obj->kthread); 756 } 757 } 758 759 static int __init cpu_map_init(void) 760 { 761 int cpu; 762 763 for_each_possible_cpu(cpu) 764 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 765 return 0; 766 } 767 768 subsys_initcall(cpu_map_init); 769