xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 3d40aed8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /**
8  * DOC: cpu map
9  * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11  *
12  * Unlike devmap which redirects XDP frames out to another NIC device,
13  * this map type redirects raw XDP frames to another CPU.  The remote
14  * CPU will do SKB-allocation and call the normal network stack.
15  */
16 /*
17  * This is a scalability and isolation mechanism, that allow
18  * separating the early driver network XDP layer, from the rest of the
19  * netstack, and assigning dedicated CPUs for this stage.  This
20  * basically allows for 10G wirespeed pre-filtering via bpf.
21  */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27 
28 #include <linux/sched.h>
29 #include <linux/workqueue.h>
30 #include <linux/kthread.h>
31 #include <trace/events/xdp.h>
32 #include <linux/btf_ids.h>
33 
34 #include <linux/netdevice.h>   /* netif_receive_skb_list */
35 #include <linux/etherdevice.h> /* eth_type_trans */
36 
37 /* General idea: XDP packets getting XDP redirected to another CPU,
38  * will maximum be stored/queued for one driver ->poll() call.  It is
39  * guaranteed that queueing the frame and the flush operation happen on
40  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
41  * which queue in bpf_cpu_map_entry contains packets.
42  */
43 
44 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
45 struct bpf_cpu_map_entry;
46 struct bpf_cpu_map;
47 
48 struct xdp_bulk_queue {
49 	void *q[CPU_MAP_BULK_SIZE];
50 	struct list_head flush_node;
51 	struct bpf_cpu_map_entry *obj;
52 	unsigned int count;
53 };
54 
55 /* Struct for every remote "destination" CPU in map */
56 struct bpf_cpu_map_entry {
57 	u32 cpu;    /* kthread CPU and map index */
58 	int map_id; /* Back reference to map */
59 
60 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
61 	struct xdp_bulk_queue __percpu *bulkq;
62 
63 	struct bpf_cpu_map *cmap;
64 
65 	/* Queue with potential multi-producers, and single-consumer kthread */
66 	struct ptr_ring *queue;
67 	struct task_struct *kthread;
68 
69 	struct bpf_cpumap_val value;
70 	struct bpf_prog *prog;
71 
72 	atomic_t refcnt; /* Control when this struct can be free'ed */
73 	struct rcu_head rcu;
74 
75 	struct work_struct kthread_stop_wq;
76 };
77 
78 struct bpf_cpu_map {
79 	struct bpf_map map;
80 	/* Below members specific for map type */
81 	struct bpf_cpu_map_entry __rcu **cpu_map;
82 };
83 
84 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
85 
86 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
87 {
88 	u32 value_size = attr->value_size;
89 	struct bpf_cpu_map *cmap;
90 
91 	/* check sanity of attributes */
92 	if (attr->max_entries == 0 || attr->key_size != 4 ||
93 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
94 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
95 	    attr->map_flags & ~BPF_F_NUMA_NODE)
96 		return ERR_PTR(-EINVAL);
97 
98 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
99 	if (attr->max_entries > NR_CPUS)
100 		return ERR_PTR(-E2BIG);
101 
102 	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
103 	if (!cmap)
104 		return ERR_PTR(-ENOMEM);
105 
106 	bpf_map_init_from_attr(&cmap->map, attr);
107 
108 	/* Alloc array for possible remote "destination" CPUs */
109 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
110 					   sizeof(struct bpf_cpu_map_entry *),
111 					   cmap->map.numa_node);
112 	if (!cmap->cpu_map) {
113 		bpf_map_area_free(cmap);
114 		return ERR_PTR(-ENOMEM);
115 	}
116 
117 	return &cmap->map;
118 }
119 
120 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
121 {
122 	atomic_inc(&rcpu->refcnt);
123 }
124 
125 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
126 {
127 	/* The tear-down procedure should have made sure that queue is
128 	 * empty.  See __cpu_map_entry_replace() and work-queue
129 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
130 	 * gracefully and warn once.
131 	 */
132 	struct xdp_frame *xdpf;
133 
134 	while ((xdpf = ptr_ring_consume(ring)))
135 		if (WARN_ON_ONCE(xdpf))
136 			xdp_return_frame(xdpf);
137 }
138 
139 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
140 {
141 	if (atomic_dec_and_test(&rcpu->refcnt)) {
142 		if (rcpu->prog)
143 			bpf_prog_put(rcpu->prog);
144 		/* The queue should be empty at this point */
145 		__cpu_map_ring_cleanup(rcpu->queue);
146 		ptr_ring_cleanup(rcpu->queue, NULL);
147 		kfree(rcpu->queue);
148 		kfree(rcpu);
149 	}
150 }
151 
152 /* called from workqueue, to workaround syscall using preempt_disable */
153 static void cpu_map_kthread_stop(struct work_struct *work)
154 {
155 	struct bpf_cpu_map_entry *rcpu;
156 	int err;
157 
158 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
159 
160 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
161 	 * as it waits until all in-flight call_rcu() callbacks complete.
162 	 */
163 	rcu_barrier();
164 
165 	/* kthread_stop will wake_up_process and wait for it to complete */
166 	err = kthread_stop(rcpu->kthread);
167 	if (err) {
168 		/* kthread_stop may be called before cpu_map_kthread_run
169 		 * is executed, so we need to release the memory related
170 		 * to rcpu.
171 		 */
172 		put_cpu_map_entry(rcpu);
173 	}
174 }
175 
176 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
177 				     struct list_head *listp,
178 				     struct xdp_cpumap_stats *stats)
179 {
180 	struct sk_buff *skb, *tmp;
181 	struct xdp_buff xdp;
182 	u32 act;
183 	int err;
184 
185 	list_for_each_entry_safe(skb, tmp, listp, list) {
186 		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
187 		switch (act) {
188 		case XDP_PASS:
189 			break;
190 		case XDP_REDIRECT:
191 			skb_list_del_init(skb);
192 			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
193 						      rcpu->prog);
194 			if (unlikely(err)) {
195 				kfree_skb(skb);
196 				stats->drop++;
197 			} else {
198 				stats->redirect++;
199 			}
200 			return;
201 		default:
202 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
203 			fallthrough;
204 		case XDP_ABORTED:
205 			trace_xdp_exception(skb->dev, rcpu->prog, act);
206 			fallthrough;
207 		case XDP_DROP:
208 			skb_list_del_init(skb);
209 			kfree_skb(skb);
210 			stats->drop++;
211 			return;
212 		}
213 	}
214 }
215 
216 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
217 				    void **frames, int n,
218 				    struct xdp_cpumap_stats *stats)
219 {
220 	struct xdp_rxq_info rxq;
221 	struct xdp_buff xdp;
222 	int i, nframes = 0;
223 
224 	xdp_set_return_frame_no_direct();
225 	xdp.rxq = &rxq;
226 
227 	for (i = 0; i < n; i++) {
228 		struct xdp_frame *xdpf = frames[i];
229 		u32 act;
230 		int err;
231 
232 		rxq.dev = xdpf->dev_rx;
233 		rxq.mem = xdpf->mem;
234 		/* TODO: report queue_index to xdp_rxq_info */
235 
236 		xdp_convert_frame_to_buff(xdpf, &xdp);
237 
238 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
239 		switch (act) {
240 		case XDP_PASS:
241 			err = xdp_update_frame_from_buff(&xdp, xdpf);
242 			if (err < 0) {
243 				xdp_return_frame(xdpf);
244 				stats->drop++;
245 			} else {
246 				frames[nframes++] = xdpf;
247 				stats->pass++;
248 			}
249 			break;
250 		case XDP_REDIRECT:
251 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
252 					      rcpu->prog);
253 			if (unlikely(err)) {
254 				xdp_return_frame(xdpf);
255 				stats->drop++;
256 			} else {
257 				stats->redirect++;
258 			}
259 			break;
260 		default:
261 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
262 			fallthrough;
263 		case XDP_DROP:
264 			xdp_return_frame(xdpf);
265 			stats->drop++;
266 			break;
267 		}
268 	}
269 
270 	xdp_clear_return_frame_no_direct();
271 
272 	return nframes;
273 }
274 
275 #define CPUMAP_BATCH 8
276 
277 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
278 				int xdp_n, struct xdp_cpumap_stats *stats,
279 				struct list_head *list)
280 {
281 	int nframes;
282 
283 	if (!rcpu->prog)
284 		return xdp_n;
285 
286 	rcu_read_lock_bh();
287 
288 	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
289 
290 	if (stats->redirect)
291 		xdp_do_flush();
292 
293 	if (unlikely(!list_empty(list)))
294 		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
295 
296 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
297 
298 	return nframes;
299 }
300 
301 
302 static int cpu_map_kthread_run(void *data)
303 {
304 	struct bpf_cpu_map_entry *rcpu = data;
305 
306 	set_current_state(TASK_INTERRUPTIBLE);
307 
308 	/* When kthread gives stop order, then rcpu have been disconnected
309 	 * from map, thus no new packets can enter. Remaining in-flight
310 	 * per CPU stored packets are flushed to this queue.  Wait honoring
311 	 * kthread_stop signal until queue is empty.
312 	 */
313 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
314 		struct xdp_cpumap_stats stats = {}; /* zero stats */
315 		unsigned int kmem_alloc_drops = 0, sched = 0;
316 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
317 		int i, n, m, nframes, xdp_n;
318 		void *frames[CPUMAP_BATCH];
319 		void *skbs[CPUMAP_BATCH];
320 		LIST_HEAD(list);
321 
322 		/* Release CPU reschedule checks */
323 		if (__ptr_ring_empty(rcpu->queue)) {
324 			set_current_state(TASK_INTERRUPTIBLE);
325 			/* Recheck to avoid lost wake-up */
326 			if (__ptr_ring_empty(rcpu->queue)) {
327 				schedule();
328 				sched = 1;
329 			} else {
330 				__set_current_state(TASK_RUNNING);
331 			}
332 		} else {
333 			sched = cond_resched();
334 		}
335 
336 		/*
337 		 * The bpf_cpu_map_entry is single consumer, with this
338 		 * kthread CPU pinned. Lockless access to ptr_ring
339 		 * consume side valid as no-resize allowed of queue.
340 		 */
341 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
342 					       CPUMAP_BATCH);
343 		for (i = 0, xdp_n = 0; i < n; i++) {
344 			void *f = frames[i];
345 			struct page *page;
346 
347 			if (unlikely(__ptr_test_bit(0, &f))) {
348 				struct sk_buff *skb = f;
349 
350 				__ptr_clear_bit(0, &skb);
351 				list_add_tail(&skb->list, &list);
352 				continue;
353 			}
354 
355 			frames[xdp_n++] = f;
356 			page = virt_to_page(f);
357 
358 			/* Bring struct page memory area to curr CPU. Read by
359 			 * build_skb_around via page_is_pfmemalloc(), and when
360 			 * freed written by page_frag_free call.
361 			 */
362 			prefetchw(page);
363 		}
364 
365 		/* Support running another XDP prog on this CPU */
366 		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
367 		if (nframes) {
368 			m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs);
369 			if (unlikely(m == 0)) {
370 				for (i = 0; i < nframes; i++)
371 					skbs[i] = NULL; /* effect: xdp_return_frame */
372 				kmem_alloc_drops += nframes;
373 			}
374 		}
375 
376 		local_bh_disable();
377 		for (i = 0; i < nframes; i++) {
378 			struct xdp_frame *xdpf = frames[i];
379 			struct sk_buff *skb = skbs[i];
380 
381 			skb = __xdp_build_skb_from_frame(xdpf, skb,
382 							 xdpf->dev_rx);
383 			if (!skb) {
384 				xdp_return_frame(xdpf);
385 				continue;
386 			}
387 
388 			list_add_tail(&skb->list, &list);
389 		}
390 		netif_receive_skb_list(&list);
391 
392 		/* Feedback loop via tracepoint */
393 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
394 					 sched, &stats);
395 
396 		local_bh_enable(); /* resched point, may call do_softirq() */
397 	}
398 	__set_current_state(TASK_RUNNING);
399 
400 	put_cpu_map_entry(rcpu);
401 	return 0;
402 }
403 
404 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
405 				      struct bpf_map *map, int fd)
406 {
407 	struct bpf_prog *prog;
408 
409 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
410 	if (IS_ERR(prog))
411 		return PTR_ERR(prog);
412 
413 	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
414 	    !bpf_prog_map_compatible(map, prog)) {
415 		bpf_prog_put(prog);
416 		return -EINVAL;
417 	}
418 
419 	rcpu->value.bpf_prog.id = prog->aux->id;
420 	rcpu->prog = prog;
421 
422 	return 0;
423 }
424 
425 static struct bpf_cpu_map_entry *
426 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
427 		      u32 cpu)
428 {
429 	int numa, err, i, fd = value->bpf_prog.fd;
430 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
431 	struct bpf_cpu_map_entry *rcpu;
432 	struct xdp_bulk_queue *bq;
433 
434 	/* Have map->numa_node, but choose node of redirect target CPU */
435 	numa = cpu_to_node(cpu);
436 
437 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
438 	if (!rcpu)
439 		return NULL;
440 
441 	/* Alloc percpu bulkq */
442 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
443 					   sizeof(void *), gfp);
444 	if (!rcpu->bulkq)
445 		goto free_rcu;
446 
447 	for_each_possible_cpu(i) {
448 		bq = per_cpu_ptr(rcpu->bulkq, i);
449 		bq->obj = rcpu;
450 	}
451 
452 	/* Alloc queue */
453 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
454 					   numa);
455 	if (!rcpu->queue)
456 		goto free_bulkq;
457 
458 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
459 	if (err)
460 		goto free_queue;
461 
462 	rcpu->cpu    = cpu;
463 	rcpu->map_id = map->id;
464 	rcpu->value.qsize  = value->qsize;
465 
466 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
467 		goto free_ptr_ring;
468 
469 	/* Setup kthread */
470 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
471 					       "cpumap/%d/map:%d", cpu,
472 					       map->id);
473 	if (IS_ERR(rcpu->kthread))
474 		goto free_prog;
475 
476 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
477 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
478 
479 	/* Make sure kthread runs on a single CPU */
480 	kthread_bind(rcpu->kthread, cpu);
481 	wake_up_process(rcpu->kthread);
482 
483 	return rcpu;
484 
485 free_prog:
486 	if (rcpu->prog)
487 		bpf_prog_put(rcpu->prog);
488 free_ptr_ring:
489 	ptr_ring_cleanup(rcpu->queue, NULL);
490 free_queue:
491 	kfree(rcpu->queue);
492 free_bulkq:
493 	free_percpu(rcpu->bulkq);
494 free_rcu:
495 	kfree(rcpu);
496 	return NULL;
497 }
498 
499 static void __cpu_map_entry_free(struct rcu_head *rcu)
500 {
501 	struct bpf_cpu_map_entry *rcpu;
502 
503 	/* This cpu_map_entry have been disconnected from map and one
504 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
505 	 * new packets and cannot change/set flush_needed that can
506 	 * find this entry.
507 	 */
508 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
509 
510 	free_percpu(rcpu->bulkq);
511 	/* Cannot kthread_stop() here, last put free rcpu resources */
512 	put_cpu_map_entry(rcpu);
513 }
514 
515 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
516  * ensure any driver rcu critical sections have completed, but this
517  * does not guarantee a flush has happened yet. Because driver side
518  * rcu_read_lock/unlock only protects the running XDP program.  The
519  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
520  * pending flush op doesn't fail.
521  *
522  * The bpf_cpu_map_entry is still used by the kthread, and there can
523  * still be pending packets (in queue and percpu bulkq).  A refcnt
524  * makes sure to last user (kthread_stop vs. call_rcu) free memory
525  * resources.
526  *
527  * The rcu callback __cpu_map_entry_free flush remaining packets in
528  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
529  * preemption, cannot call kthread_stop() to make sure queue is empty.
530  * Instead a work_queue is started for stopping kthread,
531  * cpu_map_kthread_stop, which waits for an RCU grace period before
532  * stopping kthread, emptying the queue.
533  */
534 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
535 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
536 {
537 	struct bpf_cpu_map_entry *old_rcpu;
538 
539 	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
540 	if (old_rcpu) {
541 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
542 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
543 		schedule_work(&old_rcpu->kthread_stop_wq);
544 	}
545 }
546 
547 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
548 {
549 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
550 	u32 key_cpu = *(u32 *)key;
551 
552 	if (key_cpu >= map->max_entries)
553 		return -EINVAL;
554 
555 	/* notice caller map_delete_elem() use preempt_disable() */
556 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
557 	return 0;
558 }
559 
560 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
561 				u64 map_flags)
562 {
563 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
564 	struct bpf_cpumap_val cpumap_value = {};
565 	struct bpf_cpu_map_entry *rcpu;
566 	/* Array index key correspond to CPU number */
567 	u32 key_cpu = *(u32 *)key;
568 
569 	memcpy(&cpumap_value, value, map->value_size);
570 
571 	if (unlikely(map_flags > BPF_EXIST))
572 		return -EINVAL;
573 	if (unlikely(key_cpu >= cmap->map.max_entries))
574 		return -E2BIG;
575 	if (unlikely(map_flags == BPF_NOEXIST))
576 		return -EEXIST;
577 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
578 		return -EOVERFLOW;
579 
580 	/* Make sure CPU is a valid possible cpu */
581 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
582 		return -ENODEV;
583 
584 	if (cpumap_value.qsize == 0) {
585 		rcpu = NULL; /* Same as deleting */
586 	} else {
587 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
588 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
589 		if (!rcpu)
590 			return -ENOMEM;
591 		rcpu->cmap = cmap;
592 	}
593 	rcu_read_lock();
594 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
595 	rcu_read_unlock();
596 	return 0;
597 }
598 
599 static void cpu_map_free(struct bpf_map *map)
600 {
601 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
602 	u32 i;
603 
604 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
605 	 * so the bpf programs (can be more than one that used this map) were
606 	 * disconnected from events. Wait for outstanding critical sections in
607 	 * these programs to complete. The rcu critical section only guarantees
608 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
609 	 * It does __not__ ensure pending flush operations (if any) are
610 	 * complete.
611 	 */
612 
613 	synchronize_rcu();
614 
615 	/* For cpu_map the remote CPUs can still be using the entries
616 	 * (struct bpf_cpu_map_entry).
617 	 */
618 	for (i = 0; i < cmap->map.max_entries; i++) {
619 		struct bpf_cpu_map_entry *rcpu;
620 
621 		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
622 		if (!rcpu)
623 			continue;
624 
625 		/* bq flush and cleanup happens after RCU grace-period */
626 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
627 	}
628 	bpf_map_area_free(cmap->cpu_map);
629 	bpf_map_area_free(cmap);
630 }
631 
632 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
633  * by local_bh_disable() (from XDP calls inside NAPI). The
634  * rcu_read_lock_bh_held() below makes lockdep accept both.
635  */
636 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
637 {
638 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
639 	struct bpf_cpu_map_entry *rcpu;
640 
641 	if (key >= map->max_entries)
642 		return NULL;
643 
644 	rcpu = rcu_dereference_check(cmap->cpu_map[key],
645 				     rcu_read_lock_bh_held());
646 	return rcpu;
647 }
648 
649 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
650 {
651 	struct bpf_cpu_map_entry *rcpu =
652 		__cpu_map_lookup_elem(map, *(u32 *)key);
653 
654 	return rcpu ? &rcpu->value : NULL;
655 }
656 
657 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
658 {
659 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
660 	u32 index = key ? *(u32 *)key : U32_MAX;
661 	u32 *next = next_key;
662 
663 	if (index >= cmap->map.max_entries) {
664 		*next = 0;
665 		return 0;
666 	}
667 
668 	if (index == cmap->map.max_entries - 1)
669 		return -ENOENT;
670 	*next = index + 1;
671 	return 0;
672 }
673 
674 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
675 {
676 	return __bpf_xdp_redirect_map(map, index, flags, 0,
677 				      __cpu_map_lookup_elem);
678 }
679 
680 static u64 cpu_map_mem_usage(const struct bpf_map *map)
681 {
682 	u64 usage = sizeof(struct bpf_cpu_map);
683 
684 	/* Currently the dynamically allocated elements are not counted */
685 	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
686 	return usage;
687 }
688 
689 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
690 const struct bpf_map_ops cpu_map_ops = {
691 	.map_meta_equal		= bpf_map_meta_equal,
692 	.map_alloc		= cpu_map_alloc,
693 	.map_free		= cpu_map_free,
694 	.map_delete_elem	= cpu_map_delete_elem,
695 	.map_update_elem	= cpu_map_update_elem,
696 	.map_lookup_elem	= cpu_map_lookup_elem,
697 	.map_get_next_key	= cpu_map_get_next_key,
698 	.map_check_btf		= map_check_no_btf,
699 	.map_mem_usage		= cpu_map_mem_usage,
700 	.map_btf_id		= &cpu_map_btf_ids[0],
701 	.map_redirect		= cpu_map_redirect,
702 };
703 
704 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
705 {
706 	struct bpf_cpu_map_entry *rcpu = bq->obj;
707 	unsigned int processed = 0, drops = 0;
708 	const int to_cpu = rcpu->cpu;
709 	struct ptr_ring *q;
710 	int i;
711 
712 	if (unlikely(!bq->count))
713 		return;
714 
715 	q = rcpu->queue;
716 	spin_lock(&q->producer_lock);
717 
718 	for (i = 0; i < bq->count; i++) {
719 		struct xdp_frame *xdpf = bq->q[i];
720 		int err;
721 
722 		err = __ptr_ring_produce(q, xdpf);
723 		if (err) {
724 			drops++;
725 			xdp_return_frame_rx_napi(xdpf);
726 		}
727 		processed++;
728 	}
729 	bq->count = 0;
730 	spin_unlock(&q->producer_lock);
731 
732 	__list_del_clearprev(&bq->flush_node);
733 
734 	/* Feedback loop via tracepoints */
735 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
736 }
737 
738 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
739  * Thus, safe percpu variable access.
740  */
741 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
742 {
743 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
744 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
745 
746 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
747 		bq_flush_to_queue(bq);
748 
749 	/* Notice, xdp_buff/page MUST be queued here, long enough for
750 	 * driver to code invoking us to finished, due to driver
751 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
752 	 *
753 	 * Thus, incoming xdp_frame is always queued here (else we race
754 	 * with another CPU on page-refcnt and remaining driver code).
755 	 * Queue time is very short, as driver will invoke flush
756 	 * operation, when completing napi->poll call.
757 	 */
758 	bq->q[bq->count++] = xdpf;
759 
760 	if (!bq->flush_node.prev)
761 		list_add(&bq->flush_node, flush_list);
762 }
763 
764 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
765 		    struct net_device *dev_rx)
766 {
767 	/* Info needed when constructing SKB on remote CPU */
768 	xdpf->dev_rx = dev_rx;
769 
770 	bq_enqueue(rcpu, xdpf);
771 	return 0;
772 }
773 
774 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
775 			     struct sk_buff *skb)
776 {
777 	int ret;
778 
779 	__skb_pull(skb, skb->mac_len);
780 	skb_set_redirected(skb, false);
781 	__ptr_set_bit(0, &skb);
782 
783 	ret = ptr_ring_produce(rcpu->queue, skb);
784 	if (ret < 0)
785 		goto trace;
786 
787 	wake_up_process(rcpu->kthread);
788 trace:
789 	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
790 	return ret;
791 }
792 
793 void __cpu_map_flush(void)
794 {
795 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
796 	struct xdp_bulk_queue *bq, *tmp;
797 
798 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
799 		bq_flush_to_queue(bq);
800 
801 		/* If already running, costs spin_lock_irqsave + smb_mb */
802 		wake_up_process(bq->obj->kthread);
803 	}
804 }
805 
806 static int __init cpu_map_init(void)
807 {
808 	int cpu;
809 
810 	for_each_possible_cpu(cpu)
811 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
812 	return 0;
813 }
814 
815 subsys_initcall(cpu_map_init);
816